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Signatures With Explainable Artificial
Intelligence: The Case of Alarm
Detection in Flight Simulator
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Centre de Recherche de l’Ecole de l’Air, Salon-de-Provence, France

Relevant sounds such as alarms are sometimes involuntarily ignored, a phenomenon
called inattentional deafness. This phenomenon occurs under specific conditions
including high workload (i.e., multitasking) and/or cognitive fatigue. In the context
of aviation, such an error can have drastic consequences on flight safety. This
study uses an oddball paradigm in which participants had to detect rare sounds in
an ecological context of simulated flight. Cognitive fatigue and cognitive load were
manipulated to trigger inattentional deafness, and brain activity was recorded via
electroencephalography (EEG). Our results showed that alarm omission and alarm
detection can be classified based on time-frequency analysis of brain activity. We
reached a maximum accuracy of 76.4% when the algorithm was trained on all
participants and a maximum of 90.5%, on one participant, when the algorithm was
trained individually. This method can benefit from explainable artificial intelligence to
develop efficient and understandable passive brain–computer interfaces, improve flight
safety by detecting such attentional failures in real time, and give appropriate feedback
to pilots, according to our ambitious goal, providing them with reliable and rich
human/machine interactions.

Keywords: single-trial classification, pBCI, inattentional deafness, brain activity, ERP, explainable AI

INTRODUCTION

Increased operational capabilities of aircraft had considerably modified the missions of pilots and
introduce new problematics. For example, long periods of intense and sustained cognitive activities
induce cognitive fatigue that is known to impair the performance of reasoned cognitive processing
tasks over a period and also to be one of the major risks of incidents/accidents in aviation [e.g.,
Holtzer et al. (2010), Marcus and Rosekind (2017), Dehais et al. (2018), and Dönmez and Uslu
(2018)]. In this study, we aimed at furthering our understanding of the influence of cognitive
fatigue on alarm detection in order to develop passive brain–computer interfaces (pBCIs) based
on explainable artificial intelligence (AI). To achieve these ends and following previous studies
(Dehais et al., 2018, 2019), we asked participants to perform an alarm-detection task during

Abbreviations: pBCI, passive brain-computer interface; AI, artificial intelligence; ERP, event-related potential; IFBE,
instruction flight before experiment; NFBE, no flight before experiment; VAS, visual analogous scale; LCL, low cognitive load;
HCL, high cognitive load; SVC, support vector classification; KNN, K-nearest neighbors; LDA, linear discriminant analysis;
RF, random forest.
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repeated landing sessions on a flight simulator. To accentuate
the presence of cognitive fatigue, we also manipulated the
mental workload. We tested whether a real glider flight in
instruction prior to the experiment influences performance in
the alarm detection task on a flight simulator. We hypothesized
that (a) cognitive fatigue impairs alarm detection as a function
of the mental workload, (b) cognitive fatigue modulates
electrophysiological activities, and (c) these modulations can be
used as a predictor of reduced pilot’s efficiency.

Previous studies have found that pilots’ performance is
influenced by cognitive fatigue [e.g., Dehais et al. (2018, 2019),
Keller et al. (2019), Rocha and Silva (2019), Quental et al.
(2021), and Rosa et al. (2021)]. Implementing pBCI or neuro-
adaptive technology is a relevant approach to study cognitive
fatigue and to improve flight safety (Zander et al., 2016; Arico
et al., 2017; Dehais et al., 2018). For example, Dehais et al.
(2018) asked participants to perform four identical traffic patterns
along with a secondary auditory task (i.e., oddball paradigm) in
simulated and real flight conditions. The oddball paradigm is
used as an indirect index of cognitive fatigue and alarm detection
and allows evaluating the P300 component as well as the main
frequency bands associated with cognitive fatigue. They found
that pilots more erred when reporting the number of auditory
probes during the second part of the experiment than during the
first part. In other words, participants’ accuracy decreased with
time on task. However, their small sample size did not allow
them to statistically test the classification accuracies between
the used features.

Empirically, previous findings showed that cognitive fatigue
and mental workload have deleterious effects on stimulus-
detection performance [e.g., Dehais et al. (2018, 2019)],
whereas other findings showed an absence of a relationship
between mental workload, cognitive fatigue, performance, and
the occurrence of inattentional blindness [e.g., Bredemeier
and Simons (2012), Beanland and Chan (2016), and Kreitz
et al. (2016a,b)]. Unknown are the conditions under which
cognitive fatigue or mental workload leads to poorer detection
performance and their electrophysiological correlates. This is
what we sought to know in this experiment.

