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Background: Hepatocellular carcinoma (HCC) is a tumor with high morbidity and high
mortality worldwide. DNA methylation, one of the most common epigenetic changes,
might serve a vital regulatory role in cancer.

Methods: To identify categories based on DNA methylation data, consensus clustering
was employed. The risk signature was yielded by systematic bioinformatics analyses
based on the remarkably methylated CpG sites of cluster 1. Kaplan–Meier analysis,
variable regression analysis, and ROC curve analysis were further conducted to validate
the prognosis predictive ability of risk signature. Gene set enrichment analysis (GSEA) was
performed for functional annotation. To uncover the context of tumor immune
microenvironment (TIME) of HCC, we employed the ssGSEA algorithm and
CIBERSORT method and performed TIMER database exploration and single-cell RNA
sequencing analysis. Additionally, quantitative real-time polymerase chain reaction was
employed to determine the LRRC41 expression and preliminarily explore the latent role of
LRRC41 in prognostic prediction. Finally, mutation data were analyzed by employing the
“maftools” package to delineate the tumor mutation burden (TMB).

Results: HCC samples were assigned into seven subtypes with different overall survival
and methylation levels based on 5′-cytosine-phosphate-guanine-3′ (CpG) sites. The risk
prognostic signature including two candidate genes (LRRC41 and KIAA1429) exhibited
robust prognostic predictive accuracy, which was validated in the external testing cohort.
Then, the risk score was significantly correlated with the TIME and immune checkpoint
blockade (ICB)–related genes. Besides, a prognostic nomogram based on the risk score
and clinical stage presented powerful prognostic ability. Additionally, LRRC41 with
prognostic value was corroborated to be closely associated with TIME characterization
in both expression and methylation levels. Subsequently, the correlation regulatory
network uncovered the potential targets of LRRC41 and KIAA1429. Finally, the
methylation level of KIAA1429 was correlated with gene mutation status.

Conclusion: In summary, this is the first to identify HCC samples into distinct clusters
according to DNA methylation and yield the CpG-based prognostic signature and
quantitative nomogram to precisely predict prognosis. And the pivotal player of DNA
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methylation of genes in the TIME and TMB status was explored, contributing to clinical
decision-making and personalized prognosis monitoring of HCC.

Keywords: DNA methylation sites, hepatocellular carcinoma, prognosis, tumor immune environment, immune
checkpoint blockade, tumor mutation burden

INTRODUCTION

As one of the aggressive malignancies, hepatocellular carcinoma
(HCC) is characterized by high morbidity rate and low survival
rate in the world (Bray et al., 2018; Forner et al., 2018; Yang et al.,
2019). And tumor stages at diagnosis significantly affected the
prognosis of HCC patients (Liu et al., 2016). The
clinicopathological staging and treatment system—the
Barcelona Clinic Liver Cancer (BCLC) algorithm—was the
most extensively applied classification method for patients
with HCC (Faria et al., 2014; Couri and Pillai, 2019). Given
HCC was of high heterogeneity, patients exhibited distinct
clinical outcomes of treatment and different survival times
even in the same stage (Miao et al., 2014; Forner et al., 2018;
Zhang et al., 2019). Owing to higher precision and less side effects,
immune checkpoint blockade (ICB) therapy has brought much
benefit to various patients in a wide range of tumors.
Approximately one-fifth of patients responded to ICB
treatment according to preclinical trial results, suggesting
immune checkpoint inhibitor administration may be a
potential treatment for HCC patients (Cheng et al., 2019).
Besides, the contrasting outcome of immune checkpoint
blockade (ICB) therapy in distinct population and multiple
malignant tumors has focused light on the characterization of
tumor immune microenvironment (TIME) (El-Khoueiry et al.,
2017). The complexity of the tumor immune microenvironment
may be a pivotal player in tumor immune evasion and responses
to clinical treatment of HCC (Finkin et al., 2015; Hackl et al.,
2016). AnsonM. et al. pointed out that type I NKT cells presented
enrichment in HCC and played a protective role against tumors
(Anson et al., 2012). Not only infiltrating CD4+ CTLs but also
circulating CD4+ CTLs were independent predictive indicators of
OS and DFS in patients with HCC (Fu et al., 2013). Therefore,
further exploration of HCC biological mechanisms and
underlying molecular processes, with also the discovery of vital
novel indicators for prognosis prediction and outcome of clinical
therapy, is the task of top priority.

DNA methylation, a well-characterized genetic alteration,
refers to the transfer of the methylated group of S-adenosyl-L-
methionine (SAM) to the pyrimidine ring of cytosine residues on
DNA (Jaenisch and Bird, 2003; Jin and Liu, 2018; Pfeifer, 2018).
The methylation process often occurs in the cytosine of
5′-cytosine-phosphate-guanine-3′ (CpG) structure and is
mediated by DNA methyltransferase (DNMT) (Moore et al.,
2013). DNA hypermethylation can repress the targeted gene
expression level, further mediating the transcriptional
regulation of biological processes including DNA repair, cell
cycles, and tumor progression, suggesting its crucial player in
accelerating malignancies (Lea et al., 2018; Luo et al., 2018;
Pfeifer, 2018; Eyvazi et al., 2020). Abnormal methylation

changes (i.e., anti-tumor oncogene hypermethylation and
oncogene hypomethylation) are regarded as important events
in tumorigenesis (Huang et al., 2011; Lambert et al., 2011; Yang
et al., 2017). Published researches pointed out that
hypomethylation of CpG may result in the initiation of
oncogene; meanwhile, CpG dinucleotide hypermethylation can
cause anti-oncogene silencing (Antequera and Bird, 1993). Many
studies have supported strong evidence to support that the
clinical utility, such as early diagnostic indicators or prognostic
predictive biomarkers, of these changes in multiple cancers (Fu,
2015; Klutstein et al., 2016; Pfeifer, 2018; Ebrahimi et al., 2020).
For HCC, Villanueva A et al. developed a methylation-based risk
signature to precisely predict the prognosis of HCC patients
(Villanueva et al., 2015). Based on three CpGs, Qiu J et al.
generated a methylation risk signature to accurately predict
recurrence in early-stage HCC patients (Qiu et al., 2017).
Hence, it is of significant and encouraging value for prognostic
prediction and clinical intervention of patients with HCC to yield
an efficient signature on the basis of differential DNA
methylation.

Researches focusing on the correlation of DNA methylation
with diagnosis and prognosis of HCC have been extensively
explored (Villanueva et al., 2015; Xu et al., 2017); however,
systematic analysis to establish a robust and novel prognostic
signature that could predict prognosis and outcome was rarely
reported.

Herein, to facilitate identifying promising subtypes to precisely
subdivide HCC patients, we addressed the HCC classification
system via screening prognostic subtypes on the basis of
methylation data of HCC cases. Furthermore, we analyzed
DNA methylation profiles of HCC patients from the TCGA
databank, in order to filter the prognostic methylation
biomolecular factors and generate the risk signature and
prognostic nomogram, contributing to new insight into the
TIME context and immunotherapy outcome of HCC. Besides,
our risk signature may provide guidance for doctors to perform
prognosis estimation and individualized clinical intervention,
realizing further precision treatment to enhance therapeutic
efficacy accordingly.

