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Simple Summary: Microbial aerosols from pig houses can be released into the environment, posing
a serious threat to biosafety and public health. At present, there are few studies on the structural
characteristics of aerosol bacteria in piggeries at different growth stages. It is important to understand
the characteristics of aerosol bacteria in pig houses to solve the problems of air pollution and disease
control in pig houses at different growth stages. In this study, bacterial aerosol concentrations and
bacterial communities were compared in pig houses at different growth stages in Hebei Province,
China. It was found that bacterial concentrations, community richness, and diversity in the air
increased with the age of pigs. There are many pathogenic bacteria in the microbial aerosols of
piggery. Our study highlights the importance of more comprehensive research and analysis of
microbial aerosols in pig houses. Precautions for air pollution should be instituted in pig houses,
including wearing masks, rigorous disinfection, and hygiene procedures.

Abstract: With the development of modern pig raising technology, the increasing density of animals
in pig houses leads to the accumulation of microbial aerosols in pig houses. It is an important
prerequisite to grasp the characteristics of bacteria in aerosols in different pig houses to solve the
problems of air pollution and disease prevention and control in different pig houses. This work
investigated the effects of growth stages on bacterial aerosol concentrations and bacterial communities
in pig houses. Three traditional types of closed pig houses were studied: farrowing (FAR) houses,
weaning (WEA) houses, and fattening (FAT) houses. The Andersen six-stage sampler and high-
volume air sampler were used to assess the concentrations and size distribution of airborne bacteria,
and 16S rRNA gene sequencing was used to identify the bacterial communities. We found that the
airborne bacterial concentration, community richness, and diversity index increased with pig age.
We found that Acinetobacter, Erysipelothrix, Streptococcus, Moraxella, and Aerococcus in the microbial
aerosols of pig houses have the potential risk of causing disease. These differences lead us to believe
that disinfection strategies for pig houses should involve a situational focus on environmental aerosol
composition on a case-by-case basis.

Keywords: bacterial aerosol; closed pig house; growth stage; 16S rRNA gene sequencing

1. Introduction

With the development of modern pig raising technology, the increasing density of
animals in pig houses has resulted in poor air quality in pig houses [1]. The accumulation
of microbial aerosols in pig houses poses a serious public health threat [1–3]. Microbial
aerosols play an important role in the transmission of pathogens [4]. Previous studies
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have shown that exposure to high concentrations of microbial aerosols is associated with
some diseases, such as cardiovascular disease [5,6], atherosclerosis [7], skin lesions [8],
and respiratory diseases [9,10]. Pig farmers are at a higher risk of developing respiratory
symptoms than those in office or normal human living environments [11–13].

Previous studies have shown that the pig gut microbiome varies significantly at
different growth stages, while the air microbiota in pig houses is mainly derived from
feces [14,15]. However, in different growth stages, how the aerosol bacteria in pig houses
change, which of these bacteria are pathogenic bacteria, and the particle size distribution
have not been identified. Therefore, it is necessary to study the structure and particle size
distribution of microorganisms in pigsties at different stages. Moreover, previous studies
have shown that bacteria play a dominant role in microbial aerosols in pig houses [16], and
the most dominant phyla in pig houses are Firmicutes and Proteobacteria [17,18]. Potential
pathogenic bacteria (such as Acinetobacter, Erysipelothrix, Streptococcus, etc.) in microbial
aerosols of pig house bacteria have been widely studied by researchers [19–22]. Because
of technical limitations, culture-based methods are not able to comprehensively analyze
the diversity of airborne microorganisms in pig houses. The method of 16S ribosomal
RNA (rRNA) gene sequence analysis has been widely used to describe the diversity of
bacterial communities [23].