The previously found attenuation of the P300 amplitudes
reveals that inattentional deafness could result from an inability
to automatically shift attention to the alarm that has been
correctly detected or from an inability to process and recognize
the warning (Giraudet et al., 2015b). However, we do not know
whether event-related potentials (ERPs) and the time–frequency
signal as a neural signature of inattentional deafness are good
candidates as features to detect the occurrence of missed alarms.

The present experiment had two main goals. First, we
investigated how alarm-detection changes associated with time
on task interacted with other factors such as the cognitive
workload or the type of previous activities (same task—flight
instruction or different task—daily activities) and, via which
mechanisms these factors influence performance. Second, we
aimed at setting the scene to develop an EEG-based pBCI
to detect alarm omissions to improve flight safety. Following
previous studies on cognitive fatigue and alarm-detection tasks
[e.g., Dehais et al. (2018)], participants had to perform an

auditory task (i.e., oddball paradigm) during landing sessions.
The mental workload was also manipulated to increase resulting
cognitive fatigue. Based on previous findings that cognitive
fatigue could impair performance by modulating attentional
resources leaving fewer resources for tasks to perform [e.g.,
Chaudhuri and Behan (2004) and Holtzer et al. (2010)], two
sets of hypotheses and predictions were tested in this study. The
first hypothesis is that cognitive fatigue impairs alarm detection,
resulting in increased alarm omissions in the fatigue group
compared with the non-fatigue group and in the last landings
compared with the first ones. The second hypothesis is that an
efficient classification algorithm would be able to classify trials
in which alarms were omitted and trials in which alarms were
treated, based only on neurophysiological markers.

MATERIALS AND METHODS

Participants
Twenty-four male students of the Ecole de l’Air et de l’Espace
(EAE) [mean age: 22.6 (2.0) years; flight experience: 75.6 (79.6)
h, including 44.7 (58.9) h of glider experience; Table 1] were
recruited. Participants were divided into two groups of 12 each
based on their activity preceding the experiment: (1) Instruction
Flight Before the Experiment (IFBE) group and (2) No Flight
Before the Experiment (NFBE) group.1 An informed consent was
obtained from each participant prior to participation according
to the Declaration of Helsinki.

Subjective Scales
At the beginning and end of the experimental session,
participants rated their subjective level of fatigue (VASf; Lee
et al., 1991), sleepiness (Karolinska’s Sleepiness Scale and VASs;
Åkerstedt and Gillberg, 1990), and alertness (Samn-Perelli scale;
Samn and Perelli, 1982).

Tasks
Experimental Task in a Flight Simulator
The flight simulator of the EAE, used for training young student
pilots, was used to conduct the experiment based on previous
studies using flight simulators [e.g., Durantin et al. (2017) and

1Participants in the NFBE group did not fly during the day of experiment but had
daily activities such as classes or sports. They filled in a questionnaire with respect
to these daily activities to inform experimenters whether they performed new and
costful activities before the experiment, and this was not the case.

TABLE 1 | Participants’ characteristics.

Characteristics NFBE group IFBE group F(1,22)

N 12 12 -

Mean age, in years (SDs, range) 23.2 (2.4, 21–27) 22.1 (1.6, 20–26) 1.75

Mean flight experience (glider
and plane), in hours (SDs,
range)

102.2 (97.3, 4–300) 49.1 (47.5,
4.5–150)

2.89

Mean flight experience (glider),
in hours (SDs, range)

64.7 (59.3, 4–240) 24.7 (41.0, 4–150) 3.69
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Dehais et al. (2014, 2016, 2019)]. It simulates an ASK21 glider
using the X-plane 11 software allowing a 135◦ view of the
screen. No participant reported experiencing motion sickness or
dizziness, nor had their visual perception been disturbed during
the simulated flight.

Oddball Task
The auditory oddball task was coded and displayed using
PsychoPy3 (Peirce, 2008). In this task, 100 pure tones, 1,000 or
1,100 Hz, at approximately 75 dB (20 dB above the ambient
noise) were played, with 75% of standard sounds and 25%
of target sounds. Participants had to respond to the auditory
target (i.e., the alarm) by pressing a button on the joystick
and ignore the frequent sounds. The frequency of the target
sound was counterbalanced between participants. The intertrial
interval was randomly set between 1.5 and 2.5 s to avoid
anticipation and synchronization with brain rhythm (adapted
from Dehais et al., 2019).

