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ABSTRACT

Background: Disease heterogeneity is a persistent challenge in medicine, complicating both research
and  treatment.  Standard  analytical  pipelines  often  assume  patient  populations  are  homogeneous,
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overlooking variance patterns that may signal biologically distinct subgroups. Variance heterogeneity
(VH)—including skewness, outliers, and multimodal distributions—offers a powerful but underused lens
for detecting latent etiological structures relevant to prognosis and therapeutic response.

Methods: A major barrier to VH analysis is the fragmented landscape of available methods, many of
which rely on normality assumptions that biological data frequently violate. In addition, existing tools
often  require  programming  expertise,  and  clear  guidance  on  study  design  considerations—such  as
sample size and method selection—is lacking. To address these issues, we developed BifurcatoR, an
open-source  software  platform  that  simplifies  the  detection,  modeling,  and  interpretation  of  VH.
BifurcatoR integrates simulation-based method evaluation, study design recommendations, and a user-
friendly web interface to support VH analysis across a range of data distributions. We benchmarked VH
methods through simulation and applied BifurcatoR to two clinical datasets: acute myeloid leukemia
(AML) and obesity.

Results: Simulation studies revealed that VH method performance is  highly context-specific,  varying
with distribution shape, mean-variance coupling, and underlying subgroup structure. In AML, BifurcatoR
identified two molecularly distinct subgroups with different treatment responses, including an EVI1-high
group with significantly poorer prognosis (p < 0.005) among KMT2A-rearranged cases. In a separate
study, VH analysis uncovered immunophenotypic subgroups in obesity based on gene-level discordance
across monozygotic twin pairs, highlighting latent variation in adipose immune cell composition.

Conclusions: VH is not “noise”, biological variation without clinical relevance. Instead, VH is a structured
signal that can reveal latent and clinically meaningful subtypes. BifurcatoR offers a practical, accessible
framework for incorporating VH into biomedical research, with implications for biomarker discovery,
patient stratification, and precision medicine.
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INTRODUCTION
Medical practice seeks to improve patient outcomes, in part by identifying patients who can benefit
from targeted diagnosis, treatment, and care.1 This tailored approach can enhance treatment efficacy,
reduce side effects, and advance our understanding of disease mechanisms. However, despite the boom
in big data, where datasets can contain millions of variables, 2-4 uncovering meaningful patient subgroups
remains a major challenge.5,6 The perils of subgrouping based on arbitrary thresholds, especially without
compelling evidence, have been well documented.7,8 
One  statistical  approach  to  subgroup  identification  is  the  careful  examination  of  variance.
Overdispersion,  where  measured  variance  exceeds  expectation,  may  suggest  heterogeneity  in  a
population.9 Similarly,  heteroscedasticity  between  independent  groups  may  reflect  unrecognized
subgroups. These phenomena, collectively referred to as variance heterogeneity (VH), can be assessed
using a range of  statistical  tools. While  existing methods like overdispersion9 and heteroscedasticity
testing,10 or  more advanced techniques like mixture modeling,11,12 can offer insights,  they are often
indirect, sensitive to assumptions, and rarely incorporated into routine analysis pipelines. 

Mixture models, for example, can estimate subgroup membership and distributional characteristics, but
they require the user to pre-specify the number of subgroups (K), a process highly sensitive to initial
assumptions. Additionally, many methods assume normality, which may obscure the very heterogeneity
researchers aim to detect.  Despite their  potential,  these VH tools remain underutilized due to their
complexity and limited accessibility to non-statisticians.

To address these barriers,  we developed BifurcatoR, a statistical  software package designed to help
identify variance heterogeneity and potential subgroups in clinical and biological datasets. BifurcatoR
consists of both a simulation engine for study design and power analysis, and an analysis interface for
real-world data interpretation. These capabilities are delivered through both an R package and a web-
based Shiny application, making the tools accessible to users regardless of their programming expertise.
We demonstrate its utility through two real-world use cases: the identification of survival-associated
subgroups in acute myeloid leukemia (AML), and the detection of transcriptional immunophenotypes in
obesity using monozygotic twin data. By enabling researchers to systematically explore variance and
multimodality, BifurcatoR supports more nuanced and powerful clinical and biological inference.