Pigs are an important group of commercial species raised in Hebei Province, China.
However, because of the lack of related large-scale pig breeding enterprises, most pig farms
are still based on traditional closed breeding, and the structure of the pig house is relatively
simple. Furthermore, there is no automatic excrement cleaning or automatic control of the
environment in pig house-related equipment. During the winter, there is an increase in
respiratory illness among farmworkers, as microbial aerosol concentrations tend to increase
with particulate concentrations because of reduced ventilation in pig houses [24,25].

In this study, the concentrations of aerosol bacteria and bacterial communities, as well
as bacterial community diversity and community composition of three types of pig houses
(FAR, WEA, and FAT), were compared in three typical closed pig farms in Hebei Province.
Our data provide a novel basis for the threat to public health of pig house aerosol bacteria.

2. Materials and Methods
2.1. Characteristics of Research Objects

During the winter of 2019, samples were taken from three representative pig farms in
Hebei Province, China, all of which belonged to the same swine industry corporation. Pig
farms were anonymized according to the company’s requirements. Each pig farm had four
types of pig houses: a gestating stable, a farrowing (FAR) stable, a weaning (WEA) stable,
and a fattening (FAT) stable. According to the company’s requirements for the safety of
pregnant sows, we did not sample gestation houses. The FAR stables consisted of post-
farrowing sows and preweaning pig houses, the WEA stables raised postweaning pigs, and
the FAT stables raised fattening pigs. For safe production, the FAR stables were positioned
in a separate area, while the WEA and FAT stables were located in another. Nursery pigs
could be transported from FAR stables to WEA stables through special transport channels.

For the three types of pig houses (breed: Danish landrace), the stocking density was
3.7–4.2 m2/head for parturient sows, 0.5–0.8 m2/head for nursery pigs, and 1–1.5 m2/head
for finishing pigs. Indoor structures of pig houses included sheet steel roofs and brick
walls using thermal insulation material, with ventilation and a water curtain to maintain
a relatively constant temperature and humidity. Each pig house occupied an area of
approximately 60 × 15 m2 and was equipped with a double-row structure. Every 5 m,
there was a corral in the pig house, and each corral was equipped with a deep pit with slats
to collect pig manure, which was cleaned every 15 days. There were no disease outbreaks
on any of the farms during our investigation, and samples were collected ten days after
fecal cleaning.



Animals 2022, 12, 1540 3 of 11

2.2. Air Sampling and Cultivation of Isolated Bacteria

An Andersen six-stage sampler (TE-20-800, TISCH, Cleves, OH, USA) was used to
identify the size distribution characteristics of culturable bacteria in airborne microorgan-
isms. For each pig house, one sampling point was set in the middle of the passage of the
pig house with a height of 0.5 m (the breathing height of pigs) above the ground. The
sampling rate was 28.3 L/min for 3 min [2]. The sampler was routinely sterilized with 75%
ethanol and dried before sampling. Luria-Bertani (LB) agar medium (Solarbio Science &
Technology Co., Ltd., Beijing, China) was used to collect culturable bacteria. The culture
plates were then incubated at 37 ◦C for 24 h. The particle size ranges of the air sampler
were 0.65–1.1 µm, 1.1–2.1 µm, 2.1–3.3 µm, 3.3–4.7 µm, 4.7–7.0 µm, and ≥7.0 µm for stages
6, 5, 4, 3, 2, and 1, respectively. Each sample was evaluated in triplicate, and bacterial
colonies were counted and calculated according to a previous method to obtain the number
of bacterial colonies per cubic meter of air [26].

