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The small GTPase Rac induces actin polymerization, membrane ruffling, and focal contact 

formation in cultured single cells1, but can either repress or stimulate motility in epithelial 

cells depending on the conidtions2, 3. Therefore the role of Rac in collective epithelial cell 

movements in vivo, which are important for both morphogenesis and metastasis4-7, is 

difficult to predict. Recently photoactivatable analogs of Rac (PA-Rac) have been 

developed, allowing rapid and reversible activation or inactivation of Rac using light8. In 

cultured single cells, light-activated Rac leads to focal membrane ruffling, protrusion, and 

migration. Here we show that focal activation of Rac is also sufficient to polarize an entire 

group of cells in vivo, specifically the border cells of the Drosophila ovary. Moreover 

activation, or inactivation, of Rac in one cell of the cluster caused a dramatic response in the 

other cells, suggesting that the cells sense direction as a group based on relative levels of 

Rac activity. Communication between cells of the cluster required Jun N-terminal kinase 

(JNK) but not guidance receptor signaling. These studies further show that photoactivatable 

proteins are effective tools in vivo.

Border cells are a group of 6-8 cells that arise from the monolayer of ~650 epithelial follicle 

cells that surround 15 nurse cells and one oocyte in a structure called an egg chamber 

(Figure 1a-c). Border cells migrate ~175 μm in between the nurse cells, as an interconnected 

group of two distinct cell types: 4-8 migratory cells surround two central polar cells (Figure 

1d-i, k). Polar cells cannot migrate but secrete a cytokine that activates the JAK/STAT 

pathway rendering the outer cells motile9. The outer cells carry the polar cells and lose the 

ability to move in the absence of continuous JAK/STAT activation10. Thus each cell type 

requires the other. Border cells also require steroid hormone, receptor tyrosine kinase, 

Notch, and other signaling cascades11-16. Thus border cells experience a rich and complex 

signaling environment, as do most cells in vivo.
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The requirement for Rac in border cell migration was one of the earliest demonstrations of 

its role in cell motility in vivo17. Expression of either dominant-negative or constitutively 

active Rac impedes migration13, 17, 18, suggesting that its activity must be spatially and/or 

temporally controlled. However the precise function of Rac remains unclear.

To evaluate the effect of locally activating Rac in border cells we generated transgenic flies 

expressing the photoactivatable form of Rac (PA-RacQ61L) tagged with mCherry, under 

control of the Gal4/UAS system. When expressed in border cells using slbo-Gal4, the 

protein was distributed throughout the cells, in the cytoplasm, nuclei, and at cell surfaces 

(Figure 1g-i). In the absence of laser illumination, border cell migration was normal (Figure 

S1; Movies S1 and S2).

Upon exposure to repeated pulses of laser light, border cell migration could be redirected 

(Figure 1l-t; Movie S3). In this example, border cells were migrating along the path 

designated by the solid arrow and the leading cell extended a prominent forward-directed 

protrusion. The laser was applied to the cell next to the leading cell, which did not exhibit 

any detectable protrusion at the time. Following illumination the cluster retracted the 

original forward protrusion, changed direction and began moving to the side, a behavior 

never observed in wild-type19, 20. Light pulses were delivered once per minute due to the 

reversibility of PA-Rac8. The border cells reached the side of the egg chamber after ~60 

minutes (Figure 1m,n and Movie S3). Although light pulses were continuously delivered, 

the cluster did not move further down the side of the egg chamber over the next 20 minutes 

(Figure 1o-q), suggesting there might be a barrier or repellent in this region. When we 

shifted the site of illumination toward the center of the egg chamber (Figure 1r), the cells 

responded by moving in that direction (Figure 1s,t; Movie S3). A single amino acid 

substitution in the LOV domain (C450M) renders the protein light-insensitive8 and this 

construct could not redirect border cell migration even in the presence of light (Figure 1u-w; 

Movie S4).

To determine if Rac activity was only required in the lead cell, we co-expressed dominant-

negative Rac (RacT17N) together with PA-RacQ61L in all border cells and photoactivated 

Rac in one cell. RacT17N alone strongly inhibits border cell motility18 and photoactivation 

of Rac in the front cell failed to promote forward movement of the cluster in this 

background (Figure 1g-i). However, activating Rac in approximately half of the cells in the 

cluster caused them to move forward, albeit very slowly (Figure 1j-m). These results suggest 

that each cell requires some Rac activity for motility, and each cell contributes to the 

migration speed of the cluster, but the highest level of Rac activation determines the 

direction of movement.