METHODS
BifurcatoR  comprises  two  integrated  components:  a  command-line  R  package
https://github.com/VanAndelInstitute/BifurcatoR and a user-friendly Shiny web interface (https://vai-
bbc.shinyapps.io/Shiny_BifurcatoR/). Both components were built using R v4.4.2. The Shiny application
is hosted on the Van Andel Institute’s Shiny server, enabling easy access for users without programming
expertise.

The web interface contains four modules:

Module 1: Power simulations for detecting differences in means and variance.

Module 2: Power simulations for detecting bimodality within a single group.
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Module 3: Power simulations for comparing two bimodal distributions.

Module 4: Analysis interface for user-uploaded data.

Modules 1-3 allow users to define effect sizes and distributions (normal, log-normal, Weibull, and beta) 
and provide tools for simulating data, estimating statistical power, calculating false positive rates (FPR), 
and selecting between parametric and non-parametric testing options. Dispersion metrics include 
permuted standard deviation (perm-SD), median absolute deviation (perm-MAD), Gini’s mean 
difference (perm-GiniMD), all bimodality methods available in the multimode13 R package and several 
others detailed in the Supplementary Materials. 

Module 4, the analysis portion of the software, includes wrappers for established tests (e.g., ANOVA, 
Levene’s test, permutation tests, Kolmogorov–Smirnov test), all the aforementioned dispersion tests, 
and visualizations (e.g., density plots, Cullen-Frey plots, beeswarm plots). Its design ensures 
reproducibility, usability, and flexibility for a wide range of research questions.

Full details of module design, permutation testing, and simulation set-up are detailed in the 
Supplementary Materials.

Use Case 1: Acute myeloid leukemia
Data  for  the  TARGET  -  acute  myeloid  leukemia  (AML)  analysis  were  obtained  from  database  of
Genotypes and Phenotypes (dbGaP) accessions phs00046514 and phs000178,15 and are available within
BifurcatoR  via ‘data(MLL)’.  A WebR (https://trichelab.github.io/webR/mixtures/) was created for easy
verification.  Code  for  figure  generation is  available  within  the  BifurcatoR  GitHub  under  ‘vignettes’.
Kaplan-Meier  curves  were  generated  using  survfit  from  the  survival package16 and  visualized  using
survminer17.  Log-rank  tests  assessed  differences  in  overall  survival.  Bimodality  was  evaluated  using
BifurcatoR’s bs_lrt, a wrapper for mixR’s11 bs.lrt. Survival data were modeled as Weibull (non-normal)
mixtures; log (gene expression) was assumed normally distributed. P-values derive from 100 bootstraps.
Enrichment  of  EVI1  ‘high’  expression  with  short-term  survival  was  tested  via  a  chi-square  test.
Parameters from mixfit informed power calculations using BifurcatoR’s est_pow across sample sizes 40,
50, 60, 70, 80, 90, and 100; with 1000 simulations each. We compared the theoretical and empirical
power  of  all  bimodality  methods  available  in  BifurcatoR;  empirical  power  was  estimated  by
bootstrapped subsampling of the MLL data to the same respective sample sizes ranging from 40-100. 