METHODS

Data Selection and Preprocessing
Transcript data from 378 HCC patients were downloaded from
the TCGA database (https://portal.gdc.cancer.gov/). After
excluding cases without complete information, clinical profiles
of 240 patients were downloaded and are shown in
Supplementary Table S1. DNA methylation information was
obtained from the UCSC Cancer Browser (https://xena.ucsc.edu/).
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430 DNA methylation data and annotation files were downloaded
from the Illumina Human Methylation 450 platform
(https://xenabrowser.net/datapages/?dataset�TCGA-LIHC.
methylation450.tsv&host�https%3A%2F%2Fgdc.xenahubs.
net&removeHub�https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%
3A443) for further study. The threshold for rejection of the
CpG sites is given below: The site was missing in more than
70% of the samples; it was located in the sex chromosomes
and single-nucleotide polymorphisms; CpGs above 2 kb upstream
to 0.5 kb downstream; and cross-reactive genome CpG sites (Chen
et al., 2013). Ultimately, we employed 226 HCC samples with
both expression matrix and methylation data for further
analysis. We obtained fragments per thousand base million
(FPKM) of HCC patients from the TCGA database and
converted the FPKM value to the transcript per million
(TPM) value. The LIRI-JP dataset including 260 HCC
samples from the ICGC database was employed as the
external validation group. The corresponding expression
profiling information and the clinical data (Supplementary
Table S2) were downloaded from the ICGC database (https://
dcc.icgc.org). Four categories of somatic mutation data of HCC
samples were obtained from The Cancer Genome Atlas (TCGA)
portal. We singled out the mutation files that were obtained
through the “SomaticSniper variant aggregation and masking”
platform for subsequent analysis. We prepared the Mutation
Annotation Format (MAF) of somatic variants and implemented
the “maftools” (Mayakonda et al., 2018) R package.

Determination of Classification Features for
Methylation Sites
In order to classify prognostic-related HCC molecular subtypes,
the methylation level of each CpG site, age, gender,
clinicopathological stage, tumor status (T, M, and N), and
survival data were employed to construct univariate Cox
proportional risk regression models. Supplementary Table S3
presents 610 significant CpG sites (p < 0.05). Then, these
significant sites were introduced into multivariate Cox
proportional risk regression models. Finally, we selected the
CpG sites that were still significant as the classification
features (p < 0.05, Supplementary Table S4) that can
significantly affect the prognosis of HCC patients.

Identification of Prognostic Methylation
Subtypes Using Consensus Clustering
In order to define the HCC subgroups based on the most variable
methylated CpG sites (Supplementary Table S5), consensus
clustering was conducted using the ConcensusClusterPlus R
package (Wilkerson and Hayes, 2010). Each case we collated
was partitioned into k groups on the basis of a user-specified
clustering algorithm (k-means). This process was repeated for a
user-specified number of repetitions, offering a method of
establishing consensus values and estimating the stability of
the established clustering. Pairwise consensus values, referring
to “the proportion of clustering runs in which two subjects
gathered together,” were calculated and stored in a consensus

matrix for each k. The final results from agglomerative
hierarchical consensus clustering based on one-Pearson
correlation distances were also divided into k groups. The
exported graphs contained the consensus matrices, consensus
cumulative distribution function (CDF) plot, delta area plot, and
tracking plot. We determined the k value if there were a low
relative change in the area under the CDF curve, relatively high
conformity in the clusters, and a low variation coefficient. The
pheatmap package in R was used to create the heatmap (Diao
et al., 2018).

Correlation Between the Subtypes and
Prognosis or Clinical Characteristics
in HCC
To explore the overall survival of HCC patients whose subgroups
were defined from DNA methylation information, we employed
the “survival” package (Huang et al., 2017; Li et al., 2019; Xiong
et al., 2019), and the results are illustrated in Kaplan–Meier plots.
The log-rank test was used to identify the significant differences
among different clusters. To determine the distinction in
categorical profiles as the clinical variables among different
subtypes, the chi-squared test was analyzed. All tests were
two-sided with a significance level of 0.05.

Functional Annotation and Enrichment
Analysis
To further reveal the CpG site–related gene expression pattern in
the standpoint of fundamental biology, Kyoto Encyclopedia of
Genes and Genomes (KEGG) and gene ontology (GO)
enrichment analyses on CpG site–related genes significantly
affected prognosis. We employed gene set enrichment analysis
(GSEA) to explore underlying mechanisms correlated with the
prognostic signature. The gene sets of “c2. cp.kegg.v7.2.
symbols.gmt [Curated]” from the Molecular Signatures
Database were analyzed through gene set enrichment analysis
(GSEA) (Subramanian et al., 2005) with a Java program (http://
software.broadinstitute.org/gsea/index.jsp).

Identification of Prognostic Risk Signature
Two hundred twenty-six HCC samples were randomly divided
into the discovery and validation groups at the ratio of 1:1 for
integrated analysis utilizing the “caret” package. Both discovery
and validation groups were required to meet the following criteria
(Forner et al., 2018): samples were randomly assigned to
discovery and validation cohorts (Bray et al., 2018) and the
clinical characteristics of subjects in these groups were similar
(Supplementary Table S6). The validation group with 112 cases
and the whole cohort were used to validate results obtained from
the discovery set. The TCGA cohort was randomly classified into
discovery and validation groups again to demonstrate the
repeatability of the risk model. The detailed clinical variables
of samples are recorded in Supplementary Table S7. The
“survival” package with coxph function was employed to
create a Cox proportional hazards model based on the
combination of expression profiles for remarkably methylated
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CpG sites corresponding to genes in cluster 1 (Supplementary
Table S8) and follow-up data (Zhang, 2016; Bhattacharjee et al.,
2020). The candidate methylation-related genes significantly
affect prognosis (p < 0.05), which were identified by
employing a univariate proportional hazards model of the
expression level of seven methylation-related genes. Next, the
risk coefficient of each gene was obtained by performing
the LASSO regression algorithm with the “glment” package
after the deletion of highly correlated genes. Finally, two genes
were selected and introduced into a prognostic predictive
signature in HCC. The risk score of each patient was
calculated by the following equation: risk score � sum of risk
coefficients * methylation-related gene expression level.

Validation of Prognostic Risk Signature
Each patient obtained the risk score according to the above
formula together with their clinical data. Based on the median
risk score, patients were classified into low/high-risk subgroups
for further study. Kaplan–Meier survival curves were analyzed to
compare prognosis of different subgroups. We then performed
the time-dependent receiver-operating characteristic (ROC)
curve analysis to assess the prognostic value, which was
achieved by comparing the specificity and sensitivity in
predicting prognosis on the basis of the risk score.
Furthermore, multivariate Cox regression was employed to
demonstrate the risk score was an independent prognostic
indicator for HCC patients. The predictive performance of the
as-constructed risk signature was then confirmed in the
validation group (n � 112) and combined cohort. Additionally,
the ICGC cohort was employed as an external validation group to
facilitate extensive application. Each test was two-sided, and p <
0.05 was deemed statistically significant.

Construction of Prognostic Nomogram
To comprehensively assess the prognosis predictive ability of risk
signature, stage, gender, age, and WHO grade for one/two/three-
year OS, time-dependent receiver-operating characteristic (ROC)
curves were performed to calculate the area under the curve
(AUC) values (Blanche et al., 2013). To contribute to a
quantitative manner predicting the overall survival of patients
with HCC, we established a nomogram containing the risk score
and other clinical variables to estimate one-, two-, and three-year
overall survival possibility. Subsequently, we analyzed the
calibration curve that shows the prognostic value of the as-
constructed nomogram.