We then tested whether PA-RacQ61L was sufficient to cause border cells to move in a 

direction opposite to their normal movement (Figure 2). Border cells expressing PA-

RacQ61L were first driven in the normal direction, and prominent lamellipodia-like 

protrusion was evident at the site of illumination (Movie S5). Then, we illuminated the rear. 

Front protrusion ceased rapidly (Movie S5) but rearward movement was initially very slow. 

After a variable delay, clusters moved backwards (Figure 2d-i), sometimes reconnecting 

with a follicle cell within the epithelium (Movie S5). In contrast, the light-insensitive control 
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protein did not reverse the migration direction (Movie S6). On average, the PA-Rac-induced 

forward migration speed exceeded the reverse migration speed by 4.5-fold (Figure 2p; PA-

Rac Front vs. PA-Rac Back), suggesting an influence of endogenous directional signaling on 

the behavior induced by PA-Rac.

To explore the interaction between endogenous signals and PA-Rac, we compared the 

responses of wild-type cells to those of cells with reduced guidance receptor activity. PVR 

and EGFR are receptor tyrosine kinases that function redundantly to guide migrating border 

cells13-15. Border cells expressing dominant-negative forms of both guidance receptors, 

PVRDN and EGFRDN, extend protrusions in all directions and make little forward 

progress20. PA-Rac rescued both the morphological defect and directional movement in this 

genotype (Figure 2j-l), consistent with the idea that Rac normally functions downstream of 

the receptors to determine the direction of movement. When clusters were illuminated at the 

front, the cells moved forward (Figure 2j-l). When the same clusters were illuminated at the 

back, rearward movement (Figure 2m-o) resulted. In contrast to the responses of wild-type 

clusters, average forward and reverse migration speeds were indistinguishable in border 

cells expressing PVRDN and EGFRDN (Figure 2p), supporting the idea of competition 

between endogenous guidance receptor signaling and PA-Rac induced directionality.

After stimulating rearward protrusion, we stopped illuminating and observed the recovery 

(Figure S2). Both wild-type and PVRDN- and EGFRDN-expressing clusters rapidly 

protruded in response to rear illumination and retracted the rearward protrusion following 

cessation of the light. However, wild-type cells protruded less and retracted more (Figure 

S2q). Over longer time courses, wild-type cells typically stalled after cessation of rear 

illumination but eventually recovered movement in the normal forward direction (Figure 

S3a-m). In contrast, PVRDN and EGFRDN-expressing clusters failed to recover forward 

movement (Figure S3m-y). These results also suggest that endogenous PVR and EGFR 

signals compete with PA-RacQ61L-induced polarization.

The inability of PA-RacQ61L to cause border cells to move down the side of the egg 

chamber led us to probe the microenvironment further. Within the anterior ~1/3 of their 

normal travel path, focal Rac activation could steer border cells from the center path all the 

way to the follicle cells, or along the perimeter of the egg chamber (Figure 3a-c and m). 

However if we treated cells after they reached the center of the egg chamber, they could not 

be redirected to the follicle cell layer (Figure 3d-i and m), although PA-RacQ61L could still 

move them forwards or backwards. Within the posterior 1/3 of their normal path, the cells 

could again be directed off their normal course, in between the nurse cells (Figure 3j-l and 

m). A summary of the responses to PA-RacQ61L is shown in Figure 3m. Thus there are 

regions in the egg chamber that actively repel the border cells or lack important structural or 

chemical substrates for migration, suggesting that there is additional guidance information 

besides the ligands for PVR and EGFR.

PA-RacQ61L was also insufficient to cause border cells to migrate earlier than normal, 

possibly because high levels of JAK/STAT signaling, which are required for the border cells 

to initiate movement, are not achieved at earlier time points21, 22. Consistent with this, PA-

RacQ61L did not cause protrusion or migration in border cells expressing a dominant-

Wang et al. Page 3

Nat Cell Biol. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negative form of the receptor Domeless, which is required for STAT activation (Figure S4a-

f). A key downstream target of STAT is the transcription factor Slow Border Cells 

(SLBO)23, and slbo mutant border cells cannot extend protrusions. However PA-RacQ61L 

could not rescue protrusion or migration in slbo mutants (Figure S4g-l). PA-RacQ61L also 

failed to rescue guidance receptor deficiency after stage 10 (not shown). Together these 

findings demonstrate that PA-RacQ61L reveals temporal as well as spatial constraints on 

migrating cells.