2.3. Collection of Microbial Aerosols

The method for the collection of microbial aerosols was performed according to our
previous study [23]. In brief, a high-volume air sampler (HH02-LS120 of Beijing Huaruihean
Technology Co., Ltd., Beijing, China) with 20.32 × 25.4 cm2 Tissuquartz filters (PALL, Port
Washington, NY, USA) was used to collect microbial aerosols in the pig house. The sampler
was placed in the middle passage of the pig house at a height of 0.5 m above the ground,
with a sampling efficiency of 1000 L/min and a sampling time of 12 h [27]. A total of
27 samples were collected from three farms (9 samples per farm), and 3 replications were
collected from each pig house on the same farm and mixed together for analysis. Each
membrane was cut into an average of 8 pieces with sterile surgical scissors, with a weight
error of ±1 mg for each part. Ultrapure water (ST876, Yaji, Shanghai, China) was added to
elute the particles. Homogenization was carried out with a homogenizer, and centrifugation
was performed at 25,000× g for 10 min at 4 ◦C. All the filters were sterilized by baking in
a muffle furnace at 500 ◦C for 48 h before sampling. The filters were stored in a mobile
refrigerator and transported to the laboratory after collection. Samples were stored at
−80 ◦C until analysis.

2.4. 16S rRNA Gene Sequencing

The total genome DNA extraction method and PCR conditions of microbial aerosol
samples were performed as described in previous studies [27–29]. A NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) was used to detect the
concentration and quality of extracted DNA (OD260/OD280). PCR amplification was
performed after qualified detection. The unqualified samples were extracted again until they
passed the test. For bacterial diversity analysis, primers 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) were used to amplify the V3/V4 region
of the 16S rRNA gene [30]. For 16S rRNA high-throughput sequencing, the PCR products
from each sample were transferred to Beijing Novogene Bioinformatics Technology Co.,
Ltd. (Novogene, Beijing, China). All original sequences were deposited in GenBank under
accession number PRJNA815738.

2.5. Statistical Analysis

QIIME software was employed to remove the poor-quality sequences and obtain
high-quality data to control the sequence quality. OTUs (operational taxonomic units)
were clustered using UPARSE software (v7.0.1001), which had 97% identity for 16S rRNA
sequences [31]. Species annotation was performed on the OTU sequences, and the Mothur
method and the SSUrRNA database [32] of SILVA132 were used for species annotation
analysis to obtain taxonomic information at each taxonomic level (phylum and genus) and
for community composition analysis. The observed-species, Shannon, and Chao1 indices
in each sample were calculated with QIIME (version 2.0). Nonmetric multidimensional
scaling (NMDS) based on an unweighted Unifrac distance matrix was used to estimate
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beta diversity. Differences in microbial community structure between groups were also
analyzed by principal component analysis (PCA) [33,34]. All data were subjected to
one-way analysis of variance (one-way ANOVA) using GraphPad Prism 8 software to
determine statistically significant differences (p < 0.05). All analyses were conducted in
triplicate and represented at least three separate experiments. The results are presented as
means ± standard deviation (SD).

3. Results
3.1. Size Distribution of Culturable Airborne Bacteria

The concentrations of culturable bacteria in the air of the three pig house types (FAR,
WEA, and FAT) are shown in Figure 1. The concentrations of airborne bacteria in the FAR,
WEA, and FAT stables were 8.092 ± 1.089 × 103 CFU/m3, 15.669 ± 1.899 × 103 CFU/m3,
and 35.027 ± 2.859 × 103 CFU/m3, respectively. Bacterial aerosol concentrations were
significantly higher in the WEA and FAT stables than in the FAR stables (p < 0.001) and
significantly higher in the FAT stables than in the WEA stables (p < 0.001).
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Figure 1. Concentrations of culturable airborne bacteria in different types of pig houses using an
Andersen sampler (data presented as means± SD. *** p < 0.001). FAR, farrowing houses; WEA,
weaning houses; FAT, fattening houses.

