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A B S T R A C T   

Tumor-infiltrating immune cells (TICs) affect tumorigenesis and tumor development in head and neck squamous 
cell carcinoma (HNSCC). We constructed a novel predictive model for HNSCC based on immune-related genes 
(IRGs) from The Cancer Genome Atlas and the Immunology Database and Analysis Portal. After identifying the 
IRGs, a predictive model involving 13 IRGs with high stratification value of overall survival (OS) was constructed 
by multiple support vector machine recursive feature elimination and least absolute shrinkage and selection 
operator regression. We explored the relationship between the risk score (RS) and clinical characteristics. The 
nomogram showed high concordance and good agreement in OS. Four TICs affected the OS and were in 
agreement with the abundance analysis of the RS levels. Furthermore, the low-risk HNSCC group showed higher 
expression of PD-1, CTLA4, and TIGIT, while the high-risk group showed higher expression of EGFR. The high- 
risk HNSCC showed high sensitivity to eight drugs.   

1. Introduction 

Head and neck squamous cell carcinoma (HNSCC), which mainly 
involves the oral cavity, sinonasal cavity, pharynx, and larynx, is among 
the top ten original malignancies by incidence worldwide. It has been 
associated with human papillomavirus infection and heavy tobacco and 
alcohol use [1,2]. The incidence of HNSCC in 2020 was over 800,000 
new cases worldwide, with over 400,000 deaths. Such high rates place 
clinical and economic burdens on the public health system. Males have 
substantially higher incidence and mortality rates than females [3,4]. 
Although multi-modal treatments such as surgery, chemotherapy, 
radiotherapy, and immune checkpoint inhibitors (ICI) were used in 
patients with HNSCC, the overall survival (OS) remains disappointing, 
especially in those with locally-advanced lesions [5]. Hence, investi-
gating the molecular mechanisms and potential biological markers 
associated with HNSCC tumorigenesis, disease progression, and treat-
ment response remains challenging but presents opportunities for a 
better understanding of the disease [6]. 

The tumor microenvironment (TME) is a complex entity that plays an 
important role in HNSCC tumorigenesis and tumor growth, progression, 
and treatment response. It includes the extracellular matrix, cancer- 
associated fibroblasts, and various tumor-infiltrating immune cell 
(TIC) subtypes [7,8]. TICs interact with tumor cells to form a supporting 
environment and produce hormone-like bioregulators to affect homeo-
stasis locally and systematically, preventing the body’s anticancer ac-
tivity and enhancing tumor growth [9]. TICs are also strongly associated 
with the expression of most immune checkpoints in HNSCC [10] and 
could potentially impact the response to immunotherapy. As a 
well-known tumor type with a strong immune infiltration response [11], 
immune-related signatures were used to predict the prognosis, immune 
checkpoint expression, TIC levels, and various response states after ICI 
treatment in HNSCC [12,13]. Immune-related signatures were more 
accurate in predicting OS than prediction models based on glycosyl-
transferase and fatty acid metabolism-related signatures [10,14]. 
Screening for further immune-related signatures and developing TIC 
prediction tools could improve outcome evaluation in HNSCC and lead 
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to better clinical and therapeutic strategies. 
However, surgery and radiochemotherapy could substantially 

disrupt tissues and vessels and change the TIC component in HNSCC, 
exacerbating preexisting immunosuppressive effects [5,7]. The OS pre-
diction accuracy of previously published models was established based 
on immune-related signatures, and the usefulness of tumor stage and 
grade was limited in patients with HNSCC. Moreover, the surgical status, 
including perineural invasion and positive margin, could also affect the 
HNSCC outcome [15]. The prediction efficacy of combining 
immune-related markers with surgical status remains unclear. This 
study’s aims were: (1) screening and identifying novel immune-related 

signatures based on differentially-expressed genes (DEGs) and the con-
struction of a predictive model with high concordance and good fitting; 
(2) validation and evaluation of the predictive model for survival out-
comes, risk stratification, surgical status, and treatment response, and 
the construction of a novel nomogram model; (3) prediction of TIC 
abundance, immunotherapy targets, and drug sensitivity using risk 
scores (RSs) based on immune-related genes (IRGs) to achieve a 
comprehensive understanding of the immune response and improve 
therapeutic decision-making for HNSCC. 

Fig. 1. Screening for immune-related DEGs in HNSCC. (A) Volcano plot showing DEGs between tumor and normal samples according to TCGA-HNSCC cohort. (B) 
Venn plot showing the intersection analysis of DEGs with IRGs from the ImmPort database. (C) Heat map of immune-related DEGs with clinical characteristics. 