Landscape of Tumor Immune Environment
To better identify the difference of TIME characteristics between
different subgroups, we performed several analyses as follows.
Firstly, the “GSEABase” R package with regard to 29 immunity-
related signatures was used to further reveal distinction of TIME
characterization between different subgroups. Then, the R
package “CIBERSORT” was performed to calculate 22 immune
cell subpopulations in HCC. Subsequently, immune infiltration
information consists of every specimen’s immune cell fraction
(i.e., B cells, CD4+ T cells, CD8+ T cells, dendritic cells,
macrophages, and neutrophils) downloaded from tumor

immune estimation resource (TIMER) (https://cistrome.
shinyapps.io/timer/).

Immunotherapeutic Significance of
Prognostic Signature and LRRC41
Referring to existing studies, it was found that the expression level of
immune checkpoint blockade–related key genes might be correlated
with the clinical outcome of immune checkpoint inhibitor blockade
treatment42. Herein, we employed six key genes of immune
checkpoint blockade therapy: programmed death ligand 1 (PD-
L1, also known as CD274), programmed death 1 (PD-1, also known
as PDCD1), programmed death ligand 2 (PD-L2, also known as
PDCD1LG2), T-cell immunoglobulin domain and mucin
domain–containing molecule-3 (TIM-3, also known as
HAVCR2), indoleamine 2,3-dioxygenase 1 (IDO1), and cytotoxic
T-lymphocyte antigen 4 (CTLA-4) inHCC (43–45). To elucidate the
potential player of the as-constructed risk signature in ICB treatment
of HCC, we correlated the prognostic signature and the expression
level of six immune checkpoint blockade key genes (i.e., IDO1,
CTLA-4, HAVCR2, CD274, PDCD1, and PDCD1LG2).
Subsequently, we systematically determined the expression value
of 47 immune checkpoint blockade–related genes (i.e., PDCD1)
between patients from different subgroups to investigate the
potential role of the risk score in ICB treatment.

Analysis of the Distribution of LRRC41 in
HCC by Single-Cell RNA Sequencing
To further explore the role of LRRC41 in TIME, we employed
single-cell transcriptome sequencing data from GSE140228
(Zhang et al., 2019), which are the transcriptome data of
CD45+ immune cells made by the Zemin Zhang team for
HCC patients. The researchers uploaded the hepatic
carcinoma single-cell RNA sequencing data of the study to an
interactive website (http://cancer-pku.cn:3838/HCC/) to facilitate
the researcher’s in-depth exploration of related fields. Herein, we
use 10× Genomics sequencing data to analyze the expression of
LRRC41 in tumor, hepatic lymph node, adjacent liver, ascites,
and blood and compare the abundance of LRRC41 in immune
cell subsets in tumor tissues.

Calculation of Tumor Mutational Burden
TMB was defined as the number of somatic, coding, base
replacement, and insertion–deletion mutations per megabase
of the genome examined using non-synonymous and code-
shifting indels under a 5% detection limit. TMB scores for
each sample were calculated through dividing the number of
somatic mutations by the total length of exons (38 million). The R
package “maftools” (Mayakonda et al., 2018) was used to
calculate the total number of somatic non-synonymous point
mutations within each sample.

Experimental Validation
L02 (human hepatic cell line) and two human HCC cell lines
(MHCC-97H cells and HCC-LM3 cells) were purchased from the
Cell Bank of the Type Culture Collection of the Chinese Academy
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of Sciences, Shanghai Institute of Biochemistry and Cell Biology.
The cell lines were all cultured in Dulbecco’s minimum essential
media (DMEM) plus 10% fetal bovine serum (FBS; Invitrogen,
Carlsbad, CA, United States). All cell lines were grown without
antibiotics in a humidified atmosphere of 5% CO2 and 99%
relative humidity at 37°C. Three different cell lines were
subjected to quantitative real-time polymerase chain reaction
(qRT-PCR).

RNA Isolation and qRT-PCR Analysis
Total RNA was extracted from cells using TRIzol (Invitrogen,
Carlsbad, CA, United States) according to provided instructions.
RNA concentration and purity were measured in triplicates
utilizing the NanoDrop 2000 spectrophotometer (Thermo
Scientific Inc., Waltham, MA, United States). Then, total RNA
was reverse transcribed to cDNA using the cDNA Reverse
Transcription Kit (Vazyme, Nanjing, China). To determine the
expression of LRRC41, cDNAs were subjected to qRT-PCR using
SYBR Green Real-Time PCR Master Mix (Takara) in Applied
Biosystems 7500/7500 Fast Real-Time PCR System (Thermo
Fisher Scientific). All samples were analyzed in triplicates.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels
were used as the endogenous control, and the relative
expression of LRRC41 was calculated using the 2-ΔΔCt
method. The sequences of primers used for PCR were as
follows: LRRC41, 5′- TGGCTGGCGAGAAGGAGGATG -3′
(forward) and 5′- CAAGGTGGAGATGCTGCGGAATC -3′
(reverse), and GAPDH, 5′-CAGGAGGCATTGCTGATGAT-3′
(forward) and 5′-GAAGGCTGGGGCTCATTT-3′ (reverse).

Statistics
The correlation between data with a normal distribution was
analyzed with Pearson’s correlation analysis. Comparisons of two
groups were made with the t-test; if there were more than two
groups, the comparison was made with the analysis of variance
(ANOVA) test. The Wilcox test was used to compare the
methylation levels between the seven clusters. Samples with a
CIBERSORT output value of p < 0.05 were screened for further
analysis (Chen et al., 2018). All the statistical analysis results
described below were obtained with the R software. The
significance level was set to p < 0.05.

RESULTS

Determination of Potential Prognostic DNA
CpG Sites
After methylation data were obtained from the TCGA cohort and
pretreated as described above, we screened 19392 CpG sites
among which 610 methylation sites were determined as
candidate DNA methylation indicators for prognostic
prediction in HCC patients via univariate Cox regression
analysis (Supplementary Table S3). A subsequent multivariate
Cox regression analysis was employed to identify these CpG sites
closely correlated with prognosis. And 136 sites were identified
and deemed potential prognosis-related CpG sites
(Supplementary Table S4).

Consensus Clustering to Identify
Subgroups of HCC and Inter-Cluster
Prognosis Analysis
Taking advantage of consensus clustering, we found that when k � 7,
there is high consistency in these clusters with a relatively low
coefficient of change but no appreciable variation in the area under
the CDF curve and delta area (Supplementary Figures S1A,B). The
heatmap of the seven clusters with a good polymerization effect was
mostly diagonal (Supplementary Figure S1C). Kaplan–Meier
analysis indicated there was a remarkable distinction among
different clusters (p � 1.221e−15), suggesting that clustering
results classified the patients into seven categories with distinct
overall survival (Figure 1A). The distribution of clinical
characteristics (age, gender, historical staging, T status, N status,
and M status) in each subtype is presented in Figure 1B.
Subsequently, the expression level of the CpG site–related genes
was determined in the subtypes. Figure 1C presents the heatmap of
gene expression values. To better comprehend the methylation site
expression from the viewpoint of biology level, KEGG and GO
enrichment analyses on CpG site–related genes were employed.
Functional annotation results indicated that overexpressed
methylation-related genes were primarily enriched in autophagy,
endosome membrane, protein C−terminus binding, and p53
signaling pathway (Figures 1D–G, corresponding GO and
KEGG, respectively). Subsequently, we analyzed intra-cluster
fraction for the seven clusters based on clinical characteristics
(Supplementary Figures S2A–G, age, gender, stage, and TNM
category, respectively). Tendencies for correlations between
clinical parameters and categories were as follows: clusters 1, 4, 6,
and 7with higher clinical grade; clusters 1 and 5with advanced stage;
clusters 4, 5, and 7 with higher T status; clusters 5, 6, and 7 with
higher N status; and clusters 1 and 6 with higher M status. These
results suggest that each clinical variable correlated with a distinct
intra-cluster distribution.