Figure 2 shows the size distribution of culturable airborne bacteria in the three types
of pig houses (FAR, WEA, and FAT). In the FAR stables, bacteria with a particle size greater
than 3.3 µm (Andersen six-stage sampler, stages 1–3) accounted for 68.2%, while bacteria
with a particle size range of 0.6 to 3.3 µm (Andersen six-stage sampler, stages 4–6) accounted
for 31.8%. In the WEA stables, a total of 56.2% of airborne bacteria had a particle size greater
than 3.3 µm, and 43.8% had a particle size range of 0.6 to 3.3 µm. The majority of bacteria
in the FAT stables were found in stage 1 (≥7.0 µm) (28.2%), and stage 5 (1.1–2.1 µm) (7.5%)
was the least common.
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3.2. Sequencing Analysis

Nine air samples from three pig house types (FAR, WEA, and FAT) were sequenced
for the bacterial V3/V4 region. After filtering out the poor-quality sequences, 85,524 ef-
fective reads were obtained. The sequences were clustered into 3362 operational taxo-
nomic units (OTUs) with 97% identity, among which the OUTs of the FAR stables were
1.026 ± 0.215 × 103 and the OUTs of the WEA stables were 1.405 ± 0.219 × 103. In the FAT
stables, the OUTs were 1.703 ± 0.295 × 103 (Figure 3A). Compared with the FAR stables,
the WEA stables showed a significantly increased number of OUTs (p < 0.01). The number
of OUTs in the FAT stables was significantly higher than that in the FAR and the WEA
stables (p < 0.05). At the same time, the dilution curves of all samples were infinitely close
to saturation, indicating that most bacteria in the samples were detected, ensuring the
reliability and stability of subsequent analysis.
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3.3. Diversity of Airborne Bacterial Communities

The α-diversity and β-diversity of bacterial communities in the FAR, WEA, and FAT
stables are shown in Figures 3B,C and 4. The Chao1 index and Shannon index were evalu-
ated in the α-diversity analysis (Figure 3B,C). Compared with the WEA and FAR stables,
the Chao1 index and Shannon index of the FAT stables were significantly higher (p < 0.001)
(Figure 3B,C). The Chao1 index and Shannon index of the WEA stables were significantly
higher than those of the FAR stables (p < 0.05) (Figure 3B,C). Figure 4 shows the principal
component analysis (PCA) of β-diversity. Principal component analysis (PCA) extracted
the two axes that best reflected the differences between samples, and each point represented
a sample. The closer these points were on the PCA plot, the more similar the community
composition of the samples was. The PCA results showed (Figure 4) that there were certain
differences in the bacterial communities of the FAR, WEA, and FAT stables. The multiple
response permutation programs (MRPP) test showed significant differences among the
three types of pig houses (p < 0.05).

3.4. Composition of the Airborne Bacterial Community

At the phylum level, Firmicutes and Proteobacteria were the most abundant in the bac-
terial community composition, accounting for 68.86% and 20.23% in the FAR stables, 66.94%
and 3.54% in the WEA stables, and 74.95% and 5.4% in the FAT stables, respectively. Figure 5
and Table S1 show the 10 dominant genera in the samples. Our data show that the dominant
bacterial genera in the FAR samples were Clostridiales (21.70%), Psychrobacter (16.07%), Strep-
tococcus (6.78%), Terrisporobacter (4.96%), Lactobacillus (4.47%), Corynebacteriaceae (2.71%),
Aerococcus (2.03%), Cyanobacteria (1.88%), Staphylococcus (0.58%), and Prevotellaceae (0.06%).
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The dominant bacterial genera in the WEA samples were Lactobacillus (16.24%), Streptococcus
(12.78%), Clostridiales (5.48%), Prevotellaceae (4.73%), Corynebacteriaceae (4.14%), Cyanobacteria
(2.54%), Aerococcus (1.70%), Terrisporobacter (1.60%), Staphylococcus (0.72%), and Psychrobac-
ter (0.08%). The dominant bacterial genera in the FAT samples were Clostridiales (29.44%),
Corynebacteriaceae (9.97%), Streptococcus (9.56%), Aerococcus (5.49%), Terrisporobacter (3.40%),
Lactobacillus (2.12%), Psychrobacter (1.95%), Cyanobacteria (1.87%), Streptococcus (1.74%), and
Prevotellaceae (0.12%). Heatmaps for the top 35 genera of all samples are shown in Figure 6.
According to the Human Pathogenic Bacteria Directory provided by the Ministry of Health
of China (MOHC), the potentially pathogenic bacteria in the FAR stables were Acinetobacter,
Streptococcus, and Erysipelothrix; the potentially pathogenic bacteria in the WEA stables
were Streptococcus.
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4. Discussion