Fig. 2. Functional enrichment analyses for immune-related DEGs. (A) GO enrichment analysis. (B) KEGG pathway analysis.  
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2. Materials and methods 

2.1. Data source and processing 

The HTSeq-counts and FPKM data of patients with HNSCC in The 
Cancer Genome Atlas (TCGA) database and their clinical characteristics 
and survival data (accessed on 18 January 2023) were downloaded from 
the UCSC Xena website (https://xenabrowser.net/datapages/). We ac-
quired RNA-sequencing transcriptome data for 539 cases, including 495 
tumor and 44 normal samples. After removing those with incomplete or 
missing survival data, the survival analysis included 472 patients with 
HNSCC. Ethical approval and patient informed consent were unnec-
essary because all the data were from a publicly available database. 

2.2. Identification of immune-related DEGs 

We analyzed DEGs between normal and tumor tissues in patients 
with HNSCC using the ‘DESeq2’ package in R software, setting |log2FC| 
> 1 and a false discovery rate <0.05. A volcano plot of the DEGs was 
generated by the ‘ggpubr’ package. We downloaded IRG data from the 
Immunology Database and Analysis Portal (ImmPort) database (htt 
ps://www.immport.org/home; accessed on 18 January 2023). 
Immune-related DEGs were detected by intersecting the DEGs and IRGs. 
The ‘VennDiagram’ and ‘heatmap’ packages were used to visualize this 
intersection. 

2.3. Functional enrichment analysis 

We used the ‘clusterProfiler’ package to perform functional analysis 
based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), setting the adjusted p-value threshold at <0.05. GO 
enrichment analysis included three biological categories: biological 
processes, cellular components, and molecular functions. 

2.4. A prognostic prediction model for HNSCC 

After arranging the survival data, immune-related DEG expression 
levels, and clinic characteristics, we randomly divided the cohort into a 
Training Set (2/3) and a Test Set (1/3), with sample sizes of 323 and 
149, respectively. 

To develop a prognostic prediction model with high concordance, we 
first performed univariate Cox regression analysis in the Training Set to 
acquire the genes related to HNSCC prognosis using the ‘survival’ 
package (p < 0.05). Subsequently, least absolute shrinkage and selection 
operator (LASSO) regression and multiple support vector machine 
recursive feature elimination (mSVM-RFE) were performed to screen 
genes using the ‘glmnet’ and ‘e1071’ packages, respectively. The mSVM- 
RFE algorithm is widely used for accurate predictions based on complex 
gene expression data [16]. The gene selection results by LASSO regres-
sion in various lambda values of the cross-validation error and the 
mSVM-RFE algorithm results were recorded and combined to calculate 
the concordance index (C-index). Finally, the gene types with the 
highest C-index were selected to construct the prognostic prediction 
model. We calculated the RS for each sample and then divided the 
cohort into high-risk and low-risk HNSCC using the median RS as a 
cutoff value. These groups were visualized using the ‘ggrisk’ package. 
We used the ‘survminer’ and ‘timeROC’ packages to perform 
Kaplan-Meier (K-M) and time-dependent receiver operating character-
istic (ROC) curve analyses, respectively, and evaluate the prognostic 
efficacy of the constructed prediction model, using the Training, Test, 
and combined (all samples) sets. To investigate the relationship between 
tumor cell-intrinsic genes and identified IRGs, we performed a correla-
tion analysis between the expression of cancer driver genes and RS. We 
screened the top ten cancer driver genes of HNSCC using the Integrative 
Onco-Genomics database (https://www.intogen.org/search). TP53, 
FAT1, NOTCH1, CSMD3, PIK3CA, CDKN2A, LRP1B, KMT2D, CASP8 and 

Table 1 
Cox regression analysis for screening of immune-related DEGs of prognosis for 
HNSCC.   