Inter-Cluster Difference of Methylation
Levels
One hundred thirty-six prognostic methylation sites’methylation
levels are shown in Supplementary Table S5. A heatmap presents
distinction of methylation levels between selected clusters and the
other clusters (Figure 2A). The heatmap result shows that the
significantly changed CpG sites were mostly distributed in cluster
1. Combined with survival rate analysis (Figure 1A), indicating
that cluster 1 had a middle survival time among these clusters, we
picked the differential CpG sites’ methylation data according to
cluster 1 to develop boxplot. A consistent result was obtained in
methylation level analysis, which shows that cluster 1 had a
middle methylation level among different clusters (Figure 2B).
The differential methylated CpG sites’ corresponding genes in
cluster 1 were introduced as candidate genes for further study.

Construction of Prognostic Risk Signature
To further reveal the potential interaction between these
candidate methylation genes, correlation was employed to
comprehensively visualize the methylation interaction network
(Figure 2C; Supplementary Figure S3A, p < 0.05). Notably,
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LRRC41 was positively and significantly correlated with five hub
genes, suggesting its indispensable role in methylation regulation.
In order to investigate the prognosis predictive value of
differential methylated CpG sites’ corresponding genes from
cluster 1 (Supplementary Table S8), univariate Cox regression
on candidate genes’ expression profiles was performed, finding
two out of seven candidate genes were significantly correlated
with overall survival (Supplementary Table S9, p < 0.05). Next,
the LASSO algorithm was employed to identify methylation-
related genes with the most robust prognosis prediction capability
(Supplementary Figures S3B,C; Table S10). Finally, the two
candidate genes LRRC41 and KIAA1429 were introduced into a
methylation-based risk prognostic signature in HCC. The
relationship of each methylation-associated gene with overall
survival is presented in Supplementary Table S11.

The risk score was obtained as follows: risk score � (0.1682 p

expression value of LRRC41) + (0.0981 p expression value of
KIAA1429). Then, each HCC patient together with the
corresponding risk score was classified into low/high-risk
groups based on the median value.

Identification of the Prognosis Signature
in HCC
Patients in the TCGA-LIHC cohort were randomly divided into
the discovery set and validation set (Supplementary Tables S11,

S12). The distributions of two methylation-related genes’
expression levels with patients and corresponding groups are
displayed in Supplementary Figure S4A. Supplementary
Figures S4D,G show that distributions of the risk score and
survival status are plotted in, indicating that low-risk HCC
patients had better prognosis. The Kaplan–Meier curve further
demonstrated that low-risk patients had significantly longer
overall survival relative to patients with high risk (p � 3.473e-
01; Figure 3A). To estimate the specificity and sensitivity of risk
signature for differentiating low-risk patients from high-risk
patients, we analyzed ROC curve analysis. We observed that
the area under curves of prognostic signature at one-year overall
survival was up to 0.706, indicating encouraging efficiency of
prognostic performance (Figure 3D). Furthermore, univariate
Cox analysis showed that the risk score significantly correlated
with overall survival [hazard ratio (HR): 1.473, 95% CI:
1.268–1.711, p < 0.001; Figure 3G], and multivariate Cox
analysis further presented that the risk score was an
independent prognostic factor in HCC (HR: 1.448, 95% CI:
1.225–1.711, p < 0.001; Figure 3J).

Validation of Prognostic Signature for HCC
In order to better assess its prognosis predictive accuracy, we
examined above results in the validation group and combination
cohort. The figures show the distributions of methylation-
related genes’ expression levels, survival, and risk scores of

FIGURE 1 | Inter-cluster prognosis and clinical significance analysis. (A) Survival curves of different tumor subtypes. The number of samples in each cluster is
shown in parentheses in the legend. The log-rank test was used to assess the statistical significance of differences between subtypes. (B) Heatmap of the DNA
methylation levels in the seven clusters and their clinical characteristics. The color from red to white shows a trend from high expression to low expression. (C) Cluster
analysis heatmap for annotated genes associated with the 184 CpG sites. Crosstalk analysis of prognostic DNAmethylation genes in the enriched KEGG pathway
gene ontology (D–F) and KEGG (G).
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patients in the testing set (Supplementary Figures S4B,E,H)
and the combination cohort (Supplementary Figures S4C,F,I).
The survivorship curve shows that patients with low risk had
higher survival probability than high-risk patients in both the
validation group (Figure 3B, p � 3.725e-02) and the
combination cohort (Figure 3C, p � 1.852e-03). The value of
area under the ROC curve (AUC) was up to 0.713 in the testing
set (Figure 3E) and 0.712 in the combined cohort (Figure 3F),
indicating strong prognosis predictive power in different
groups. Likewise, the risk signature was an independent
prognostic indicator significantly correlated with overall
survival in both univariable and multivariable regression
analyses of the testing set as well as the combined cohort
(Figures 3H,I,K,L). Besides, the signature was employed in
the LIRI-JP cohort to validate the external prognosis predictive
performance. Figures 4A–C show the distributions of genes’
expression levels, risk scores, and survival time in the ICGC
validation cohort. Survival analysis (p � 2.095e-03; Figure 4D)
and ROC curve analysis (AUC � 0.675; Figure 4E) also
indicated that this risk score model had an excellent
prognosis predictive performance in the LIRI-JP group.
Additionally, consistent results were obtained and great
prognostic value of the risk model was corroborated in

another random classification (Supplementary Figures S5,
S6, corresponding training set and testing set, respectively).

The results of correlation of the risk score with clinical
variables presented that the advanced clinical stage (most p <
0.05, Figure 4F) and risk score remarkably increased. However,
there was no significant difference of risk score in age subgroups
and gender subgroups (Figures 4G,H).

Further Confirmation of Prognostic
Performance of Signature in HCC
Subsequently, we plotted an ROC analysis curve, and the observed
AUC value at one-, two-, and three-year overall survival was 0.693,
0.620, and 0.628, respectively, suggesting excellent prognostic
prediction performance (Figure 5A). In order to compare the
prognostic predictive efficiency of risk signature with other
traditional clinical parameters (age, gender, stage, and grade), we
gathered above clinical characteristics and then performed the ROC
curve analysis for one-, two-, and three-year survival time and
demonstrated that the value of AUC of risk score was the
highest (Figures 5B–D). The risk score and clinicopathological
stage were introduced into plotting a nomogram to quantitatively
predict the overall survival of HCC patients (Figure 5E). Age,

FIGURE 2 | Levels of prognosis-related DNA methylation sites of different HCC clusters. (A) Heatmap of abnormally expressed methylation sites in the seven
subtypes. The heat rectangle on the left map: red represents statistically significant difference, whereas blue represents no significance. (B) Comparison of the
methylation levels among different clusters. (C)Correlation analysis betweenmethylation candidate genes (LRRC41, KIAA1429, LINC01185, MAGOHB, OLFML2B, and
ARMT1). Red represents positive correlation, while blue represents negative correlation.
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gender, and grade were eliminated owing to AUCs lower than 0.55.
Calibrated curves demonstrated good prognosis prediction accuracy
of one-, two-, and three-year overall survival in the as-constructed
nomogram (Figures 5F–H).