Flight Scenario
Participants performed six successive runs, in optimal weather
conditions. Each run consisted of a normal approach and landing
on the grass runway of the BA701 in Salon-de-Provence and
lasted approximately 3–5 min. Each run was divided into two
conditions of cognitive load, namely, a low cognitive load (LCL)
condition (alarm detection task during the downwind leg) and
a high cognitive load (HCL) condition (alarm detection task
and backward counting task during the base leg, the final, and
the landing). In the backward-counting task (Sweller, 2011),
they had to mentally count backward in threes from 100 (e.g.,
100-97-94. . .) and pronounce the result at the end of the landing.

Procedure
The experience took place at the end of the afternoon.
First, participants completed subjective questionnaires. Second,
participants were trained for 5 min to handle the simulator and
for 5 min to perform the oddball task. The experimental session
lasted for approximately 1 h 30 min. At the end of the experiment,
participants completed again the subjective questionnaires.

Electroencephalogram Recording
The EEG apparatus contained 32 passive electrodes (R-Net-
helmet, LiveAmp-Brain Products), positioned following the
10/20 international system, recording at a 1,000 Hz sampling
rate. The offline preprocessing was achieved using the MATLAB
EEGlab package (Iversen and Makeig, 2014). Data were first
bandpass filtered between 1 and 40 Hz, the signal was re-
referenced on the average of all electrodes, and an independent
component analysis was performed to reject eye and muscle
artifacts using the RUNICA function of EEG lab. The signal
was then segmented into 1,200 ms epochs, starting 200 ms
before the stimuli. The ERPs were computed using a baseline
correction with the first 200 ms of each epoch. ERP amplitude
was considered as the averaged amplitude over the time period,
in each trial and then averaged for each participant. P300 was

considered between 400 and 650 ms, and N100 was considered
between 100 and 200 ms after the stimulus onset.2

The time-frequency analysis was achieved using the Brain
Vision Analyzer 2 software (Brain Products, version 2.2.0.7383).
Data were resampled at 512 Hz, and the power spectral density
was extracted for δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), and β

(12–30 Hz) and then decomposed in low-β (12–16 Hz), mid-
β (16–20 Hz), and high-β (20–30 Hz) bands for each trial (i.e.,
each epoch of 1.2 s). We focused our analyses on the Fz, Cz, Pz,
and Oz electrodes.

The first three runs were considered as the beginning of the
session while the last three runs were considered as the end of the
session, in the subsequent analyses.

Analyses
Based on the previous study (Dehais et al., 2019), we focused
our EEG analyses on three electrodes for ERPs and on four
electrodes for spectral power, in order to cut computation time
from the perspective of real-time analyses. All statistical analyses
were carried out using JASP software (JASP Team, 2020). Post-
hoc tests were carried out with the Bonferroni’s correction for
multiple comparisons, and a Greenhouse-Geisser correction was
applied to respond to the sphericity condition when necessary.

RESULTS

Subjective Fatigue Evaluation
No difference was observed between the beginning and the end of
the experimental task (Fs < 1, ps > 0.5) for the Visual Analogous
Scale of Fatigue, the Samn-Perelli scale, and the Karolinska scale.

Experimental Task
Oddball Task
A 2 (group: NFBE and IFBE) × 2 (Time on task: beginning and
end) × 2 (cognitive load: low and high) ANOVA with repeated
measures and group as a between-subject factor was performed.

Detection Rate
The detection rate was higher in the LCL condition than in the
HCL condition (83.8 vs. 61.2%), F(1,14) = 102.92, p < 0.001,
η2

p = 0.88, and participants in the IFBE group detected more
alarms than the NFBE group (79.8 vs. 63.2%), F(1,14) = 7.46,
p = 0.016, η2

p = 0.35 (Figure 1). No other effect was found.
Participants responded faster in the LCL condition than in the

HCL condition (547 vs. 609 ms), F(1,13) = 22.66, p < 0.001, and
η2

p = 0.64. No other effect was found on reaction times.

Electrophysiological Results
To compare electrophysiological signals between alarm detection
and alarm omission, we focused our analyses on the HCL
condition (participants missed more alarms in this condition).
Data were analyzed with 2 (group: NFBE and IFBE) × 2 (time
on task: beginning and end) × 3 (electrode: Fz, Cz, and Pz) × 2
(response: hit and miss) ANOVAs with repeated measures and
group as the between-subject factor.