Univariate-cox analysis 

Gene HR(95%CI) p-value 
MPO 3.109(1.174-8.235) 0.022 
HTN1 1.548(1.010-2.372) 0.045 
FAM3D 0.881(0.786-0.987) 0.029 
SLC11A1 1.314(1.002-1.723) 0.048 
GAST 1.154(1.028-1.296) 0.015 
PPARG 1.292(1.015-1.646) 0.037 
STC2 1.221(1.041-1.432) 0.014 
BLNK 0.818(0.680-0.982) 0.031 
INHBA 1.124(1.009-1.253) 0.034 
ACTA1 1.054(1.007-1.105) 0.025 
CXCL13 0.898(0.809-0.997) 0.044 
GDF7 0.067(0.008-0.539) 0.011 
SPP1 1.072(1.001-1.149) 0.047 
ULBP2 1.225(1.032-1.453) 0.020 
TNFRSF19 0.797(0.653-0.974) 0.026 
IL34 0.827(0.693-0.988) 0.036 
AQP9 1.212(1.021-1.440) 0.028 
TFRC 1.181(1.020-1.367) 0.026 
TNFRSF4 0.724(0.576-0.911) 0.006 
OLR1 1.271(1.115-1.448) 0.000 
AVPR2 0.429(0.198-0.930) 0.032 
PTX3 1.164(1.005-1.347) 0.042 
SCGB3A1 0.901(0.814-0.996) 0.042 
DES 1.062(1.012-1.114) 0.014 
NTF3 0.630(0.399-0.994) 0.047 
TNFRSF18 0.869(0.762-0.991) 0.037 
CHGB 1.182(1.082-1.290) 0.000 
DKK1 1.169(1.057-1.292) 0.002 
FGF14 3.980(1.590-9.960) 0.003 
CCL26 1.131(1.016-1.259) 0.024 
CD79A 0.869(0.788-0.960) 0.005 
PCSK2 1.532(1.149-2.041) 0.004 
CD19 0.687(0.523-0.902) 0.007 
IL21 0.083(0.009-0.797) 0.031 
SFTPA2 1.358(1.060-1.741) 0.016 
IL1F10 0.758(0.585-0.983) 0.037 
OXT 0.372(0.156-0.888) 0.026 
CGB2 2.555(1.024-6.372) 0.044 
CALCA 2.790(1.642-4.739) 0.000 
NR0B1 1.498(1.177-1.906) 0.001 

HR = hazard ratio; CI=Confidence interval. 

Table 2 
The clinical characteristics of included patients of TCGA database.  

Clinical characteristics Total 
Number(n 
= 472) 

Training Set 
(n = 323) 

Test Set 
(n =
149) 

p- 
value 

Age <=60yr 231 160 71 0.7782 
>60yr 241 163 78 

Sex Female 128 82 46 0.2566 
Male 344 241 103 

Stage Stage I 19 10 9 0.1143 
Stage II 92 67 25 
Stage III 102 75 27 
Stage IVA 246 165 81 
Stage IVB/IVC 13 6 7 

Grade G1 53 34 19 0.7068 
G2 287 194 93 
G3/G4 116 84 32 
Gx 16 11 5 

Location Mouth 105 67 38 0.3403 
Overlapping 
lesion 

68 45 23 

Pharynx and 
larynx 

125 87 38 

Tongue 136 101 35 
Tonsil 38 23 15  
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NSD1 were included. 

2.5. Relationship between the RS and clinical characteristics 

In this part, we compared the RS in various tumor grades, origins, 
stages, ages, sexes, perineural invasiveness, and treatment responses. 
These comparisons were visualized by the ‘ggpubr’ package. The K-M 
curves were constructed using the ‘survival’ package based on sex, 
resection margin, perineural invasion, radiation therapy, and treatment 
response to further analyze the survival difference between the high-risk 
and low-risk HNSCC groups. 

2.6. Construction and validation of the nomogram 

To confirm the independent risk factors of HNSCC prognosis, we 
performed univariate and multivariate Cox regression analyses on the 
RS, clinical characteristics, and surgical status using the ‘survival’ 
package. Subsequently, a nomogram model, a calibration curve, and a C- 
index analysis were executed using the ‘rms’ package. 

2.7. Analysis of immune cell infiltration 

The proportions of 22 TICs in the HNSCC cohort were calculated 
using the CIBERSORT algorithm and the ‘preprocessCore’ package. This 
algorithm can characterize complex tissue cell composition based on its 
gene expression profile without additional histopathological analysis 
[17]. The relationships between the TIC subtypes and the RS were 
assessed using bar plots and survival analysis based on various TIC 
subtype levels. The correlations between the TIC subtypes and the 
prognosis-related IRGs were visualized using the ‘corrplot’ package. 

2.8. Analysis of drug sensitivity and immune checkpoints 

The half maximal inhibitory concentration (IC50) was calculated by 
ridge regression using the ‘oncoPredict’ package to predict the drug 
treatment response and evaluate the therapeutic effects of chemother-
apeutic drugs in patients with HNSCC. This package allowed the virtual 
prediction of drug response based on mRNA expression data in cell lines 
or patients with tumors [18]. The lower the IC50 value was, the better 
the drug sensitivity. The correlation between drug sensitivity and the RS 
was visualized using the ‘ggExtra’ package. We compared the 

Fig. 3. LASSO regression and mSVM-RFE algorithm for genes selection. (A,B) LASSO regression complexity was controlled by lambda. (C) mSVM-RFE algorithm by 
10-fold cross-validation. (D) The union analysis of LASSO regression (λ = 1se) and mSVM-FRE. 