Furthermore, to confirm whether prognostic signature
remained a robust prognosis prediction validity indicator in
patients subdivided into different subtypes according to
clinicopathological variables, stratification analysis was
performed. Relative to patients with low risk, patients in the
high-risk group presented lower survival probability in both the
young (<�65) and old (>65) subgroups (Supplementary Figures
S7A,B). And the prognostic signature presented a powerful
prognostic prediction value in both patients gendered male
and female (Supplementary Figures S7C,D) and patients in
the early stage (Supplementary Figure S7E), whereas there
was no significant difference of overall survival between low/
high-risk patients in the advanced stage (Supplementary Figure
S7F). These results indicated that the prognostic signature can be
a novel and powerful overall survival predictor in HCC.

Correlation of Prognostic Score With TIME
Context in HCC
In order to explore whether the risk score could be a potential
indicator of TIME, we analyzed the relationship of the risk score

with ssGSEA signatures and TIC proportion and level (assessed
using the CIBERSORT algorithm). Firstly, the CIBERSORT
results showed that activated memory CD4 T cells were
significantly more abundant in high-risk patients, whereas
patients with low risk presented higher infiltration of resting
memory CD4 T cells (Figure 6A), indicating the phenotype of
memory CD4 T cells contributes to the formation of molecular
risk to further predict prognosis. Then, the population of aDCs,
macrophages, and Tregs and expression of MHC class I were
more in the high-risk group; meanwhile, the infiltration of B cells,
neutrophils, NK cells, and pDCs, cytolytic activity, T-cell
costimulation, and IFN response were higher in the low-risk
group (Figure 6B). Furthermore, we analyzed whether the
prognostic signature was correlated with immune infiltration.
We observed that the risk score had significantly positive
correlation with infiltrating B cells (r � 0.239; p � 3.995e−06),
infiltrating CD4 T cells (r � 0.226; p � 1.252e−05), infiltrating
CD8 T cells (r � 0.195; p � 1.711e−04), infiltrating dendritic cells
(r � 0.341; p � 2.051e−11), infiltrating macrophages (r � 0.357;
p � 2.133e−12), and infiltrating neutrophils (r � 0.354; p �
3.099e−12; Figures 6C–H).

The above results provided robust evidence to support that the
methylation sites’ prognostic signature may act as a vital player to
elucidate the context of TIME and further predict clinical
immunotherapy efficiency for HCC patients.

FIGURE 3 |Development of the prognostic risk signature based on DNAmethylation. Kaplan–Meier curve analysis presenting difference of overall survival between
the high-risk and low-risk groups in the training group (A), testing group (B), and combination cohort (C). ROC curve analysis of the risk scores for overall survival
predictive significance in the training group (D), testing group (E), and combination cohort (F). The AUC was calculated for ROC curves, and sensitivity and specificity
were calculated to assess score performance. Univariate Cox regression analyses of overall survival in the training group (G), testing group (H), and combination
cohort (I). Multivariate Cox regression analyses of overall survival in the training group (J), testing group (K), and combination cohort (L).
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FIGURE 4 | Validation of the risk prognostic signature in the external validation group. (A) Heatmap of the candidate gene expression level in HCC. The color from
red to blue shows a trend from high expression to low expression. (B) Distribution of the DNA methylation–based signature risk score. (C) Survival status and interval of
HCC patients. (D) Kaplan–Meier curve analysis presenting difference of overall survival between the high-risk and low-risk groups. (E) ROC curve analysis of the risk
scores for overall survival predictive significance. Comparison of risk scores in different subgroups based on age (F), gender (G), and clinicopathological stage (H).

FIGURE 5 | Validation of prognostic efficiency of the DNA methylation–based signature in HCC. (A) ROC curve analysis was employed to estimate the prediction
value of the prognostic signature. (B–D) Areas under curves (AUCs) of the risk scores for predicting one-, two-, and three-year overall survival time with other clinical
characteristics. (E) Nomogram was assembled by stage and risk signature for predicting the survival of HCC patients. (F) One-year nomogram calibration curves. (G)
Two-year nomogram calibration curves. (H) Three-year nomogram calibration curves.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6832409

Xu et al. Prognostic DNA Methylation in HCC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Association of Prognostic Signature With
ICB Vital Genes and Immune Infiltration
Subsequently, we correlated six key immune checkpoint inhibitor
genes (PDCD1, CD274, PDCD1LG2, CTLA-4, HAVCR2, and
IDO1) (Kim et al., 2017; Nishino et al., 2017; Zhai et al., 2018).
And we analyzed the correlation between the prognostic signature
and ICB vital genes to explore its potential player in
immunotherapy (Figure 6I). We observed that the risk score
had significantly positive correlation with CD274 (r � 0.2; P �
1e−04; Figure 6J), CTLA4 (r � 0.17; p � 0.0014; Figure 6K),
HAVCR2 (r � 0.24; p � 2.4e−06; Figure 6L), IDO1 (r � 0.13; p �
0.014; Figure 6M), and PDCD1LG2 (r � 0.11; p � 0.031;
Figure 6N), suggesting the risk prognostic signature might play
a crucial role in the monitoring of the ICB therapy outcome in
patients with HCC. According to correlation analysis, we observed
that 15 of 47 ICB-related genes’ (i.e., CD274) expression levels were
remarkably higher in patients with high risk relative to low-risk
ones (Supplementary Figure S8A). These results demonstrated
that the methylation sites’ risk signature may provide a novel
approach to predict immunotherapeutic efficiency in HCC.

Function Analysis of Risk Signature
To better understand the potential player of the methylation sites’
prognostic signature mediated in the underlying mechanism of
HCC, we performed GSEA analysis in not only the high-risk

group but also the low-risk group. GSEA enrichment analysis
results presented that the high-risk score mainly enriched in
pathways, including the ERBB signaling pathway, Wnt signaling
pathway, mTOR signaling pathway, and VEGF signaling pathway
(Supplementary Figure S8B).

LRRC41 Significantly Affected Overall
Survival and Correlates With Immune
Infiltration ICB Vital Targets
LRRC41 whose expression level was upregulated was the
methylation site–related gene and deemed the negative
indicator. Thus, the potential player of LRRC41 in HCC was
investigated in further validation experiments. Firstly, we
determined the expression level of LRRC41 between
paracancerous samples and cancer tissues according to the
TCGA database. Compared with normal samples, the
expression level of LRRC41 was higher in tumor samples
(Figure 7A). By using qRT-PCR, we compared the expression
level of LRRC41 between two different tumor cell lines and
normal liver cell line. In accordance with previous results,
LRRC41 was overexpressed in HCC cells compared with
hepatic cells (Figure 7B). In order to better evaluate the
prognosis predictive ability of LRRC41, survival curve analysis
was performed and plotted between LRRC41 high- and low-

FIGURE 6 | Correlation of the prognostic risk score with TIME characterization of HCC. (A) Results of the CIBERSORT algorithm of two risk subgroups. (B)
Comparison of ssGSEA analysis in two risk score subgroups. (C) Relationship between this signature and B cells. (D) Relationship between this signature and CD4
T cells. (E) Relationship between this signature and CD8 T cells. (F) Relationship between this signature and dendritic cells. (G) Relationship between this signature and
macrophages. (H) Relationship between this signature and neutrophils. (I) Correlation analysis between immune checkpoint inhibitors (CD274, PDCD1,
PDCD1LG2, CTLA4, HAVCR2, and IDO1) and the prognostic risk signature. (J) Correlation between the prognostic risk signature and CD274. (K) Correlation between
the prognostic risk signature and CTLA4. (L)Correlation between the prognostic risk signature and HAVCR2. (M) Correlation between the prognostic risk signature and
IDO1. (N) Correlation between the prognostic risk signature and PDCD1LG2.
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expressed patients. We found that lower LRRC41 expression
significantly suggested higher overall survival probability
(Figure 7C, p � 6.539e−04). The expression level analysis
among major clinical stages showed that LRRC41 was
expressed significantly different among distinct
clinicopathological stages (Figure 7D, F � 3.68 and p �
0.0124). We observed that the higher the N status, the higher
the LRRC41 expression level (Figure 7E). Furthermore, the
expression level of LRRC41 was significantly and negatively
correlated with the methylation level of LRRC41 (Figure 7F,
r � −0.129, p � 8.735e–03).