Use Case 2: Obesity Heterogeneity
Data for the obesity-TwinsUK analysis were sourced from ArrayExpress (E-MTAB-1140) and limited to
monozygotic twin  pairs  with  data  for  both twins.  Code is  available  in  the BifurcatoR GitHub under
‘vignettes’. Gene expression data were restricted to the 4000 most variable genes, based on standard
deviation of log-normalized count differences between cotwins. Expression deltas (Δ) were calculated as
the expression in the higher-BMI twin minus that in the lower-BMI twin. This directional measure was
used to identify genes potentially associated with BMI, with bifurcation expected around Δ = 0 for non-
associated genes and Δ ≠ 0 for BMI-related genes.
Each  gene  was  tested  for  bimodality  using  BifurcatoR’s bs_lrt,  assuming  a  mixture  of  normally
distributed data and 10,000 bootstraps. P-values were corrected via Benjamini-Hochberg to control the
false discovery rate at 5%. Genes with one mode comprising <10% of samples were excluded to reduce
false positives due to outliers. The resulting geneset was then compared to the UPV-B signature. 18 Over-
representation analysis  using  clusterProfiler19 was  performed on  two gene  sets:  the  bimodal  genes
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(referred to as structural heterogeneity genes), and 65 of the 127 UPV-B genes that overlapped with the
4,000 most variable genes. Results were visualized using cnetplot from enrichplot.20

Cell  type deconvolution of  adipose tissue transcriptional profiles was performed using CIBERSORTx 8,
following  the  approach  in  Yang  et  al.18 Differences  in  cell  type  proportions  between  twins  were
incorporated into a Seurat v5.1.0 pipeline with default parameters21 Seurat was executed with default
parameters, utilizing the entire dataset for Principal Component Analysis (PCA). PCA was performed on
the full dataset, and only PCs significantly associated with inter-twin cell type differences (p < 0.01, via
linear regression) were used for downstream analysis. 

RESULTS 

To demonstrate BifurcatoR’s utility, we outline a recommended workflow for detecting structure (e.g.,
subgroups) in cohort data, assess performance via simulation studies, and apply the tool to two real-
world case studies: (1) AML, identifying clinically relevant subgroups via gene expression variability, and
(2) obesity, revealing two inflammation-discordant endotypes.

Recommended Workflow for Analyzing Differential Variability and Multimodal Distributions
This  workflow  supports  both  hypothesis  testing  and  study  design  and  is  fully  supported  within
BifurcatoR, including exploratory analysis, statistical modeling, and simulation-based validation (Figure
1).

Step 1: Data Preparation
Users  upload data  comprising  a categorical  grouping variable  (e.g.,  treatment  and cohort)  with  the
column header ‘group’ and a numeric outcome (e.g., gene expression and biomarker levels) value. This
standardized input ensures compatibility across BifurcatoR’s analyses.

Step 2: Exploratory Data Analysis
BifurcatoR facilitates assessment of distributional properties critical for determining whether data are
unimodal  or  multimodal.  Cullen-Frey  plots  visualize  skewness  and  kurtosis  to  guide  appropriate
methods:  unimodal  distributions  (e.g.,  normal,  log-normal  or  Weibull)  are  amenable  to  standard
variance- and mean-based tests; multimodal distributions (e.g., beta) suggest hidden subpopulations,
warranting mixture modeling, bimodality testing, or comparison of the entire distribution using methods
like the Kolmogorov-Smirnov test.

Step 3: Hypothesis Testing / Study Design

The workflow diverges based on user goals:

 Hypothesis Testing: Users select tests such as Levene’s test (variance comparison) or Gaussian 
mixR (bimodality detection), in Module 4 the ‘Analyze Data’ module, with simulation results 
informing test choice (expanded results are reported in the Supplementary Materials).

 Study Design: Users extract parameters from Step 2 (e.g., mean, SD, shape and mixing 
proportion) and select the appropriate power analysis module:

o Module 1-Mean/Variance Effect Tests: Compare two unimodal distributions
o Module 2-Biomodality Tests: Detect bimodality within a single dataset
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o Module 3-Distribution Tests: Compare two multimodal datasets

Note:  Users without pilot data can still use BifurcatoR for study design in this way; however, they will
need to rely on educated guesses for the input parameters.