Table 3 
The Coefficients of each gene of the present 
regression model.  

Gene Coefficient 

GDF7 -0.87735 
TNFRSF19 -0.33183 
TNFRSF4 -0.76801 
OLR1 0.25134 
CHGB 0.18523 
DKK1 0.08212 
CD19 -0.05529 
NR0B1 0.45320 
TNFRSF9 0.52887 
CXCR2 0.14787 
SCGB3A1 -0.07502 
SAA2 0.15725 
GRP 0.18074  
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differential expression of immune checkpoints such as PD-1, PD-L1, 
PD-L2, CTLA4, and TIGIT in the high-risk and low-risk HNSCC groups. 
We also assessed the EGFR differential expression in various RS levels to 
improve our understanding of EGFR-targeted drug therapy in HNSCC. 

2.9. Statistical analysis 

R software (version 4.2.1) was used for statistical analysis and graph 
visualization. Statistical significance was set at p < 0.05. The prognostic 
prediction value was assessed using Cox regression analysis. K-M sur-
vival analysis was performed using the log-rank test. Two-group com-
parisons were conducted using the Wilcoxon rank sum test. Spearman’s 

test was used for correlation analysis. C-index and Akaike information 
criterion (AIC) were used for model selection. 

3. Results 

3.1. Immune-related DEG identification and functional enrichment 
analysis 

There were 3946 DEGs, 1774 up-regulated and 2172 down-regulated 
(Fig. 1A). We detected 381 immune-related DEGs by intersecting the 
DEGs with 1793 IRGs in the ImmPort database (Fig. 1B). Subsequently, 
we used a heatmap to visualize the difference in the related IRG 

Fig. 4. Construction and cross-validation of prognostic model for HNSCC. (A-C) Distribution of RS for each sample in training, test and combined set, respectively. 
(D-F) Distribution of survival status for each sample in these three datasets. (G-I) The expression levels of the selected genes by heat map in the prognostic model for 
each sample in these three datasets. 

Fig. 5. Survival analysis of HNSCC and time-dependent ROC curves analysis for prognostic model. (A-C) K-M curves of HNSCC patients with high- and low-RS in the 
training, test and combined set, respectively. (D-F) time-dependent ROC curves analysis at 1-, 2- and 3-years in the training, test and combined set, respectively. 

L. Wang et al.                                                                                                                                                                                                                                   



Biochemistry and Biophysics Reports 36 (2023) 101557

6

expression between normal and tumor tissues in patients with HNSCC in 
association with their clinical characteristics (Fig. 1C). GO enrichment 
analysis showed that the mainly enriched immune-related DEGs in this 
study were associated with receptor-ligand activity, signaling receptor- 
activator activity, cytokine activity, cytokine-mediated signaling 
pathway, and cytokine receptor binding pathway (Fig. 2A). Cytokine- 
cytokine receptor interaction, neuroactive ligand-receptor interaction, 
JAK-STAT signaling pathway, PI3K-Akt signaling pathway, viral protein 
interaction with cytokine, and cytokine receptor pathway were mainly 
enriched based on the KEGG enrichment analysis (Fig. 2B). 

3.2. Prognostic prediction model for HNSCC and cross-validation 

Univariate Cox regression analysis screened prognostic IRGs in the 
Training Set (Table 1), the clinical characteristics of which are sum-
marized in Table 2. The Training and Test sets were considered inde-
pendent datasets due to the insignificant differences between them. We 
combined LASSO regression and the mSVM-RFE algorithm to construct 
various gene selection models (Fig. 3A-C). Genes selected by the various 
models within their concordance are summarized in Table S1. The 
model based on union analysis of LASSO regression and mSVM-RFE 
algorithm showed the highest C-index (Fig. 3D). The Coefficients of 
the 13 prognostic IRGs in this regression model are shown in Table 3. 

The visualization of the RS distributions (Fig. 4A-C) and the relative 
survival statuses of the Training, Test, and combined sets showed higher 
mortality in the high-risk than low-risk patients (Fig. 4D-F). The IRG 
expression heatmaps indicated that six genes (GRP, SAA2, NR0B1, 
DKK1, CHGB, and OLR1) were slightly up-regulated in the high-risk 
group. The other genes were slightly down-regulated, suggesting that 
these IRGs might have the opposite effect on the prognostic model 
(Fig. 4G-I). A potential correlation was noted between the expression of 
cancer driver genes (TP53, FAT1, NOTCH1, CSMD3, and CDKN2A) and 
RS (Fig. S1). 