2After evaluation of a control group doing the oddball task only.
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FIGURE 1 | Mean detection rate in the oddball task across cognitive load conditions for the two groups of pilots. LCL corresponds to the low cognitive load
condition, and HCL to the high cognitive load condition. Error bars represent the standard deviation of the mean.

FIGURE 2 | Event-related potential (ERP) measured on Pz (A), Cz (B), and Fz (C) for hit (full line) and miss trials (dotted line). (D) Averaged spectral power on Pz, Cz,
Fz, and Oz for hits (full line) and missed trials (dotted line). Gray parts correspond to frequency bands of interest (delta, alpha, and mid-beta) and gray lines
correspond to a significant difference between hit and miss trials in all conditions.
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FIGURE 3 | (A) Mean accuracy on the training dataset across classifiers. KNN < LSVC, t = 2.89, p = 0.050; KNN < SVC, t = −4.88, p < 0.001; RF < SVC,
t = 4.12, p < 0.001. (B) Performance of classifiers on the test set. LSVC < KNN, t = 4.60, p < 0.001; KNN < SVC, t = −5.41, p < 0.001; KNN < LDA, t = −4.09,
p < 0.001. KNN, k-nearest neighbor; SVC, support vector classification; RF, random forest.

Event-Related Potentials
The P300 amplitude varied across electrodes, F(2,32) = 13.45,
p < 0.001, and ηp

2 = 0.46. The amplitude was larger on Pz
than on Cz and Fz, respectively, t = −2.88, p = 0.02 and
t = −5.17, p < 0.001 (Figures 2A–C). Numerically, the P300
amplitude measured on Pz is reduced in miss trials compared

with hit trials, but this difference did not reach significance
(Figure 2A).

The N100 amplitude also varied across electrodes,
F(2,32) = 8.57, p = 0.004, and η2

p = 0.35, being larger on Fz
and Cz compared with Pz, respectively, t = −3.86, p = 0.001 and
t =−3.198, p = 0.01 (Figures 2A–C).
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FIGURE 4 | Decision tree generated by the decision tree algorithm.

δ, θ, α, and β Frequency Bands
The spectral power of the δ frequency band tended to be larger
in hit trials (Figure 2D) compared with miss trials, F(1,17) = 3.16,
p = 0.093, and η2

p = 0.16. No other effect was found.
On the α frequency band, the significant effect of response

(Figure 2D), F(1,17) = 5.28, p = 0.035, and η2
p = 0.24, was qualified

by the response × time on task interaction, F(1,17) = 5.28,
p = 0.035, and η2

p = 0.24. In the first three landings, the spectral
power of the α frequency band was larger in hit trials compared
with miss trials t = 3.248 and p = 0.016.

For the β frequency band, only the effect of the electrode
was significant, F(3,51) = 4.28, p = 0.053, and η2

p = 0.20, with a
maximum on Oz compared with Fz and Cz, t = −2.89, p = 0.034
and t = 3.15, p = 0.017, respectively.

In the mid-β frequency band, post-hoc tests of the
response × time on task × electrode × group interaction,
F(3,51) = 3.36, p = 0.075, and η2

p = 0.17, revealed that in the NFBE
group, the spectral power was larger for hits than for miss trials
at the beginning of the session, t = 4.74 and p = 0.003, and it was
also larger in the beginning than at the end of the session, for hit
trials, t = 4.06 and p = 0.048.

No effect was found on the θ frequency band.

Single-Trial Classification
The classification pipeline was performed with the Scikit-Learn
package of Python (Pedregosa et al., 2011). The first step of this
process was to evaluate the performance of five classifiers [linear
kernel, k-nearest neighbor (KNN), linear discriminant analysis
(LDA), and random forest (RF) classifier] in participant-specific
decoding of inattentional deafness, to distinguish trials in which
the alarm was detected vs. trials in which alarms were omitted.
Thus, classifiers were trained (80% of trials) and tested (20%
of other trials) on individual pilots’ electrophysiological data,
and features were tested according to previous results. Accuracy
values of the different algorithms were analyzed with a five

[classifier: linear support vector classification (SVC), KNN, SVC,
LDA, and RF] × 7 (features: δ, α, mid-β, δ and α, δ and mid-β, α

and mid-β, α and δ, and mid-β) ANOVA.
The cross-validated scores obtained on the training set were

first compared. The main effects of classifier, F(4,76) = 7.48,
p < 0.001, and η2

p = 0.28, and the interaction between classifier
and features, F(24,456) = 2.84, p < 0.001, and η2

p = 0.13,
were significant. Across all features, the support vector machine
(SVM) classifier reached the best performance of 75.2% on
average (Figure 3A). For the SVM classifier, the most efficient
configuration was the combination of the three frequency bands,
with 75.9% of accuracy.

