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Visual motion detection is essential for the survival of many species. The phenomenon

includes several spatial properties, not fully understood at the level of a neural circuit.

This paper proposes a computational model of a visual motion detector that integrates

direction and orientation selectivity features. A recent experiment in the Drosophila

model highlights that stimulus orientation influences the neural response of direction

cells. However, this interaction and the significance at the behavioral level are currently

unknown. As such, another objective of this article is to study the effect of merging these

two visual processes when contextualized in a neuro-robotic model and an operant

conditioning procedure. In this work, the learning task was solved using an artificial

spiking neural network, acting as the brain controller for virtual and physical robots,

showing a behavior modulation from the integration of both visual processes.

Keywords: spiking neurons, vision, direction selectivity, orientation selectivity, motion detection, artificial

intelligence, robot

1. INTRODUCTION

Visual motion detection (MD), direction selectivity (DS) and orientation selectivity (OS) are
essential basic mechanisms for processing visual input from the environment (Borst and Euler,
2011; Clark and Demb, 2016; Nath and Schwartz, 2016). However, the neural correlates at the level
of cellular circuitry are not fully understood (Takemura et al., 2013). The study of elementary MD
and DS models under the umbrella of computational vision is based on a few theories (Hassenstein
and Reichardt, 1956; Hubel and Wiesel, 1959; Barlow and Levick, 1965). The basic algorithm of a
MD relies on the integration across space and time of a moving light or dark stimuli (Yonehara
and Roska, 2013; Behnia et al., 2014), while DS property is mainly achieved from facilitating the
response to preferred motion and/or inhibiting the response to the null motion (Clifford and
Ibbotson, 2002; Fried et al., 2002; Li et al., 2014; Mauss et al., 2015; Salay and Huberman, 2015).

Several studies have used the well-known Drosophila model in vision science (Paulk et al.,
2013), validating underlying mechanisms of DS (Eichner et al., 2011; Gilbert, 2013; Maisak et al.,
2013; Shinomiya et al., 2014; Leong et al., 2016; Haag et al., 2017). Recently, insights from
the Drosophila brain have shown that few visual neurons display both directional tuning and
orientation selectivity (Fisher et al., 2015). Notably, when the axis of motion is orthogonal to
the orientation of the moving stimulus, directional tuning is sharpened. As the orientation of the
moving stimulus aligns in parallel to the direction of the axis of motion, neuronal responses are
reduced.

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00075
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00075&domain=pdf&date_stamp=2018-11-20
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:acyr2@uottawa.ca
https://doi.org/10.3389/fnbot.2018.00075
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00075/full
http://loop.frontiersin.org/people/105896/overview
http://loop.frontiersin.org/people/173599/overview
http://loop.frontiersin.org/people/619126/overview
http://loop.frontiersin.org/people/634866/overview


Cyr et al. Visual Orientation and Direction Selectivity

Orientation and direction selectivity from retina to cortex
were experimentally shown in various mammalian species and
rigorously quantified from statistics methods (Borg-Graham,
2001; Mazurek et al., 2014). The emergence of DS and the
influence of visual experience are extensively studied (Li et al.,
2008; Haag et al., 2016; Leong et al., 2016; Strother et al., 2017)
as well as the elaboration of computational models (Mu and
Poo, 2006; Elstrott and Feller, 2009; Berberian et al., 2017).
One possibility may consist of a bias architecture early in the
neural development toward specific preferences (Adams and
Harris, 2015). There is also computational work suggesting that
spontaneous activity appearing during the early stages may give
rise to the emergence selectivity features (Van Hooser et al.,
2012). The foundation of this may find echoes in the genetics and
from the primary units in the retina that already compute and
provide the information at that level.

This research presents a spiking neural network (SNN) model
to study the interaction between visual orientation and direction
selectivity features in a MD model that responds to basic visual
motion stimuli. SNN is a relevant computational method to use
given the temporal property that helps capture dynamic and
coincidental events (Maass, 1997) using spike-timing-dependent
plasticity (STDP) (Bi and Poo, 1998; Feldman, 2012). However,
SNN remains poorly used regarding the MD and DS visual
topics (Shon et al., 2004; Wenisch et al., 2005) especially in
complete embodied models. A key advantage of using physical
robots in neural modeling is to validate models under real world
constraints (Webb, 2000).