In this study, three types of pig houses (FAR, WEA, and FAT) of three typical closed
pig farms in Hebei Province were investigated. The aerosol bacterial concentration and
bacterial community, as well as the bacterial community diversity and composition of the
three types of pig houses, were compared to provide a data basis and reference for healthy
pig breeding and the threat of microbial aerosols to public health in pig houses.

Previous studies have shown that bacteria dominate microbial aerosols in pig houses [16],
so this study focused on bacterial microbial aerosols. Our study shows that airborne
bacterial concentrations in pig houses increase as pigs age. The concentrations of cul-
turable airborne bacteria were the lowest in FAR and significantly higher in WEA and
FAT (p < 0.001). This may be due to the increased activity and excretion of pigs as they
grow and increased feeding density, resulting in increased concentrations of bacterial
aerosols. The numbers of culturable bacteria measured in the three types of stables (FAR,
WEA, and FAT) were 8.092 ± 1.089 × 103 CFU/m3, 15.669 ± 1.899 × 103 CFU/m3, and
35.027 ± 2.859 × 103 CFU/m3, respectively. According to studies, the culturable bacterial
concentration in the WEA stables of Jiangsu, China, was 3.460× 103 CFU/m3 (1), and
the culturable bacterial concentrations in the air of three types of pig houses (FAR, WEA,
and FAT) in Korea were 2.322 ± 1.352 × 103 CFU/m3, 6.124 ± 1.527 × 103 CFU/m3, and
12.470 ± 4.869 × 103 CFU/m3 [35]. In our investigation, the concentration of bacterial mi-
crobial aerosols was greater than that in previous studies. The pigs, the construction of
the barns, the methods of management, and the indoor climate may all have a role in the
fluctuation in microbiological concentrations of bacterial aerosols [36].

Different particle sizes of bacterial aerosols enter the respiratory system in different
locations. Particles of 4.7–7 µm in diameter can enter the nasal cavity and upper respiratory
tract; particles of 2.1–4.7 µm can be deposited in the bronchi, causing asthma and other
diseases; however, those less than 2 µm in diameter can penetrate the alveoli and enter the
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respiratory tract, causing alveolar inflammation and other diseases. The smallest fraction
of the fine particles may have a disproportionately large role. Although fine particles
are only a small proportion, they still pose a serious threat to the respiratory health of
pigs. In the FAT stables, 71.9% of airborne bacteria had a particle size larger than 3.3 µm,
and 28.1% had a particle size ranging from 0.6 to 3.3 µm. Aerosols with a particle size
of less than 3.3 µm are defined as fine particles, and those larger than 3.3 µm are defined
as coarse particles. Culturable bacteria in the air predominate in coarse particles, but not
in fine particles, similar to our results [2]. Previous research showed that coarse particles
accounted for 64% and fine particles accounted for 36% of particles in the FAR stables. In
the WEA stables, coarse particles accounted for 60%, and fine particles accounted for 40% of
the total particles. The proportions of coarse particles and fine particles were 63% and 37%,
respectively [35]. The smallest fraction of the fine particles may have a disproportionately
large role. Although fine particles are only a small proportion, they still pose a serious
threat to the respiratory health of pigs. The results were similar to those in the FAR and
WEA stables, but the proportion of coarse particles in the FAT stables was higher, which
may have been caused by various factors, such as pig breed, stocking density, climate, and
the structure of the barns.