The inter-participant variability was quite high in the
single-trial classification process, with accurate classification
ranging from 47.1 to 90.5% across all configurations. However,
generalization performance was then compared across
configurations. In this analysis, the main effect of classifier
was significant, F(4,76) = 8.92, p < 0.001, and η2

p = 0.32. Across
all features, the SVM classifier remained the most performant
classifier on the testing dataset (Figure 3B).

The SVM algorithm aims at optimizing the classification
accuracy and the distance between the boundary (which is a
hyperplane) and each class. In fact, the algorithm is trained on
the training dataset to minimize the expression of the form:[

1
n

n∑
i = 1

max(0, 1− yi(wTxi − b))

]
C||w||2

where n is the number of data points, w is the normal vector to
the hyperplane, b is the offset of the hyperplane from the origin,
and Cis the trade-off between correct classifications and distance
separating the boundary hyperplane and each class.

For every classifier and feature, on average, the classifier
performance exceeded the adjusted chance level of 61% based
on Combrisson and Jerbi’s recommendations (Combrisson and
Jerbi, 2015) to consider the number of available trials. We reached
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a maximum average performance of 76.4% (range: 57.7–90.5%)
in participant-specific single-trial classification from the spectral
power of δ and α frequency bands.

In a second step, data from all participants were taken
altogether, and the different configurations were also tested for
inter-participant classification. The main effect of classifier was
significant, F(4,16) = 40.67, p < 0.001, and η2

p = 0.91, showing that
the KNN classifier is the least efficient classifier on the training set.
We reached a maximum accuracy of 72.3% with the RF classifier
and the combination of the three frequency bands.

DISCUSSION

This study aimed to implement an EEG-based pBCI with
explainable AI to monitor alarm detections under cognitive
fatigue in aviation. Cognitive fatigue could be accentuated by
the previous activities (i.e., IFBE or NFBE). Participants had
to perform flying sessions with a secondary auditory alarm
detection task under HCL or LCL. Our results replicate previous
findings on inattentional deafness (Dehais et al., 2014; Giraudet
et al., 2015a,b; Causse et al., 2016) showing that participants
performed better to detect alarms under LCL conditions
compared with HCL conditions. However, the difference between
the P300 evoked by detected alarms and the P300 evoked by
omitted alarms did not reach significance. Also, we did not
find the expected effect of cognitive fatigue on alarm detection
performance, potentially because our task was not sufficiently
difficult to induce high cognitive fatigue in such a short time.
By comparing alarm detection with respect to alarm omission,
we found increased α, δ, and β (only at the beginning of the
session and for the NFBE group) power. Based on these three
frequency bands, we performed a single-trial classification of
alarm detection or omission. The SVM reached a mean of 76.4%,
which is considered sufficient for pBCIs. In fact, there is a
need to detect these attentional failures in cockpits, and as our
classifier overpassed the adjusted chance level (i.e., 61%), this
study showed that frequency features, and more specifically d and
a bands, implemented in an SVC formed an efficient tool to assess
auditory alarm misperception in simulated flight conditions, with
a classification process adapted to each individual pilot. However,
real-time implementation of pBCI is still difficult to achieve due
to the large preprocessing step that is needed before classification.
The challenge in these analyses was to reduce computation
time and noise related to other factors (e.g., muscle activities).
Possibly, neural oscillations are also related to movement and
so, the differences we found between hits and miss trials could
reflect not just inattentional deafness per se but also a difference
in behavior. The same results have already been observed in
previous studies using the same protocol and interpreted as
inattentional deafness (Somon et al., 2022). As our goal was
to classify alarm detection vs. alarm omission, motion-related
variation could be used as an effective detection marker and be
a true single-trial classification tool.