The K-M analysis showed shorter OS in the high-risk group than the 
low-risk group in the Training, Test, and combined sets (Fig. 5A-C). 
Furthermore, time-dependent ROC curves showed that this predictive 
model had adequate prediction accuracy for the survival status. The 
areas under the curves for 1-, 2- and 3-year OS in the Training Set were 
0.740, 0.750, and 0.771, respectively. Similar results were noted in the 
Test and combined sets (Fig. 5D-F). 

3.3. Clinical characteristics in the various RS levels 

We analyzed the correlation between the RS and various tumor 
grades, HNSCC stages, and tumor origins (Fig. 6A-C). Tumors arising 
from different locations showed different RS levels in most HNSCC 
kinds. However, the RS was not correlated with tumor grade or stage. 
Clinical characteristics, including age, sex, perineural invasion, and 
treatment response, were associated with the RS (Fig. 6D-I). Patients 
with a high RS were more likely to have perineural invasion and poor 
treatment response than those with low RS, indicating that the RS can 
reflect the tumor’s biological behavior and outcomes. 

The K-M curve in the subgroup analysis showed that females had 
much longer OS than males (Fig. 7A). The RS could divide the patients 
with HNSCC into high- and low-risk groups for the resection margin and 
perineural invasion (Fig. 7B and C). As for survival outcomes, the RS 
could distinguish between high- and low-risk patients for treatment 
response (Fig. 7D) and the need for radiation therapy (Fig. 7E). These 
results revealed that the present RS model had a considerable survival 
predicting value in association with sex, surgical status, treatment 
strategy, and treatment response. 

3.4. Risk factors and nomogram construction 

We performed univariate and multivariate Cox regression analyses 
for the correlation between clinical characteristics and the RS in asso-
ciation with OS to identify independent risk factors for poor HNSCC 
prognosis (Table 4). Univariate Cox regression analysis of the combined 
set found that age, stage, resection margin, perineural invasion, and the 
RS were risk factors associated with poor HNSCC prognosis. We also 
found that stage, positive resection margin, positive perineural invasion, 
and the RS were independent risk factors for poor HNSCC prognosis 
based on the multivariate Cox regression analysis. Results in the 
Training and Test sets also showed that the RS was an independent risk 
factor. 

We constructed clinical nomograms to show the 1-, 2-, and 3-year OS 
in patients with HNSCC by combining the clinical features (including 
surgical status) and tumor risk factors (Fig. 8A). We selected the model 
with the highest C-index and the lowest AIC in the Training and Test sets 
(Table S2), which showed a high concordance and a good fitting. Cali-
bration curves showed good agreement between the actual and 
nomogram-predicted 1-, 2-, and 3-year OS in the training and Test sets 

Fig. 6. Correlation analysis between clinical characteristics and the RS. (A-C) The correlation of RS among different tumor grades, stages and tumor origin of HNSCC. 
(D-I) The relationship between RS and age, sex, perineural invasion and treatment response. 
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Fig. 7. K-M curve in subgroup analysis for patients with HNSCC. (A-E) K-M curve analysis for sex, resection margin, perineural invasion, treatment response and 
radiation therapy. 
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(Fig. 8B-G). 

3.5. TIC analysis, immune checkpoints, and drug sensitivity 

The CIBERSORT algorithm analyzed the 22 TIC subtypes in HNSCC. 
The TIC subtypes in the high- and low-risk groups according to the 
predictive model were compared and visualized by a bar plot (Fig. 9A). 
The correlations of the 22 TIC subtypes in HNSCC and the prognostic 
IRGs were analyzed and visualized by correlation heatmap (Fig. 9B). 
Each TIC subtype was divided into high- and low-level groups based on 
the median level. We found survival differences in several TIC subtypes 
between these two groups (Fig. 9C-H). Patients with HNSCC with high 
levels of plasma cells, follicular helper T cells, and gamma delta T cells 
showed longer OS than their low-level counterparts, while those with 
high-level CD4 memory resting T cells had shorter OS. These results 
agreed with the abundance analysis of these four TIC subtypes in the 
various RS levels. High expression of GDF7 and CD19 and low expression 
of DKK1 were observed in patients with high levels of plasma cells, 
follicular helper T cells, and gamma delta T cells. The opposite corre-
lation was observed in CD4 memory resting T cells. As for the immune 
checkpoint analysis, the high-risk HNSCC subgroup showed higher 
expression levels of PD-L1 and PD-L2, while the low-risk HNSCC sub-
group showed higher expression levels of PD-1, CTLA4, and TIGIT 
(Fig. 10A-E). We also showed that the high-RS group had a higher 
expression level of EGFR than the low-RS group (Fig. 10F), highlighting 
the benefits the high-risk HNSCC subgroup can gain from EGFR-targeted 
therapy. Drug sensitivity analysis for the high- and low-risk HNSCC 
subgroups and the lower IC50 values for the high-risk HNSCC subgroup 
were explored for Selumetinib, ERK_6604, ERK_2440, SCH772984, 
Trametinib, SB505124, Dasatinib, and PD0325901 (Fig. 11A-H). The 
results indicated that the high-risk HNSCC subgroup could benefit from 
these drugs. Correlation analysis between RS and IC50 values (Fig. 12A- 
H) indicated that the RS-based prognostic model of IRGs was related to 
drug sensitivity. 