To evaluate the effects of locally inhibiting Rac, we generated transgenic flies expressing 

PA dominant-negative Rac (UAS-PA-RacT17N). Illuminating the leading border cell 

arrested migration and, strikingly, led to protrusion at the cluster rear (Figure S5a-j; Movie 

S7). In contrast illumination of the rear of the cluster enhanced forward protrusion (Figure 

S5k-m) and migration (Figure 2p). The magnitude of the effect was smaller in PVRDN and 

EGFRDN-expressing cells (Figure S5n-p; Figure 2p).

The non-autonomous effects of PA-RacQ61L and PA-RacT17N were striking so we 

examined the morphological consequences at higher magnification. Specifically, activation 

of Rac in one cell of either a wild-type cluster (Figure 4a-c) or a cluster expressing PVRDN 

and EGFRDN (Figure 4d-f) resulted in retraction of protrusions by the other cells and 

movement of the cluster in the direction of the light. This was true whether the illumination 

was provided at the front of the cluster (not shown) or at the back. Strikingly PA-RacT17N 

had precisely the opposite effect in a polarized wild-type cluster (Figure 4j-l). Focal 

inhibition of Rac in the protruding lead cell caused a loss of polarization and random 

protrusion of all the cells in the cluster (Figure 4l).

To quantify these results, we developed an automated method to count the number of 

protruding cells (Figure S6) and calculated the directionality index, which measures the 

degree of polarization of the cell cluster20. PA-RacQ61L treatment rescued the 

PVRDN,EGFRDN polarization and the number of protruding cells nearly to wild-type 

(Figure 4m,n).

Inhibition of the JNK pathway also reduces the directionality index24 (Figure 4n). The JNK 

pathway helps to coordinate border cell movement by promoting cohesion between border 

cells. To test the hypothesis that cluster cohesion is important for the non-autonomous 

effects of Rac, we monitored the effect of PA-RacQ61L in cells with reduced JNK 

signaling. Photoactivation of Rac at the back of clusters with impaired JNK signaling did not 

cause retraction of protrusions that were extended in other directions and resulted in little net 

movement of the cluster (Figure 4g-i). The same effect was observed whether JNK signaling 

was reduced by expression of the JNK phosphatase Puckered (UAS-Puc2A) or by 

expressing a dominant-negative form of the kinase (not shown).

The inability of PA-RacQ61L to rescue the JNK knockdown phenotype could have been 

because JNK signaling is required autonomously downstream of Rac to generate 

lamellipodial protrusion. However PA-RacQ61L induced autonomous cell protrusion in the 

direction of illumination, even in cells over-expressing puc2A (Figure 4g-i). Therefore JNK 

signaling is not required downstream of Rac to promote protrusion, consistent with the 
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published observation that reduction of JNK signaling does not lead to reduced 

protrusion24. Together these results suggest that JNK signaling is required for the non-

autonomous propagation of directional information from the cell with highest Rac activity to 

the other cells of the cluster. This could be due to direct mechanical coupling of the cells or 

via signaling pathways downstream of adhesion receptors or both.

Our results suggested that Rac is normally active in all the cells of the cluster, that the 

leading cell has a higher level of Rac activity, and this asymmetry is lost in PVRDN- and 

EGFRDN-expressing cells. To test this we took advantage of a Rac fluorescence resonance 

energy transfer (FRET) biosensor25. When expressed in Drosophila S2 cells, biosensor 

activity increased in response to EGF stimulation, and the increase was blocked by co-

expression of dominant-negative Rac (Figure S7a-k). We generated transgenic flies 

expressing the biosensor under the control of Gal4/UAS. When expressed with slbo-Gal4, 

we consistently observed a FRET signal in border cells (Figure S7l,m), and this was 

dramatically reduced upon co-expression of dominant-negative Rac (Figure S7n,o). 