Another promising direction we investigated is to exploit
explainable results from classification and machine learning
computations. The objective is two-fold: to enlarge the

experimentation process by relaying the result of the classification
with an appropriate sequence of actions as a virtuous loop
and ultimately to design new doctrines based on reliable
and rich human/machine interactions. Such an understandable
information (numerical, symbolic, and logical) constitutes a
ground cognitive support and justifies the interpretability
criterion (Lundberg and Lee, 2017) providing a good level of
confidence at the operational level. The initial step is to look for
explainable classification methods. For instance, a decision tree
delivers logical rules characterizing the criteria separating alarm
omission and alarm detection. The idea is to detect abnormal
behaviors by our apparatus, and from sense-making information,
to apply safely decision-making later (Bartheye and Chaudron,
2019, 2020), for instance, to enable a sequence of actions to be
engaged, whether these actions are automatic or not. As a use-
case, one can mention the situation in a cockpit characterized by
a loss of attention of the pilot and his/her inability to continue
his/her current mission. That is, the operator did not consciously
detect the alarm although his brain processed the signal. It is,
therefore, necessary to inform the operator that he has omitted
the alarm (by feedback) and to adapt the work environment with
the explainable AI to help him in his task so that he comes
back in the loop.

The interpretability criterion provides a good level of
confidence at the operational level and leads to the choice of
the best candidate machine learning model, which will not
necessarily be the most efficient in terms of classification, but one
which would enable a sequence of actions to be engaged at the
end, whether automatic or not. This choice of machine learning
methods agreeing with the interpretability criterion is strongly
restricted and one can mention decision trees and to a lesser
extent RFs but there are great expectations to be associated with.

To illustrate our discourse, we shall restrict the α frequency
band full case study (2,855 individuals), and one can illustrate
the principle on a single participant for sake of clarity (107
individuals) although the full case provides satisfactory results
but obviously with more complicated formulas. The decision
tree algorithm used is the Classification and Regression Trees
(CART) algorithm (Breiman et al., 1984) and it provides the
decision tree shown in Figure 4. The CART algorithm is a
type of classification algorithm able to build a decision tree
according to the Gini’s impurity index. This index computes
the degree of probability of a specific variable that is wrongly
being classified when chosen randomly. It works on categorical
variables and provides outcomes either be “successful” or
“failure” and hence conducts binary splitting only. The R
statistical language implementation is called RPART (Recursive
Partitioning And Regression Trees) (Therneau, 1997) and is
available in a package of the same name. The control is
defined according to an integer value, the minimum number of
observations that must exist in a node for which the routine will
even try to compute a split (4 for 107 individuals and 40 for 2855
individuals).

Starting from a normalized form of these decision rules, we
generated the appropriate code in a static context or in dynamic
context. In a static context, the missed hit logical rules generated
in the R statistical language are the following:
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experiment[which(((experiment$Fz<1.050255
| (experiment$Pz<1.3769 |
experiment$Cz>=35.19693 & experiment$Pz>
=1.3769) &

experiment$Fz>=1.050255) & experiment$Cz>
=3.040795 |
(experiment$Fz>=0.17683 & experiment$Fz<
0.26921 | experiment$Fz<5.33816 &
experiment$Oz>=7.444865 & experiment$Fz>
=0.26921) &
experiment$Cz<3.040795)),]

which means: print out all the columns of the table
experiment whose lines correspond to missing hits as the
column target shows (0 instead of 1) and the execution
of this expression gives the classification result by extracting
the right lines.

Fz Pz Oz Cz target

12 3.00544 1.55082 7.83941 1.64613 0

14 0.97795 1.66771 1.85181 4.23368 0

15 2.97765 0.87634 2.49094 3.12279 0

32 0.58338 2.46886 4.05271 3.06769 0

33 0.25340 1.28057 1.86640 1.40851 0

51 2.22273 3.67557 2.41245 61.71373 0

72 0.59377 0.98492 2.32070 4.86425 0

One can predict that way attention failure applying these
rules regardless of the software involved (R, Python, Java, . . .).
One can write a computer program as a case-based analysis
by executing a task once a condition identifying a missing hit
situation is true. If this situation characterizes a loss of attention
for the pilot and his/her inability to continue his/her current
mission, the associated task corresponds to crisis management.
In a dynamic context, one can reengineer completely these rules

according to a simulation platform intertwining actuators and
sensors to be more creative on human/machine interactions.
To summarize, our contribution to that field is to post-
process the measurement and the acquisition mechanisms to
deliver understandable statements able to be translated into
program statements contributing to the global loop in studying
cognitive fatigue.
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