4. Discussion 

Considering the high heterogeneity of HNSCC, it is necessary to 
establish a robust prediction model for risk stratification, TICs, prog-
nosis, and guidance of personalized clinical treatment. The IRGs’ 
expression in tumors was considered a convincing factor reflecting the 
immune status in tumor tissues and the TME [19]. Several predictive 
models based on immune-related signatures were highly accurate in 
HNSCC [12,13]. However, differences in IRGs’ screening and variable 
immune-related signature selection made the prediction value of such 
predictive models and stratification using risk factors derived from them 
controversial and with limited clinical decision-making value. 

We screened the HNSCC samples and identified IRGs using LASSO 
regression and the mSVM-RFE algorithm to establish a novel model to 
predict HNSCC prognosis with high concordance and moderate model 
complexity. The prediction performance of this predictive model was 
slightly higher than that of previously published models [12,13]. Higher 
expression of FAT1 and CSMD3 and lower expression of NOTCH1, 
CDKN2A, and TP53 were associated with higher RS in HNSCC, sug-
gesting that the expression of IRGs might be influenced by cancer driver 
genes. Furthermore, high stratification risk factor values in our model 
were noted in age, sex, tumor location, resection margin, perineural 
invasion, treatment response, and radiation therapy. Positive resection 
margin in initial treatment for HNSCC indicated worse outcome and 
tumor control and increased risk of perineural invasion [15–20]. Our 
results indicated that patients with high-risk HNSCC and a positive 
resection margin showed worse survival than those with low-risk 
HNSCC or a negative resection margin. Similar results were observed 

Table 4 
Cox regression analysis of clinical characteristics and Riskscore for prognosis.  

Data set Item Univariate-cox 
analysis 

Multivariate-cox 
analysis 

HR(95%CI) p- 
value 

HR(95%CI) p- 
value 

Training set Age 1.026 
(1.002- 
1.051) 

0.036 1.018 
(0.992- 
1.045) 

0.172 

Male 0.799 
(0.451- 
1.415) 

0.441 1.685 
(0.876- 
3.242) 

0.118 

Grade 1.077 
(0.707- 
1.641) 

0.730 1.003 
(0.626- 
1.606) 

0.991 

Stage 1.406 
(1.008- 
1.96) 

0.045 1.376 
(0.919- 
2.060) 

0.121 

Margin 
positive 

1.197 
(0.661- 
2.167) 

0.553 1.390 
(0.723- 
2.674) 

0.323 

Perineural 
invasion 

2.279 
(1.321- 
3.933) 

0.003 2.134 
(1.182- 
3.851) 

0.012 

Radiation 
therapy 

0.672 
(0.400- 
1.127) 

0.132 0.554 
(0.298- 
1.030) 

0.062 

Riskscore 4.215 
(2.865- 
6.201) 

0.000 4.392 
(2.832- 
6.811) 

0.000 

Test set Age 1.025 
(0.985- 
1.067) 

0.231 0.992 
(0.943- 
1.044) 

0.768 

Male 0.702 
(0.308- 
1.604) 

0.402 0.421 
(0.157- 
1.129) 

0.086 

Grade 2.577 
(1.246- 
5.326) 

0.011 2.784 
(1.200- 
6.462) 

0.017 

Stage 1.897 
(0.996- 
3.613) 

0.052 2.700 
(1.047- 
6.961) 

0.040 

Margin 
positive 

4.210 
(1.783- 
9.942) 

0.001 1.763 
(0.601- 
5.176) 

0.302 

Perineural 
invasion 

3.329 
(1.438- 
7.707) 

0.005 1.805 
(0.708- 
4.600) 