Bio-inspired neural models in vision (Kerr et al., 2015) and
motion detector models (Franceschini et al., 1992) are not new
topic in neuro-robotics. Simulation of a stabilization and fixation
robotic behavior from a motion stimulus reproduce mainly
the visuomotor process of the fly (Huber and Bülthoff, 1998).
But merging OS and DS in SNN paradigm is still unexplored.
Furthermore, given that the relationship between orientation and
direction selectivity remains to be investigated at the behavioral
level, this research aims to embody these two related processes in
virtual and physical robots as a proof of concept (Pezzulo et al.,
2011; Krichmar, 2018). In this perspective, the present model was
evaluated under an operant conditioning context, modulating
its behavioral response when shown basic orientated stimuli in

FIGURE 1 | Four trial examples made in the experiment. The first two images show a line moving orthogonal to its orientation. The last two images show lines moving

in their same orientation. Those four scenarios are evaluated for both directions, for example a horizontal line moving from left to right and right to left. The circles,

representing the sensory receptors of the visual field, overlap to reduce unseen areas.

motion. More precisely, a detailed framework to trace dynamical
visual stimuli from sensors to motors is proposed, which could
be used in future robotic implementations in the computational
vision domain.

In this experiment, the operant conditioning learning
process (Cyr et al., 2014) is used as behavioral context. As
such, a reward mechanism reinforces connections amongst
units coding for the preferred direction of motion in relation
to its neutral actions. The application of a positive reward
provides the advantage of starting off with no initial assumption
about the underlying behavior of units exposed to stimuli
in motion. From this learning procedure and with the
knowledge of the orthogonal (orientation/motion) aspect of a
stimulus, a fasten motor response is proposed. The contribution
of this paper is to introduce a bio-inspired model of
motion detector integrating direction and orientation selectivity
features, implementing these processes at a behavioral robotic
level.

The next sections detail the SNN architecture and the
simulation environments used, followed by an analysis of the
obtained results. It concludes with a discussion on the model and
its future perspectives.

2. METHODOLOGY

The goal is to simulate an enhanced behavioral response
of a virtual and physical robot, when the orientation of a
visual stimulus is orthogonal to its motion. From an operant
conditioning procedure, the robot learns to link a positive reward
with actions of lighting up LEDs and choosing the desired
solution. The additive effect of the orientation and motion
features of a visual stimulus was demonstrated in the Drosophila,
a challenge to model in a neurorobotic paradigm.

2.1. Protocol
The virtual experimentation consists in displaying black lines
(horizontal and vertical) that move horizontally and vertically in
front of a robot (see Figures 1, 2). The SNN architecture, as well
as the 3D world experiment were elaborated with the SIMCOG
software (Cyr et al., 2009). Four scenarios were evaluated in the
two opposite motion directions, for a total of 8 different trials. In
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FIGURE 2 | Virtual and real world environments, showing the robots in front of an image. The bottom left section represents what the virtual robot currently sees with

its camera.

FIGURE 3 | Flow diagram of the main components of the SNN, following the perception of a moving stimulus in front of the robot.

each of them, a line passes from one end of the retina to the other.
In this study, the retina is composed of a 3 × 3 sensory neurons
matrix.

Each combination of orientation/direction trial is repeated
several times in order to reach the learning criteria. The
sequence of trials is pre-determined. At the beginning of
the simulation, the robot randomly chooses an action, by
blinking a light on one of its four possible LEDs, following
the capture of a moving visual stimulus. The robot learns
from a supervised positive reinforcement to correctly associate
the desired output with its own previous actions. Finally, the
simulation ends with the evaluation of the behavioral response
combined with the orthogonal/non-orthogonal feature of stimuli
(motion/direction). In this study, foreign patterns were not
tested, since the other stimulus features were not used (only
vertical/horizontal and motion).

The virtual simulation lasted 24,000 cycles (3,000 cycles for
each trial). A particularity of the software is that it works using
cycles instead of milliseconds. This allows computers of various
power to have the same output at the end. The approximation
conversion is 10 ms/cycle for the virtual experiment, running on
an i7 desktop computer.

2.2. Architecture
The general topology of the SNN consists of several neural
layers, as shown in Figure 3. A sensory layer captures the visual
stimuli, then the orientation and motion features are extracted
and forwarded to an integrative neural layer. A Decision layer
then proposes a random action to the motor layer. Once
the learning is completed, A Force neural layer overrides the
initial random decisions. Following a desired output, an external
positive reinforcement is applied to the robot and caught from
arbitrary dedicated Reward neuron.

For illustrative reasons, a simplified neural circuit based on
three sensory neurons instead of the full 3x3 matrix is shown in
Figure 4 (see complete SNN architecture and the table values of
neural parameters in Supplementary Material at http://aifuture.
com/res/2018-dir). Though it is sufficient to highlight the visual
mechanism of an enhanced motion/orientation neural response.