Simulation Results: A systematic comparative evaluation of method performance 
To evaluate the reliability of various statistical approaches, we performed comprehensive simulations
across a range of mean and variance effects, distributions (e.g., normal, Weibull, log-normal or beta),
and sample sizes; all findings are detailed in the supplementary materials. For mean differences alone,
traditional methods like ANOVA and Levene’s test,  demonstrated comparable power and controlled
false discovery rates effectively across normal and Weibull data. When assessing variance-only effects,
Levene’s test and permutation tests based on Gini or standard deviation (SD) were generally robust,
though permutation (MAD) tests excelled specifically under non-normal (Weibull) distributions. Notably,
combining mean and variance effects introduced complexities: in scenarios with imbalanced variance-
to-sample size ratios, certain methods—especially ANOVA—showed inflated FPR, underscoring the need
for caution when variance heterogeneity is present. 
For  bimodality  detection,  MixR-based methods (e.g.,  GmixR and WmixR)  consistently  outperformed
alternatives in both power and specificity,  particularly  in identifying subtle modal differences where
means overlap but variances differ (e.g., platykurtic distributions). Although the bimodality coefficient
was occasionally competitive, especially for beta-distributed data (e.g., methylation β-values), it was less
reliable  across  most  other  conditions.  Overall,  our  findings  demonstrate  that  no  single  method  is
universally  optimal.  Instead,  test  performance  depends  heavily  on  distributional  characteristics  and
effect  structure,  emphasizing  the importance  of  flexible  tools  like  BifurcatoR for  identifying  patient
subgroups accurately and informing clinical research design.
Finally, to validate BifurcatoR’s simulation accuracy, we compared its power and FPR estimates to those
from  an  empirical  down-sampling  approach,  using  EVI1  (ecotropic  viral  integration  site  1)  gene
expression and AML survival data from TARGET as case studies. The primary advantage of this down-
sampling procedure is that it avoids making distributional assumptions; therefore, alignment between
BifurcatoR’s estimates and those from the down-sampled data suggests an accurate characterization of
the true underlying distribution. Results are fully detailed in the Supplementary Materials and shown in
Figure S6. In short, there was strong concordance between both methods, confirming the reliability of
BifurcatoR’s simulation module and mixR was consistently identified as a robust method for detecting
bimodality in both gene expression and survival data. 
Applied data analyses and Case Studies 
BifurcatoR  includes  two  modes  to  support  researchers:  a simulation  mode for  selecting  optimal
statistical methods and ensuring adequately powered study designs, and an analytic mode for direct
analysis of user-provided data to detect VH and bimodality. The platform is designed to be intuitive and
accessible to researchers across disciplines, regardless of their statistical background. To illustrate its
application, we analyzed two publicly available datasets: TARGET (acute myeloid leukemia) and TwinsUK
(obesity);  both representative  of  typical  clinical  cohorts  comprising  several  hundred individuals  and
focused on complex trait diseases.

Acute myeloid leukemia
Acute myeloid leukemia (AML) is an exceptionally heterogeneous and often lethal disease characterized
by  low  mutational  burden,  diverse  structural  variation,  and  frequent  resistance  to  combination
therapies. In young (under 40) patients, a 5-year overall survival has stagnated near 68% for decades22.
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While KMT2A rearrangements have helped define molecular subtypes, clinical outcomes remain highly
variable23.  These  previous  efforts  to  risk-stratify  KMT2A-rearranged  disease  have  largely  focused
on cytogenetics and fusion partner genes (examples shown in  Figure 2A), but these markers have not
reliably predicted treatment responses. To explore a gene expression–based approach, we analyzed
data  from  470  participants  in  Children’s  Oncology  Group  AML  trials, 14,24 investigating  discordant
expression of the MECOM gene (Table 1A).
Using BifurcatoR, we identified two distinct survival groups—poor (<3-year survival) and favorable (>5-
year remission)—independent of fusion partner (Figure 2B). EVI1 (encoded by MECOM) showed strong
bimodality and a 4.7-fold difference in mean expression between modes (p < 0.001;  Figure 2C). High
EVI1 expression was significantly associated with worse survival (log-rank p = 0.001;  Figure 2D) and a
chi-square test showed evidence that EVI1 expression was not independent of the survival subgroups
(chi-square p = 0.029;  Figure 2E). This case study demonstrates how BifurcatoR can uncover clinically
meaningful subgroups and identify candidate biomarkers that can be linked with a simple additional chi-
square test. 