0.216 

Radiation 
therapy 

0.586 
(0.256- 
1.341) 

0.206 0.281 
(0.078- 
1.008) 

0.052 

Riskscore 3.205 
(1.732- 
5.930) 

0.000 2.554 
(1.296- 
5.034) 

0.007 

Combined 
set 

Age 1.026 
(1.005- 
1.047) 

0.016 1.016 
(0.994- 
1.040) 

0.158 

Male 0.787 
(0.495- 
1.252) 

0.313 1.006 
(0.607- 
1.666) 

0.983 

Grade 1.312 
(0.919- 
1.873) 

0.135 1.271 
(0.855- 
1.889) 

0.235 

Stage 1.558 
(1.160- 
2.093) 

0.003 1.842 
(1.289- 
2.632) 

0.001 

Margin 
positive 

1.742 
(1.075- 
2.824) 

0.024 1.696 
(1.022- 
2.815) 

0.041 

Perineural 
invasion 

2.584 
(1.627- 
4.105) 

0.000 1.969 
(1.221- 
3.174) 

0.005 

Radiation 
therapy 

0.692 
(0.445- 
1.076) 

0.102 0.413 
(0.243- 
0.701) 

0.001 

Riskscore 4.045 
(2.860- 
5.723) 

0.000 3.549 
(2.453- 
5.132) 

0.000 

HR = hazard ratio; CI=Confidence interval. 
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Fig. 8. Establishment and validation of nomogram model. (A) The nomogram model combined with clinical characteristics, surgical status and tumor risk. (B-G) 
Calibration curves of the nomogram for 1-, 2- and 3- years in training and test set,respectively. 

Fig. 9. TICs analysis of HNSCC. (A) Bar plot showing the difference of 22 TIC subtypes in HNSCC for the high-/low-risk groups. (B) The correlation heat map of the 
22 TIC subtypes in HNSCC and the selected IRGs. (C-H) Six TICs showed effect on survival outcome for patients with HNSCC. 

L. Wang et al.                                                                                                                                                                                                                                   



Biochemistry and Biophysics Reports 36 (2023) 101557

10

for perineural invasion in both the high- and low-risk groups. Radiation 
therapy is a widely used treatment for HNSCC. It is necessary to screen 
prognostic biomarkers to develop personalized radiotherapy approaches 
[21]. Our results suggested that both high- and low-risk HNSCC sub-
groups could benefit from radiotherapy, especially low-risk patients. 
High RS values were associated with a non-responding disease during 
follow-up. Together, these results indicated that the developed predic-
tive model could be valuable for personalized treatment strategies for 
patients with HNSCC. 

HNSCC is assumed to cause severe immunosuppression, resulting in 
poor prognosis [6]. The immunosuppressive effect, associated with the 
surgical approach and radiotherapy, was correlated with the tumor’s 
immune response quality and could affect survival and treatment 

outcomes [22]. Therefore, we constructed a predictive nomogram 
model that included radiotherapy and surgical status. We believe such a 
model could reflect real-world clinical conditions. The nomogram 
model, chosen based on its C-index and AIC, showed higher accuracy 
and better fitting than nomograms containing only basic clinical char-
acteristics and RS. Improving the primary treatment outcomes by 
decreasing the immune-suppressive TME is important. The TIC abun-
dance and survival analyses revealed that four prognosis-related cell 
subtypes, plasma cell, CD4 memory resting T cells, follicular helper T 
cells, and gamma delta T cells, were associated with the RS level. Most of 
these cells were T lymphocytes, assumed to promote tumor progression 
and restrain tumor regression by chronic inflammation. These effects 
might be associated with out-of-balance neuro-hormones. 

Fig. 10. Comparison of the expression levels of therapeutic targets of high- and low-risk groups. (A-F) PD-1, PD-L1, PD-L2, CTLA4, TIGIT and EGFR,respectively.  