Moreover the signal within the border cell cluster was asymmetric and appeared highest in 

elongating protrusions, which were most prominent in the leading cell (Figure 5a-e). This 

FRET signal was inhibited by co-expression of RacT17N (Figure 5l). To quantify the 

asymmetry we divided the border cell cluster into 30 sectors (where sector 0 represents the 

front of the cluster and −15 and +15 represent the rearmost sector), and measured the FRET 

efficiency in each sector for more than 30 clusters (Figure 5f-g). As predicted, the Rac 

activity was highest at the front (between sectors −5 and +5) and lowest at the back (Figure 

5h, i, m). We then measured the Rac activity in more than 30 border cell clusters expressing 

PVRDN and EGFRDN and found no difference between front and back (Figure j,k,m), 

consistent with the proposal that asymmetric Rac activation requires guidance receptor 

input. In the absence of such asymmetry, non-directional signals activate Rac uniformly, 

stimulating random protrusion.

During normal morphogenesis and in tumor metastasis, many cells move in interconnected 

groups in a process termed collective cell migration4-7. Border cells represent one model for 

the study of such movements. We previously found that guidance receptor signaling not 

only promotes border cell protrusion at the front of the cluster but also polarizes the group 

so as to inhibit protrusion at the rear20. However it was unclear to what extent each cell 

sensed direction independently or whether they did so collectively and what intracellular 

signal(s) downstream of the receptors would be sufficient to polarize the group26. The 

results presented here demonstrate that a local increase in Rac activity is sufficient not only 

to stimulate protrusion autonomously in the treated cell but also to cause retraction of side 

and back cells, resulting in net cluster polarization and movement in the direction of highest 

Rac activity. Conversely inhibition of Rac in the lead cell caused the other cells to protrude 

in all directions as if guidance receptor activity were lost. These results suggest that elevated 

guidance activity at the front of the cluster activates Rac to a higher level in the front cell 

and this is sufficient to set the direction of migration for the whole group. Despite the fact 

that receptor tyrosine kinases activate myriad downstream signaling pathways, other 

pathways do not appear to be necessary, though they may play redundant or overlapping 

roles. Thus, asymmetric Rac activity is key for direction-sensing in vivo. We also show that 
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JNK signaling is required to transmit the guidance signal between cells of the cluster. This 

work further suggests that photoactivatable proteins are likely to be a powerful new class of 

tools for the manipulation of protein activities with fine spatial and temporal control to 

address a variety of biological questions in animals.

Methods Summary

Drosophila strains

New transgenic fly lines were generated by Bestgene Inc. N-terminal-cherry tagged PA-

RacQ61L, PA-RacT17N, the light insensitive control C450M-PA-RacQ61L8 and the Rac 

FRET probe were inserted into pUASt Drosophila expression vector using the Gateway 

recombination system (Invitrogen). P[slbo-GAL4]27 drives UAS transgene expression in 

outer, migratory border cells but not polar cells even though the endogenous slbo gene and 

protein product are expressed in both cell types23. P[UAS-MCD8-GFP]28, P[UAS-moesin-

GFP]29, P[UAS-DRacT17N] and P[UAS-DRacV12]30 have been described previously. 

P[UAS-PVRDN] and P[UAS-EGFRDN] were obtained from P. Rørth13. P[UAS-Puc2A] and 

P[UAS-DnBsk] were obtained from E. Martin-Blanco24. All stocks were maintained at 

room temperature. Before dissection, flies were maintained at 29°C overnight to increase 

trangene expression levels. This incubation had no negative effect on border cell migration.

Imaging and photomanipulation

Drosophila egg chambers were dissected and mounted in Schneider’s insect medium 

supplemented with 20% FBS and 0.10 mg/ml insulin as described19, 20. Photoactivation, 

time-lapse-imaging, and 3D morphological reconstruction were carried out using a Zeiss 

510-Meta confocal microscope using a 63X, 1.4 numerical aperture lens with 2X zoom. To 

photoactivate, the 458 nm laser was set at 10% power for 0.1 ms per pixel in a 7μm spot and 

the photoactivation scan took approximately 25 seconds. After 30 seconds, border cells were 

imaged using 568nm. This series of steps was repeated for the duration of the timelapse 

experiment. Where indicated, 15-20 Z planes separated by 1.5μm were obtained before and 

after photoactivation (samples were illuminated every 80 seconds for one hour). 3D 

reconstructions were rendered using Imaris software.