We found that the bacterial community α-diversity index of microbial aerosols in-
creased gradually with the age of pigs. The Chao1 index and Shannon index of the
FAT stables were significantly higher than those of the FAR and WEA stables (p < 0.001).
PCA showed that the composition of the bacterial community also changed significantly
(p < 0.05). As animals grow, their activity and excretion increase and their metabolic levels
change, which could cause remarkable changes in the microbial community structure in
the air of feedlots [37]. Firmicutes and Proteobacteria were the dominant phyla in the three
types of pig houses, which is consistent with previous studies [17,18,20]. Firmicutes are the
most abundant phylum in the intestinal microbiome of pigs at all growth stages [38], sug-
gesting that the dominant bacteria in the air of the pig house may originate from feces [39].
Proteobacteria is the largest phylum of bacteria, including many pathogenic bacteria, such
as Escherichia coli, Salmonella, Vibrio cholera, Helicobacter pylori, and other well-known
species [40–43], while some members of Proteobacteria play an important ecological role in
various environments [44].

According to the human pathogenic bacteria directory provided by the Ministry of
Health of China (MOHC), the potentially pathogenic bacteria in the FAR stables were
Acinetobacter, Streptococcus, and Erysipelothrix; those in the WEA stables were Streptococcus.
Acinetobacter widely exists in the environment, and studies have shown that the mortality
rate of patients with underlying diseases infected with Acinetobacter is much higher than
that of other patients [45–47]. Meanwhile, the number of Acinetobacter strains resistant
to multiple antibiotics has increased significantly in recent years, suggesting potential
biosafety risks [48]. Erysipelothrix is extensively distributed in the environment and may
survive for a long period [49,50]. Erysipelothrix is a pathogen associated with many occupa-
tional diseases, and its pathogenesis may be related to hyaluronidase and neuraminidase
produced by bacteria [19]. Streptococcus suis, an important zoonotic pathogen in the genus
Streptococcus, lives naturally in the respiratory system of pigs, particularly the upper respi-
ratory tract, and is found in nearly every country [22]. Previous studies have reported that
Streptococcus has been found in nasal swabs of pig workers [51]. Thus, the prevention and
control of Streptococcus deserve wider attention. Moraxella in WEA and Aerococcus in FAT,
in addition to the list of human pathogenic bacteria, have been identified as potentially
pathogenic concerns that should be monitored. Moraxella catarrhalis is a pathogenic strain
of Moraxella that has been found in the human respiratory system [52]. In the respira-
tory system, Moraxella lacunata and Moraxella nonliquefaciens are also opportunistic [53].
Aerococcus has been recovered from clinical samples of pigs in a growing number of in-
vestigations, indicating that it is pathogenic [39,54,55]. Previous research has found that
microbial aerosols in pig houses include many Aerococcus, and pig employees working in
an environment with many Aerococcus are at risk of becoming sick [1]. The source of the
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pathogenic bacteria of this genus is unclear, but pathogenic bacteria are likely to spread
through pig houses to the outside world, and pig employees are likely to carry these
infections on their clothes or in their lungs, resulting in a wide range of biological safety
hazards and concerns [2,46,56].

5. Conclusions

This study showed that with the increase in weekly pig age, the concentration of
airborne bacteria, the species, and the diversity index of the bacterial community in pig
houses has also increased gradually. The pathogenic bacteria Acinetobacter, Erysipelothrix,
Streptococcus, Moraxella, and Aerococcus were detected in three types of pig houses. These
bacteria with potential risk to pig and human health should be monitored. The number of
disinfections should be increased to 2–3 times a week or every other day. A disinfectant
should be replaced after 2–3 weeks of continuous use for another disinfectant to avoid
pathogenic microorganisms producing drug resistance and reduce the disinfection effect.
Spray disinfection should be used to kill airborne microorganisms in piggeries to make the
piggeries cleaner. These measures may help optimize the piggery environment. From the
point of view of personnel, farmers should wear masks, hats, and overalls to combat the
effects of air pollution when working on farms. In this study, we emphasize the necessity
of long-term detection of microbial aerosols in pig houses and the importance of more
comprehensive research and analysis of microbial aerosols in livestock and poultry houses.
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