Fig. 11. Comparison of the levels of IC50 of high- and low-risk groups in different drugs. (A-H) Selumetinib, ERK_6604, ERK_2440, SCH772984, Trametinib, 
SB505124, Dasatinib and PD0325901, respectively. 
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Neuroendocrine factors, such as nitric oxide, are produced by both 
tumor cells and TICs in all HNSCC tumor subtypes. This might promote 
adhesion and vascular endothelial cell permeability, allowing metastasis 
and promoting T-helper lymphocyte expansion [9,23]. Plasma cell 
infiltration was considered a positive predictor of the prognosis and 
immunotherapy response in many tumors. Their infiltration also pro-
motes the excretion of immunosuppressive cytokines to reduce the 
infiltration of effector T cells [24]. The CD4 memory resting T cells 
affected T cell receptor signaling and CD4+ T cell activation by N-gly-
cans and were associated with cell adhesion, tumor immunity, and 
metastasis [25]. Follicular helper T cell infiltration was shown to pro-
mote immune activation of TME and promote tumor killing, indicating a 
good prognosis in HNSCC [26]. Similarly, as immune-activated cells, 
gamma delta T cell enrichment was observed in TME, with a high 
expression of immune-positive regulatory chemokines in non-small cell 
lung cancer [27]. In our study, GDF7, DKK1, and CD19 expression rates 
were associated with these TICs and the RS distribution. DKK1 regulates 
the TME and immune response in HNSCC and is a negative survival 
predictor [13]. CD19 is a co-receptor of antigen receptors and is asso-
ciated with signal transduction for B-cells and proliferation regulation of 
tumor cells. CD19 downregulation was related to a worse prognosis for 
patients with HNSCC [28]. GDF7, highly expressed in bladder cancer, 
was considered a ligand of the TGF-β superfamily and the T-cell 
exhaustion gene and a predictor of poor prognosis [29]. Therefore, our 
results showed that these three IRGs could affect the TME regulation of 
HNSCC. 

Immunotherapy and EGFR-targeted drugs are widely used to treat 
locally advanced HNSCC. However, considering the ICI objective 
response rate limitation and the controversy concerning the role of 
immunotherapy in multimodal treatments, further analysis for certain 
HNSCC subsets is needed [5,6]. Higher expression levels of PD-1, 
CTLA4, and TIGIT in the low-risk group indicated that patients with 
low-risk HNSCC could benefit from several ICIs, including nivolumab, 
pembrolizumab, and ipilimumab. TIGIT blockade, a novel therapy for 
HNSCC, might enhance the response rate for anti-PD-1/PD-L1 therapy 
[30]. Our results provided new insights into dual-targeting treatment for 
patients with low-risk HNSCC. The higher expression of PD-L1, PD-L2, 

and EGFR in the high-risk group indicated that patients with high-risk 
HNSCC might benefit from anti-PD-L1 (e.g., durvalumab or atezolizu-
mab) and anti-EGFR (e.g., cetuximab) drugs. Although clinical trials 
about anti-PD-L2 immunotherapy are unavailable, PD-L2 expression 
was crucial to predict therapeutic outcomes [31]. Cisplatin-based 
chemotherapy is widely used for HNSCC; however, the rapid develop-
ment of drug resistance remains a serious challenge [6]. According to 
our RS model, patients with high-risk HNSCC are highly sensitive to 
many MAPK signaling pathway inhibitors, including PD0325901, 
Selumetinib, ERK_6604, ERK_2440, SCH772984, and Trametinib. These 
results were similar to those of Zhang et al. [32], who investigated the 
resistance to these MAPK signaling pathway inhibitors in patients with 
prostate cancer. The efficacy and regulation of MAPK signaling pathway 
inhibitors in HNSCC require further investigation of their association 
with IRGs’ expression. Although high-risk HNSCC showed high sensi-
tivity to dasatinib, an Src family kinase inhibitor, combination treatment 
might show even higher therapeutic potential [33]. As a TGF-β inhibitor, 
SB-505124 showed a potential therapeutic effect in pediatric acute 
myeloid leukemia and bone metastases [34,35]. Our results provided 
new insights into drug selection for high-risk HNSCC. However, since 
the drug sensitivity analysis results were calculated based on cell lines’ 
expression data, their interpretation should be made cautiously. 

Our study had several limitations. First, we used retrospective data 
from TCGA database; therefore, external validation data are needed to 
confirm our findings. Second, the mechanisms through which the 13 
IRGs contribute to tumorigenesis and HNSCC progression need further 
exploration and verification by fundamental experiments. Third, large- 
sample multi-center prospective studies are needed to assess the clin-
ical value of our model. Finally, further clinical trials are needed to 
validate the treatment responses based on our drug sensitivity analysis. 

In conclusion, we developed and validated a novel predictive model 
for patients with HNSCC based on IRGs. A nomogram with surgical 
status was constructed to predict survival. The RS could be a stable in-
dicator for HNSCC therapy, helping evaluate TICs and immunotherapy 
targets and possibly predict drug sensitivity and efficacy. 

Fig. 12. Correlation between RS and IC50 values in different drugs. (A-H) Selumetinib, ERK_6604, ERK_2440, SCH772984, Trametinib, SB505124, Dasatinib and 
PD0325901, respectively. 
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