S2 cells were transfected with the Rac FRET vector with or without the RacDN vector using 

the QIAGEN Effectine Kit. Cells were transferred to serum-free medium 48 hrs after 

transfection and cultured for another 6 hrs. Then the cells were transferred into 4-well Lab-

Tek Chamber Slide for 1hr before imaging. A final concentration of 150ng/ml EGF was 

added to induce Rac activity. Rac FRET probe was kindly provided by Dr. Erez Raz. FRET 

experiment in S2 cells were carried out on Olympus IX81 microscope using 40X, 1.3 

numerical aperture oil immersion objective. CFP and YFP signals were recorded using 

Chroma 86002BS dichroic mirror sets: CFP (excitation, 436/10nm; emission, 470/30nm), 

YFP(excitation, 436/10nm; emission, 535/30nm). A 25% neutral density filter was used to 

reduce bleaching.

FRET images of live cultured egg chambers were acquired with Zeiss LSM710 microscope. 

458nm laser was used to excite the sample. CFP and YFP emission signals were collected 
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through Channel I (470–510 nm) and Channel II (525-600 nm) respectively. To capture 

single, high-resolution, stationary images, 40X/1.1 water immersion objective was used. 

CFP and YFP images were acquired simultaneously for most of the experiments. Sequential 

acquisition of CFP and YFP channels with alternative orders were tested and gave the same 

result as simultaneous acquisition. CFP and YFP images were first processed by ImageJ 

software. A background ROI was subtracted from the original image. The YFP images were 

registered to CFP images by TurboReg pulgin. Gaussian smooth filter was then applied to 

both channels. The YFP image was thresholded and converted to binary mask with 

background set to zero. Final ratio image was generated by MATLAB program, during 

which only the unmasked pixel was calculated and all YFP/CFP ratios were adjusted to the 

initial FRET ratio to reduce the effect of bleaching. FRET images were analyzed using 

MATLAB. Border cell cluster was first isolated with its center calculated basing on its 

contour. Then the cluster was divided into 30 sectors, each of which occupies a 12-degree 

central angle. Because the center of the cluster contains the polar cells which do not express 

slbo-Gal4 and therefore were devoid of signal, only the signal within the distal 1/3 of each 

sector from the center was calculated. Average signal of each sector become a vector of 

length 31. The first and last element corresponding to the −15 and 15 sectors were the same, 

so the front of border cell was centered at zero. A heatmap was composed by 30 vectors 

from different egg chambers with the same genotype. All vectors for each genotype were 

further averaged and smoothed to generate a representative curve of the FRET distribution 

around the cluster.

Measurement of migration speed, protrusion number, directionality index and protrusion 

density.

The distance of the center of the border cell cluster between the first and last time points in a 

time lapse series was measured in Imaris software. This distance divided by the elapsed time 

gave the speed. Cell protrusions were counted as follows: a circle corresponding to the 

average cluster diameter was drawn and any extension more than 2 μm beyond that was 

considered a protrusion. The directionality index (DI) was calculated using the following 

equation:

where N is the total number of major protrusions,  is the ith protrusion vector, and  is 

the unit vector of migration direction. Protrusion vector is calculated by fitting the major 

protrusion by a parabola whose peak together with the cluster center gives the vector’s 

direction and length. Protrusion density was generated by dividing the number of all the 

recognizable membrane protrusions by the estimated cell perimeter in micrometers. The 

morphology analysis and quantification were done in MATLAB.

Immunohistochemistry

Drosophila ovaries were dissected and fixed as described previously31 and incubated with 

1.4 units Alexa 488-conjugated phalloidin (Molecular Probes) per ml and 1 μg/ml DAPI 
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prior to imaging on a Zeiss 510-Meta confocal microscope and 3D reconstruction using 

Imaris software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Local activation of PA-Rac1 redirects an entire border cell group.

(a-c) Egg chambers labelled with DAPI (blue) to stain all nuclei, Alexa 488-phalloidin 

(green) to mark actin filaments, and mCherry (red) to show PA-RacQ61L. (d-f), Higher 

magnification views of border cells from each stage. (g-i) PA-RacQ61L expression only. (j) 
Schematic diagram from8 showing the mechanism of PA-Rac light-activation. (k) 

Schematic of border cell cluster composed of two non-migratory polar cells (purple, p) 

which do not express slbo-Gal4 and are therefore unlabeled in all subsequent images. Polar 

cells are surrounded by 4-6 migratory border cells (green, b). (l-t) Selected still images from 

a time-lapse film of the response of border cells to photoactivation of PA-RacQ61L. (l-n) 