On the left part of Figure 4, one can see that the robot
has four different binary output responses. These consist
of LEDs located at the four cardinal points on top of
the robot. Each are attached to their respective motor-
neurons (LEDGoRight, LEDGoDown, LEDGoLeft,LEDGoUp).
This visual computational model includes a camera at the front
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FIGURE 4 | Simplified SNN architecture. Following the reception of a moving visual stimulus perceived from Vision neurons, the linked Direction and Orientation

neurons forward the information to Integration neurons. At this point, the features of the stimulus are obtained and used for the learning task. This involves Predictor

and the Reward neurons to enhance the synaptic links from the STDP function (i.e., synapses between Integration and Predictor neurons). In the virtual environment,

vibrations act as rewards, hence the gray square at the center of the robot that represents the vibration transducer. When the rule is learnt, Force neurons bypass the

random Decision neurons to trigger the appropriate action (i.e., LED action neurons).

of the robot (next to the yellow LED on the figure) and a sensor
to capture the reward. In this study, a vibration sensor was chosen
and is automatically triggered by the virtual environment when a
proper decision is made. The visual black bars stimuli are caught
by the camera and their linked sensory neurons (blue circles), see
right part of the figure. At this point, Sensory neurons fall under a
cooldown period using a refractory period parameter, to prevent
the constant capture of stimuli. Then, these neurons forward the
signal to bothmotion and orientation neurons. In case of motion,
the neurons receive inputs with temporal fixed synaptic delays
(see Figure 5) to achieve the integration.

For simplicity, instead of introducing inhibition in the
neuronal responses for motion in the non-preferred direction
as in the natural model, this SNN uses identical dedicated
excitatory synapses for both opposite directions. Thus, direction
and orientation neurons connect with excitatory synapses on
integration neurons, providing the orthogonal feature (motion
with the inverse orientation). Those integrative neurons are
linked to Predictor neurons with a weak synaptic link.
Therefore, the Integrative neurons cannot trigger Predictor
neurons alone. Predictor neurons also receive a positive
reinforcement signal from a Reward neuron (vibration sensory
neuron), in order to meet the pre/post timing criteria relation
of the learning rule. When a Predictor neuron spikes, it
forwards signal to the Force neuron that will trigger the
output response. Since there are multiple synapses between the
Integrative neurons and the Predictor neurons, the behavioral
plasticity is summed between the motion neurons and the
actions of the robot. Finally, Motor neurons (gray circles in

Figure 4) output to the attached LEDs. The result of the
learning process is that after a certain time, rewards will
not be necessary anymore to forward the signal through
the circuit. Once an action is selected, all other actions are
inhibited from a dedicated neuron (not shown in Figure 4, for
visibility).

2.3. Neural Dynamic
The spiking neuron model includes standard features such
as a time varying membrane potential variation, a refractory
period, a threshold and a spike emission state (Equations 1,
2, 3, and 4). These neurons are connected through dynamical
excitatory and inhibitory synapses, and some are modulated
from a spike-timing-dependent plasticity (STDP) learning rule
(Equation 5). Equation (2) represents a nonlinear potential
variation simulating an excitatory or inhibitory postsynaptic
potential (PSP). This architecture also uses some fixed PSPs with
different lengths to regulate control neural inputs.

In this study, the learning rule from STDP needs a third factor
(the reward) to be activated (Frémaux et al., 2010; Kuśmierz
et al., 2017) (STDP-R). A negative reinforcement (punishment)
could have been used to modulate the learning curve, but it was
not implemented. Mainly, the objective is to reach a specific
synaptic weight value in order to force the proper action upon
an associative event. This value depends on the initial synaptic
weight and the increase step of the STDP function (100%, as
specified in Equation 5). Also, to prevent overshooting this
threshold, a capping value was specified to 300%.
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FIGURE 5 | Visual orientation and direction selectivity features extraction process. The orientation as well as the motion information (green neurons in this figure) are

obtained by merging two adjacent sensory neurons (blue neurons). For the motion feature, delayed synapses were used.