To better research the association between the LRRC41
expression level and immune infiltration, we explored the
correlation between the expression level of LRRC41 and
immune infiltration via TIMER. The results indicated that the
LRRC41 expression was significantly correlated with B cells (r �
0.333; p � 2.37e−10), CD8+ T cells (r � 0.298; p � 1.91e−08), CD4+
T cells (r � 0.369; p � 1.67e−12), macrophages (r � 0.448; p �
3.02e−18), neutrophils (r � 0.5; p � 3.23e−23), and dendritic cells
(r � 0.485; p � 1.97e−21; Figure 8A). Furthermore, distinct
mutational types of LRRC41 were correlated with infiltration
of neutrophils and CD8+ T cells (Figure 8B).

Next, we analyzed the correlation between the LRRC41
expression level and ICB key genes’ expression levels adjusted
by tumor purity by TIMER to explore the potential role of

LRRC41 in ICB treatment. TIMER results showed that
LRRC41 presented significantly positive correlation with
CD274 (r � 0.537; p � 3.24e−27), CTLA4 (r � 0.173; p �
1.24e−03), HAVCR2 (r � 0.472; p � 1.66e−20), IDO1 (r �
0.228; p � 1.99e−05), PDCD1 (r � 0.202; p � 1.64e−04), and
PDCD1LG2 (r � 0.325; p � 6.31e−10; Figures 8C–H), suggesting
LRRC41 has a vital role in ICB therapy.

Association Between LRRC41 and TIME
Characterization
In order to further reveal the role of LRRC41 in the formation of
characteristics in TIME of HCC, we performed correlation
analysis of expression value of LRRC41 with ssGSEA
enrichment (by the GSEABase method) and immune
infiltration fraction and level (using the CIBERSORT
algorithm) and further conducted single-cell transcriptome
sequencing data analysis. Patients with HCC were divided into
low/high-LRRC41 subtypes based on the median value of
LRRC41 expression level. The CIBERSORT results presented
that the LRRC41 expression level was positively correlated
with the abundance of macrophages M0 and M1 whereas
negatively correlated with monocytes and macrophage M2
(Figure 9A). According to ssGSEA results, inflammation
promotion and parainflammation were activated, CCR and

FIGURE 7 | Clinical significance of LRRC41 in HCC. LRRC41 was upregulated in HCC samples based on the TCGA dataset (A) and experimental validation (B),
and a higher LRRC41 expression level was significantly correlated with poorer prognosis (C). The expression of LRRC41 had significant difference between major
pathological stages (D) and tumor N category (E). (F) The correlation of the LRRC41 expression level with LRRC41 methylation level.
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HLA were upregulated, and infiltration of macrophages and T
helper cells was remarkably elevated with the LRRC41 expression
being increased (Figure 9B). According to the results of single-
cell transcriptome sequencing data analysis, we observed that the
expression value of LRRC41 is more in tumor tissues than
paracancerous tissues (Figure 9C). And LRRC41 is mainly
expressed in Mast-c1-IL7R cells and Mast-c2-CPA3 cells in
HCC tumor tissues (Figure 9D). Figures 9E,F present the
distribution of LRRC41 in immune cells of tumor. Based on
the previous findings, mast cell proteases play the crucial role in
promoting tumor angiogenesis (de Souza Junior et al., 2015),
suggesting LRRC41 may act as a positive player in HCC
progression.

To further investigate the potential role of the LRRC41
methylation level in TIME characterization, HCC samples
were grouped into hypermethylation and hypomethylation
subtypes based on the median value of LRRC41 methylation
level. The CIBERSORT results pointed out that the infiltration of
memory B cells was elevated, but plasma cells were
downregulated in the LRRC41 hypermethylation group
(Figure 10A).

Additionally, APC costimulation, T-cell costimulation, and
parainflammation were activated, Checkpoint, CCR and HLA
were upregulated and infiltration of aDCs, CD8+ T cells, DCs,
macrophages, neutrophils, pDCs, T helper cells, Tfh, TIL, and

Treg was remarkably elevated with LRRC41 methylation being
decreased (Figure 10B). Collectively, these results suggested that
both methylation and expression levels of LRRC41 might be
pivotal players in the context of TIME and immune response
of HCC.

Potential Role of KIAA1429 in Prognostic
Prediction, Immune Cell Infiltration, and
Immunotherapeutic Significance
To further reveal the biological role of KIAA1429 in immune cell
infiltration, the correlation of the expression value of KIAA1429
with immune cell infiltration was analyzed via TIMER. The
results indicated that the KIAA1429 expression was
significantly correlated with B cells (r � 0.279; p � 1.39e−07),
CD8+ T cells (r � 0.121; p � 2.54e−02), CD4+ T cells (r � 0.269; p �
4.20e−07), macrophages (r � 0.232; p � 1.53e−05), neutrophils
(r � 0.274; p � 2.46e−07), and dendritic cells (r � 0.278; p �
1.85e−07; Supplementary Figure S9A).

Next, the expression value of KIAA1429 in normal tissues and
tumor samples was analyzed based on the TCGA database.
Relative to normal tissues, KIAA1429 was upregulated in
cancer samples (Supplementary Figure S9B). To assess the
prognostic value of KIAA1429, the survival curve was
analyzed between KIAA1429 high- and low-expressed groups.

FIGURE 8 | Role of LRRC41 in TIME and immunotherapy of HCC. (A) Correlation analysis of LRRC41 expression level with infiltrating B cells, CD4+ T cells, CD8+

T cells, dendritic cells, macrophages, and neutrophils using TIMER. (B) Comparison of tumor infiltration levels among HCC samples with different somatic copy number
alterations in LRRC41. The association between the expression levels of LRRC41 and CD274 (C), CTLA4 (D), HAVCR2 (E), IDO1 (F), PDCD1 (G), and PDCD1LG2 (H)
using TIMER.
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FIGURE 9 | Discrepancy of low and high LRRC41 expression subgroups in terms of TIME characterization. (A)Comparison of CIBERSORT results in two LRRC41
expression subgroups. (B) Difference of immune-related signatures between low- and high-LRRC41 subgroups. Single-cell RNA sequencing analysis of LRRC41
abundance in various tissues and immune cell subtypes of HCC patients. (C) Analysis of the enrichment of LRRC41 in tumor and adjacent liver. (D) Analysis of the
enrichment of LRRC41 in immune cell subtypes in tumor tissue. (E) (Uniform Manifold Approximation and Projection) UMAP map of immune cells in tumor. (F)
UMAP map of the LRRC41 expression level in tumor tissue.