Photoactivation diverts border cells to the edge of the egg chamber. (o-q) Continued 

photoactivation in same direction did not move them further along the edge. (r-t) 
Photoactivation of the same cluster in a different position drove movement towards the egg 

chamber center. In n, q and t the starting position of the cluster is shown in red and the final 

position in green. Schematics at right show the position of the treated cluster within the egg 

chamber. Red boxes indicate the regions shown in the micrographs. Red arrow indicates the 

normal direction of migration. Pink arrow shows the direction the cells move if they respond 

to the light. (u-w) Phototreatment of light insensitive control C450M-PA-Rac1Q61L. In l, n, 

q and u, solid arrows indicate the normal direction of migration; circles indicate where the 

laser light was applied. Dashed arrows indicate the direction the cells move if they respond 

to the light. Scale bars, 20 μm.
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Figure 2. 
Forward or backward movement in response to photoactivatable Rac.

(a-i) In an otherwise wild-type background, PA-RacQ61L can promote forward (a-c) or 

backward (d-i) movement. (j-l) Forward and (m-o) reverse migration of border cells 

expressing PVRDN, EGFRDN, and PA-RacQ61L. The schematics at the right show the 

position of the cluster within the egg chamber. Scale bars, 20μ. In panels with two colors, 

red represents the starting position and green shows the ending position over the indicated 

time period. p) Average migration speeds for clusters expressing the indicated proteins in 

response to illumination of the front or the back of the cluster. PA-Rac refers to PA-

RacQ61L. C450M is the light-insensitive control. Values represent the average of the 

indicated number (N) of experiments and error bars show the standard deviation.
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Figure 3. 
Responsiveness of border cells to PA-RacQ61L depends on their location within the egg 

chamber.

(a-c) Within the anterior third of the egg chamber, photoactivation diverts border cells. (d-i) 
In the middle third, photoactivation has little effect. (c) In the posterior third, 

photoactivation again drives border cells toward the side. Scale bars represent 20 μm, 

elapsed time is shown in minutes. Schematics show border cell position within the egg 

chamber. In panels with two colors, red indicates the starting position and green shows the 

ending position. (m) Summary of experiments. The lengths of the arrows indicate the 

average distance migrated in the indicated direction in response to PA-RacQ61L, for border 

cells starting at the base of the arrow. The black arrow indicates the normal migration 

direction. Yellow Xs indicate positions beyond which border cells did not move. Each arrow 

summarizes at least five experiments.
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Figure 4. 
Local photoactivation or photoinactivation of Rac in one cell affects the morphology and 

behavior of other cells in the group.

(a-l) Confocal images of border cell clusters before (0 min) and after (60 min) 

photoactivation. Circles indicate areas of laser treatment. The white arrow in panel l 
indicates the direction the border cells would normally migrate and applies to all panels. 

Scale bar is 10 μm. In c, f, i and l, red shows the starting position and green shows the 

ending position. m, The average number of cells sending protrusions simultaneously within 

one cluster was calculated from 3-D reconstructed images (see methods and Figure S6). “−” 

and “+” indicate before and after photoactivation. n, Directionality indices were calculated 

from the same samples (see methods).
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Figure 5. 
Rac activity pattern in migrating border cell clusters.

(a-e’) A time lapse series of migrating border cells. (a-e) YFP channel only (a’-e’) 
processed FRET signal f. FRET image of wild-type border cells displayed with Red-Hot 

pseudocolor divided into 30 sectors. The yellow line shows the direction of migration. The 

white circle indcates the central region that was excluded from the analysis. (g) Average 

FRET efficiency from image f plotted in a radar map. Efficiency higher than 1.2 is 

highlighted in purple. (h-j) Representative FRET patterns in wild-type (h) and EGFRDN- 

and PVRDN-expressing (j) border cells. (i, k) Heatmaps from 30 examples of each genotype. 
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Each row represents the FRET signal distribution of an individual border cell cluster. 

Positions from −15 to 15 plotted on the x-axis correspond to the sectors, where 0 represents 

the front of the cluster. l. FRET efficiencies in border cells of the indicated genotypes. All 

results were normalized to the efficiency of RacDN. (m) Distributions of average FRET 

efficiencies in wild-type (blue) and PVRDN/EGFRDN border cells, plotted as a function of 

sector number, where 0 represents the front.

Wang et al. Page 15

Nat Cell Biol. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