Equation 1: Leaky integrator neural dynamic.

vm(k) = f (vm(k− 1)+
∑

vi)

vm(k) = membrane potential at cycle k
vi = synaptic input as calculated in equation 2
f = membrane potential curve as calculated in equation 3

Equation 2: General function describing the postsynaptic

potential curve.

vi(t) =

{

ae−t/τ if t ≤ tMax

0 if t > tMax

a = maximum amplitude (set to 20)

τ = tau (i.e. 8)

t = time since spike (in cycles)

tMax = maximum duration of a PSP (set to 15 cycles)

Equation 3: Membrane potential function

f (vm) =



























g(vm, 0) if vm < vmRest

vmRest else if vm = vmRest

g(vm, 1) else if vm < vmThreshold

100 else

g(vm, 0) = see equation 4
vmRest =membrane potential rest value (set as 43)
vmThreshold = threshold value (set as 65)

Equation 4: Membrane potential output

g(vm, d) =

{

min(each v in vec where v > vm) if d = 0

max(each v in vec where v < vm) if d = 1

vec = [4, 11, 18, 23, 28, 32, 36, 42, 43, 44, 45, 47, 50, 53, 58,
65, 100]
Ascending phase to reach threshold = exp(0.8 +

0.3 ∗ t)+ 40 for each t from 0 to 8
Ascending phase from post action potential to rest =
log10(0.9+ 0.2 ∗ t) ∗ 100 for each t from 1 to 7
Action potential= 100

Equation 5: General STDP function.

1w = b ∗ αtpost−tpree
tpost−tpre

π

1w = synaptic weight change
αtpost−tpre = 1 or−1, depending on the sign of tpost − tpre
π = time constant
b = bias factor (1.0 for+ timing, 1.0 for - timing)

STDP coefficients for 1w:
Effect duration= 24,000 cycles
Max. synaptic change in one paired spike= 100%
Max. synaptic change= 300%
Max. STDP time window= 100 cycles

2.4. Physical Environment
A physical simulation was done to better evaluate the ability of
the SNN to operate under suboptimal timings and conditions.
In this environment, the SNN model was embedded in a
Khepera IV robot (https://www.k-team.com/khepera-iv), with
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two modifications. First, instead of using a vibration sensor, the
reward was given to the robot using the back infrared. Also, since
the robot contains only three programmable LEDs, different
colors were used to explicitly referred the four possible directions.
These minor changes do not affect the functional aspect of the
SNN.

3. RESULTS

Figure 6 shows the dynamic of few main neural components that
reflects the learning process of motion direction from an operant
conditioning procedure. At the top, small images represent the
displayed lines including their orientation and direction. Each of
them is repeated several times. At the beginning, when the robot
detects a visual stimulus motion, it randomly activates a LED.
This output is represented in graphics A, C, E, G from triggering
one of the four possible Decision neurons (GoDown, GoUp,
GoLeft, GoRight). If the decision corresponds to the goodmotion
direction, then an external supervised reward (graphic I) is sent
to the robot. This reinforces the associated Predictor neuron. The
pairing of the pre/post spikes and the STDP learning process
(graphics J–M) results in an increase of synaptic weights along
the operant conditioning procedure. In this simulation, STDP
parameters are tuned to trigger Force neurons (Graphics B, D, F,
H) with only three correct associations. In the graphics J–M, three
steps are shown indicating the learning process. Learning curves

are determined from two factors, the preset synaptic weight and
the learning incremental step. This rapid learning was done to
reduce the number of trials in the experiment considering the
four possible directions as well as four possible output responses.
The result of the learned association consists in overriding the
random decision with Force neurons to trigger the proper action.

In the experiments, the effect of orthogonal orientation of
a visual stimulus in relation to its motion can be observed.
In Figure 7, two scenarios are shown: a vertical bar moving
horizontally, and a vertical bar moving vertically. In the upper
right part, the graphic highlights the detection of the stimulus at a
precise moment in the experiment and the Force GoRight neuron
spikes accordingly after the learning process. The absolute timing
difference is 14 cycles in this orthogonal orientation/motion
trial. In the bottom part of the figure, the graphic caught the
vertical stimulus moving in the vertical axis from precise spiking
and the Force GoUp trigger also spikes after but with a longer
period of onset with 23 cycles of difference. This motor response
gained is identical in the opposite scenario, a horizontal bar
moving vertically giving faster onset response than a horizontal
bar moving horizontally.

Under the Khepera IV robot, similar results were
obtained, even with less precise timing of events. In
Figure 8, graphics H and J show that the absolute timing
difference between detecting the movement and opening
a LED is around 28 cycles when an horizontal line was

FIGURE 6 | Results obtained from the virtual experiments. It represents the operant conditioning learning process that associates a motion direction of a visual

stimulus with an external supervised reward. Specifically, after a randomized decision (graphics A,C,E,G), if a reward is given (graphic I), the associated predictor is

allowed to spike, followed by a forced action (graphics B,D,F,H) from the STDP learning rule (graphics J–M).
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moving horizontally. When showing a vertical line moving
horizontally, the timing difference is reduced to 20 cycles,
hence having a response time 30% faster. This behavioral

FIGURE 7 | Effect of merging the orientation feature of a visual stimulus and

its motion direction feature. The onset of the motor response arrives earlier

when the orientation is orthogonal to its motion. Values in the figure refer to

algorithm cycles.

change and its concrete outcome is dependant of the robotic
scenario.