FIGURE 10 | Discrepancy of low and high LRRC41 methylation subgroups in terms of TIME characterization. (A) Comparison of CIBERSORT results in two
LRRC41 methylation subgroups. (B) Difference of immune-related signatures between LRRC41 hypermethylation and LRRC41 hypomethylation subgroups.
Correlation of candidate DNA methylation with gene mutated status. (C) Correlation of TTN mutation with LRRC41 methylation. (D) Correlation of TP53 mutation with
LRRC41methylation. (E)Correlation of CTNNB1mutation with LRRC41methylation. (F)Correlation of TTNmutation with KIAA1429methylation. (G)Correlation of
TP53 mutation with KIAA1429 methylation. (H) Correlation of CTNNB1 mutation with KIAA1429 methylation.
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The result showed that patients with low LRRC41 presented
significant advantage of overall survival time (Supplementary
Figure S9C, p � 0.0039).

Subsequently, the correlation of the KIAA1429 expression
level and immunotherapy key genes’ expression levels adjusted
by tumor purity by TIMER was analyzed to uncover the potential
player of KIAA1429 in immunological treatment. TIMER results
showed that KIAA1429 presented significantly positive
correlation with CD274 (r � 0.226; p � 2.23e−05), CTLA4 (r �
0.213; p � 6.45e−05), HAVCR2 (r � 0.264; p � 6.29e−07), IDO1
(r � 0.117; p � 2.99e−02), PDCD1 (r � 0.15; p � 5.17e−03), and
PDCD1 (r � 0.141; p � 8.90e−03; Supplementary Figures
S9D–H), suggesting KIAA1429 has a vital role in
immunotherapy.

Regulatory Network Based on LRRC41 and
KIAA1429 in HCC
To further explore the biological mechanism of methylation
regulation, correlation networks based on LRRC41 and
KIAA1429 were constructed, respectively. A total of 47
interactors were identified in the LRRC41-based network
(Supplementary Figure S10A), while 186 interactors were
determined in the KIAA1429-based network (Supplementary
Figure S10B). We reviewed the literature correlated with these
interactors in HCC, CUL5 (Ma et al., 2013), RNF7 (Yu et al.,
2018), and SOCS1 (Yang et al., 2020), which are potential targets
of LRRC41 in methylation regulation of HCC. Additionally,
KIAA1429 might interact with EGFR (Ye et al., 2016), HSPA8
(Khosla et al., 2019), and HSP90AA1 (Shi et al., 2020) to
modulate methylation in HCC. As such, these underlying
targets exhibited promising potential to act as critical
regulators involving in the DNA methylation in HCC and
further mediated tumorigenicity and progression.

Landscape of Somatic Mutations in HCC
As summarized in the waterfall map, 327 out of 364 HCC patients
had the somatic mutation altered, accounting for 89.84%. And we
observed that TP53, CTNNB1, and TTN mutations are the top
three mutated genes in HCC samples, and the frequency was 30,
25, and 24%, respectively (Supplementary Figure S11A).
Missense mutations occupied an absolute position in the total
mutation classification (Supplementary Figure S11Ba), and
single-nucleotide polymorphism (SNP) accounted for more
proportion than deletion (DEL) or insertion (INS,
Supplementary Figures S11Bb,Be). Meanwhile, C > T had
the highest frequency, 13933 times, in variant types of single-
nucleotide variant (SNV) (Supplementary Figures S11Bc,D).
Supplementary Figure S11Bd presents that the number of
variants per sample and the median value of mutation variants
were 71. Besides, the top 10 genetical variated genes were TP53,
TTN, CTNNB1, MUC16, ALB, PCLO, MUC4, APOB, RYR2, and
ABCA13 (Supplementary Figure S11Bf). The rainfall plot of the
sample TCGA−UB−A7MB−01A−11D−A33Q−10 is presented in
Supplementary Figure S11C. Each dot represents the SNV
mutation type with corresponding color. To further elucidate
the intrinsic connection between these genetic altered genes, the

exclusive and co-occurrence correlations are presented in
Supplementary Figure S11E. To further reveal the intrinsic
connection of gene mutation status with DNA methylation,
the top three mutated genes (TP53, TTN, and CTNNB1) were
fetched for correlation analysis. The results showed that the TP53
mutation and CTNNB1 mutation were significantly higher in the
KIAA1429 hypomethylation group (Figures 10G,H), but not
TTN mutation (Figure 10F). However, there was no significant
correlation of the LRRC41 methylation level with gene mutation
(Figures 10C–E).

DISCUSSION

Hepatocellular carcinoma (HCC), well characterized with high
morbidity, ranks fourth among tumor-caused deaths globally
(1–3). Well characterized with genomic heterogeneity and
genetic diversity, HCC patients presented high individual
different clinical outcomes based on traditional classification
(5, 6). Lacking practical clinical treatment, the overall survival
probability of HCC patients remained very low. Therefore, it is
necessary to exploit novel and reliable biomolecular indicators for
prognosis prediction and clinical efficiency evaluation,
contributing to novel insight into therapeutic response
monitoring and clinical intervention of HCC.

DNA methylation, mediated in the gene transcription
regulation and genome stability maintenance, is one of the
most common types of inherited epigenetic modification.
Aberrant changes in DNA methylation exist in multiple
malignant tumor development (Yang et al., 2017), regulating
the expression level of cancer-related genes and significantly
affecting the progression of tumor. To further elucidate the
intrinsic molecular mechanism of HCC progression, genetic
indicators especially DNA CpG sites are critical (Xu et al.,
2017; Zheng et al., 2018). Besides, clinical samples (i.e., body
fluids) for the determination of the DNAmethylation level can be
obtained noninvasively from patients, providing a novel channel
for early diagnosis, clinical management, and therapeutic
targeting. Up to now, the potential role of DNA methylation
sites in TIME and ICB therapy of HCC is still unclear.

Herein, this study was designed to uncover the prognostic
predictive value and impact upon TIME characteristics and
immunotherapy outcome of methylation sites in HCC. We
analyzed the methylation information of HCC patients from
the TCGA database through employing systematic
bioinformatics analysis. Using consensus clustering, we
identified seven HCC clusters based on their methylation data
to better elucidate their clinical significance as well as biological
role in progression of HCC.

Using univariate Cox regression and subsequent LASSO
algorithm, we generated a two-gene risk signature consisting
of LRRC41 and KIAA1429. In order to demonstrate its great
prognostic accuracy, these results were validated in both the
testing group and the external validation group. Besides, the
prognostic value was demonstrated in another random grouping.
The results showed that the risk signature could be an
independent prognostic prediction factor using univariable and
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multivariable regression analyses. Furthermore, a robust
quantitative nomogram plot including the risk score and
clinical stage was constructed. GSEA analysis results suggested
a potential biological molecular mechanism of risk signature in
HCC progression viaWnt (Dai et al., 2019; Hu et al., 2019; Huynh
et al., 2019; Jin et al., 2019; Li et al., 2019; Tan et al., 2019) and
ERBB (Ni et al., 2020) signaling pathways and others. Besides, we
demonstrated the prognostic risk signature remained a good
prognosis predictive accuracy indicator when HCC cases
subdivided into subgroups according to clinical features.

Based on published researches, we observed that some studies
have revealed the correlation between DNA methylation with
immunotherapy and immune infiltration, which could not be
elucidated from the traditional RNA regulation viewpoint. Fietz S
et al. examined CTLA4 promoter methylation for predicting
objective response to anti-CTLA-4 immunotherapy in late-
stage melanoma (Fietz et al., 2020). Nair V S et al. pointed out
that T-cell exhaustion and immune checkpoint biomarkers were
abnormally altered in tumor-infiltrating CD8+ and CD4+ T cells
and tumor tissues in colorectal cancer (CRC) (Nair et al., 2020).
Thus, we deduced the proportion of immune cells and level of
immune infiltration in TIME were significantly correlated with
gene expression and methylation. In summary of immune
filtration results (i.e., CIBERSORT, ssGSEA, and TIMER),
patients with high risk presented abundance of immune cells,
which suggested the activated immune phenotype. However, the
positive correlation of the risk score with immunotherapeutic
target expression (i.e., PDCD1 and CTLA4) indicated that
patients in the high-risk group might be more affected by
immune checkpoint blockade–related pathways and suitable
for immunotherapy to improve their poor prognosis.
However, these results needed to be tested in in vitro or in
vivo studies about the underlying molecular mechanism of
immune response of HCC.

Being the encouraging and promising outcome of immune
checkpoint blockade (ICB) therapy, immune checkpoint
inhibitors have great influence upon clinical administration in
anti-tumor therapy (Pitt et al., 2016; Llovet et al., 2018; Salik et al.,
2020). Immune checkpoint inhibitor treatment has opened up a
novel approach for clinical decision-making in HCC patients (Ng
et al., 2020). However, HCC patients get relative little therapeutic
efficiency after treating ICB therapy, and about 30% HCC
patients obtained benefit from immune checkpoint inhibitor
administration (Liu et al., 2020). Such biomarkers as tumor
mutational burden and microsatellite instability were
unreliable to accurately predict the clinical outcome of ICB
therapy. It is, therefore, urgent to discover novel and
promising factors that could predict response to ICB therapy
for further individualized management and advanced precision
immunotherapy (Nishino et al., 2017; Mushtaq et al., 2018; Ng
et al., 2020). Multiple studies demonstrated that DNA
methylation might act as a pivotal player in prediction of
response to therapy (Yang et al., 2019; Li et al., 2020). In this
study, we validated the DNA methylation–based risk score and
potential hub targets (LRRC41 and KIAA1429) were significantly
associated with expression level of ICB pivotal target genes
(i.e., CTLA4). Besides, the as-constructed prognostic risk score

significantly correlated with the ICB treatment target genes
(i.e., CD274), suggesting patients with high risk might benefit
from immunotherapy. These results indicated that the DNA
methylation–based prognostic signature may provide novel
insight into ICB therapy outcome prediction in HCC. Without
ICB treatment–related data in the HCC cohort, we were unable to
explore the correlation between ICB treatment response and risk
score. Nevertheless, further experimental researches were
required for our results at larger population and multiple centers.

Among DNA methylation–related genes in this prognostic
signature, the player of LRRC41 in HCC has not been revealed in
existing articles yet. Furthermore, we found the LRRC41
expression can independently affect the overall survival of
HCC patients. LRRC41, a largely uncharacterized protein
containing a leucine-rich repeat, serves as a pivotal modulator
in the formation of cullin 3 (Cul3)–dependent ubiquitin ligase
complexes (Schenková et al., 2012). Currently, the biological
function of LRRC41 in tumors is still elusive. This study
attempted to explore the prognostic predictive significance of
LRRC41 and its potential functions in TIME and ICB treatment.
We found that the LRRC41 expression level is significantly
upregulated in HCC cells and is able to act as a good
prognostic prediction factor in HCC. We also corroborated
that both expression and methylation levels of LRRC41 had
intimate correlation with immune infiltration (i.e., neutrophils)
and immunotherapeutic targets (i.e., PDCD1). Additionally, the
landscape of mutation status was delineated, and the correlation
of methylation with gene mutation was explored. Nevertheless,
the potential role of LRRC41 in HCC remains lacking, which
needs further and deeper experimental exploration.

It is well established that inhibition of DNA methyltransferase
will up-regulate immune signaling to reverse tumor-immune
evasion, indicating the regulatory role of DNA methylation in
programming the tumor immune microenvironment
(Chiappinelli et al., 2015). The results of immune cell
infiltration presented higher subpopulations of immune cells
(i.e., CD8+ T cells) and active immunological signature
(i.e., APC costimulation) in hypomethylation of LRRC41,
indicating LRRC41 hypomethylation might contribute to anti-
tumor immune response.

Relative to published articles that developed the novel
prognostic predictive indicator in HCC, some superiorities of
this study should be listed. Firstly, all HCC cases from the TCGA
database and ICGC LIRI-JP dataset were included for systematic
bioinformatic analysis, and the total specimen size was
considerably large. Besides, we employed four methods
(ssGSEA, CIBERSORT, TIMER, and single-cell RNA
sequencing analysis) to explore the potential functions of
DNA methylation in the context of TIME complexity and
diversity, further contributing to ICB outcome prediction,
which has not been reported before us. Furthermore, as far as
we know, this research is the first aimed to explore the biological
players of LRRC41 in HCC. Finally, multiple bioinformatics
analyses were used for most data processing, all-image
formation, and statistical analyses. All multiomics data were
available from public datasets and R software (version 4.0.3)
with corresponding packages having open access. However, the
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most notable limitation of this study is that further in vivo
experimental study was not performed to validate our findings.

CONCLUSION

In a word, we thoroughly analyzed the methylation landscape,
prognostic prediction performance, and influence upon TIME
and ICB therapy of DNA methylation in patients with HCC. The
distinction of DNA CpG–related genes was a factor that was
significantly correlated with overall survival and clinical features,
indicating it may act as a pivotal player in the heterogeneity and
complexity of tumor immune microenvironment. The systematic
analysis of DNA methylation sites in tumor could strengthen our
understanding of TIME characterization and facilitate
personalized therapy administration. However, these results
need to be further validated in subsequent in vitro and in vivo
experimental and clinical researches focusing on HCC
tumorigenesis, progression of biomolecular mechanisms, and
potential player of these DNA methylation sites and
corresponding genes.
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GLOSSARY

ANOVA analysis of variance

AUC area under the curve

BCLC Barcelona Clinic Liver Cancer

CD274 Also known as PD-L1

CDF cumulative distribution function

CI confidence interval

CpG 5′-cytosine-phosphate-guanine-3′

CTLA-4 cytotoxic T-lymphocyte antigen 4

Cul3 cullin 3

DEL deletion

DFS disease-free survival

DMEM Dulbecco’s minimum essential media

DNMT DNA methyltransferase

FBS fetal bovine serum

FDR false discovery rate

FPKM fragments per kilobase per million

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GO gene ontology

GSEA gene set enrichment analysis

GTEx Genotype-Tissue Expression

HAVCR2 Also known as TIM-3

HCC hepatocellular carcinoma

HR hazard ratio

ICB immune checkpoint blockade

ICGC International Cancer Genome Consortium

IDO1 indoleamine 2,3-dioxygenase 1

INS insertion

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO least absolute shrinkage and selection operator

MAPK mitogen-activated protein kinase

MSI microsatellite instability

OS overall survival

PAC proportion of ambiguous clustering

PD-1 programmed cell death 1

PD-L1 programmed cell death-ligand 1

PD-L2 programmed cell death-ligand 2

PDCD1 Also known as PD-1

PDCD1LG2 Also known as PD-L2

qRT-PCR quantitative real-time polymerase chain reaction

RNA ribonucleic acid

ROC receiver-operating characteristic

SAM S-adenosyl-L-methionine

SNP single-nucleotide polymorphism

SNV single-nucleotide variant

ssGSEA single-sample gene set enrichment analysis

TCGA The Cancer Genome Atlas

TICs tumor-infiltrating immune cells

TIM-3 T-cell immunoglobulin domain and mucin domain–containing
molecule-3

TIME tumor immune microenvironment

TIMER tumor immune estimation resource

TMB tumor mutation burden

TNM topography lymph node metastasis

TPM transcript per million

UCSC University of California, Santa Cruz
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