4. DISCUSSION

The proposed SNN architecture sustains basic visual orientation
and direction selective processes. Integration of these two stimuli
features in dedicated neurons was shown in the Drosophila
model, sharpening the direction neuronal responses (Fisher
et al., 2015). Moreover, a preference association was found
when the orientation of the stimulus was orthogonal to
its motion. These phenomena were successfully simulated
in the proposed SNN model using a precise design of
synaptic connections to reproduce the functional outcome
at a robotic behavioral level. This, in the neural-robotic
domain, suggests that merging two or more stimulus
features could potentially modulate the behavioral response,
sharpening or reducing it, and it is not restricted to vision
only.

As a possible alternative to this current SNN model, the
accumulation of sensory inputs across spatio-temporal changes
in the movement of the visual stimulus could boost visual signal.
In that sense, a vertical stimulus that moves from left to right
direction scans a larger portion of the retina instead of an
horizontal stimulus. If more sensory neurons are triggered, these
extra inputs may also enhance or sharpen the response of the
direction cells.

FIGURE 8 | Results from the real experiment (Khepera IV robot). As seen at cycles 858 and 1,253, the robot is able to react after the capture of the stimulus. This

result shows an additive behavioral response from integrating the motion and the orthogonal orientation of the visual stimulus. In this case, a fasten responses of

approximately 30% can be obtained.
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In this experiment, the robot displayed a faster motor output
from simultaneously integrating the orientation and direction
information of a visual stimulus. Other form of behavioral
enhancements could certainly be drawn. For example, benefits
could be anticipated from better accuracy, stronger intensity or a
faster motor response of organisms; from a barely noticeable gain
to a major survivability impact. As such, this paper represents
a first step model tested in a static robotic context, but more
realistic and dynamical scenarios still remain to be studied.
Thus, the present study is limited in terms of motor behavioral
complexity, though we believe that the core of the SNN would
not change by any addition in the output, since the supervised
reward is based on any manifestation of an appropriate response.
Also, using visual stimuli with a dynamical robot often requires
scaling and focus strategies that were beyond the scope of this
article, but may be considered in future work.

Currently, the proposed SNNmodel contains highly designed
connections which reflects the complexity and diversity of
biological models (Briggman et al., 2011; Masland, 2012; Kim
et al., 2014; Wernet et al., 2014; Demb and Singer, 2015;
Fitzgerald and Clark, 2015; Ding et al., 2016; Serbe et al., 2016;
Vlasits et al., 2016), but other computational SNN model could
be elaborated to obtain more similarity of biological models. In
this perspective, instead of using built-in synaptic connections
that respond to pure black or white tones, artificial ganglion’s
cells could be integrated to mimic on-off-center receptive fields
and dark/light edges motion (Joesch et al., 2010; Borst and Euler,
2011; Meier et al., 2014; Takemura et al., 2017). Another bio-
inspired approach to integrate orientation could be to introduce a
suppressive mechanism using inhibitory connections to enhance
the direction neural response. Thus, comparative experiments
between the biological, computational and robotic model still
need to be explored.

In the present SNN model, only two different black bar
orientations were used to simplify the process. Also, the
simulations were done with a defined constant speed of
moving stimuli. Expanding the current model to cope with all
orientations is a matter of scaling units and synapses, but would
not alter outcome since only two sensory neurons on two axis
are needed to obtain the orientation feature. Affording all motion
dynamics of stimuli (Li et al., 2017) is perhaps more complex.
This remains to be studied, given that in the MD model, the

SNN computational method and the STDP learning rules are
intrinsically sensible to temporal aspects. In this perspective,
variation in the timing of the reinforcement and its schedule
as well as extending the STDP period limitation remain to
be studied. Another interesting alternative would be to use
the same amount of units present in the current architecture,
but allow them to respond with a differential firing rate to
changes in stimulus orientation, similarly observed in biological
networks.

5. CONCLUSION

Following the recent evidence in vision neuroscience, this work
focused on the effect of merging visual orientation and direction
processes in a MD computational robotic model. The model was
simulated with an SNN method and implemented in a robotic
learning context to validate the results at the behavioral level.
Specifically, the SNN learned the association between a particular
action and a motion visual stimulus from rewards. Both the
virtual and physical world experiments succeeded in showing an
acceleration of themotor response onset when the visual stimulus
orientation is orthogonal to its motion.
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