Obesity subtypes
Obesity is a chronic, complex, and heterogeneous disease affecting approximately 890 million adults
worldwide.  Despite its strong association with comorbidities such as Type 2 diabetes,  hypertension,
cardiovascular disease, non-alcoholic fatty liver disease, steatohepatitis, and various malignancies,25,26

many  individuals  remain  complication-free—highlighting  the  limitations  of  BMI,  the  primary
classification tool, in capturing physiological and molecular diversity.26-28 This heterogeneity is believed
to  arise  from  genetic,  developmental,  and  environmental  factors  that  influence  body  composition,
metabolic function, epigenetic regulation, and inflammatory profiles.18,27-33 The lack of precise molecular
subtyping contributes to suboptimal treatment stratification, as evidenced by high nonresponse rates
(10–35%)  to  metabolic  bariatric  surgery  and  GLP-1  receptor  agonists.  34-39 Given  obesity’s  role  in
approximately 5 million deaths annually, addressing its biological complexity represents a critical unmet
need in clinical medicine.
We analyzed gene expression  discordance in  146 monozygotic twin pairs  (using  the leaner twin as
reference), filtered to the 4,000 most variable genes, and applied BifurcatoR to test for bimodality. This
yielded 292 Structured Heterogeneity (SH) genes with significant bimodal expression patterns (Figure
3A-B), suggesting the presence of distinct molecular subgroups. Enrichment analysis showed these SH
genes were immune-related and had minimal overlap with the previously defined UPV-B (unexplained
phenotypic variation – type B) gene set,18  which was more enriched for metabolic pathways (Figure
S7A-B). In silico cell-type deconvolution revealed that expression differences in SH genes corresponded
with divergent immune cell infiltration profiles—stratifying twin pairs into two clusters distinguished by
discordant levels of adipocytes, macrophages, dendritic cells, and pericytes (Figure 3D-E).
Importantly,  SH genes did not  associate with  the prior  UPV-B-defined obesity  endotypes,  indicating
that BifurcatoR uncovered a distinct axis of adipose tissue heterogeneity. These findings demonstrate
that even under genetically controlled conditions, adipose tissue exhibits structured immunophenotypic
variation, supporting the existence of novel immuno-endotypes of obesity.

DISCUSSION

“Ignoring variability does not make it go away.” — Werner Kalow

Biomedical  research  has  long  prioritized  mean-based  analyses,  often  treating  variability  as  purely
statistical noise. This applies across preclinical studies, small clinical trials, and large-scale cohorts like
GWAS.  While  productive,  this  approach  has  masked  legitimate  biological  heterogeneity—despite
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longstanding recognition that the best  dose for  the average patient is  rarely the best  dose for any
individual40. Heterogeneity in disease risk, progression, and treatment response remains underexplored
due to persistent methodological barriers.5,6

Studying variance heterogeneity (VH) is challenging due to reliance on normality assumptions, lack of
consensus, and limited accessibility. Many existing methods require statistical expertise and perform
well  only  in  specific  contexts,  as  shown  in  our  simulations.  Even  trained  analysts  may  struggle  to
confidently choose the right test. BifurcatoR lowers this  barrier incorporating study design tools  and
analytic workflows into one intuitive platform. Further, the expansive simulation results offer detailed
guidance  for  choosing  scenario-specific  methods.  Our  findings  show  that  focusing  on—rather  than
ignoring—VH can yield rapid and clinically meaningful insights.

Biological Insights from VH Analysis

Our case studies in AML and obesity demonstrate the value of  structured VH analysis.  In AML,  we
identified  distinct  patient  subgroups  based  on  the  bimodality  of EVI1 expression,  which  strongly
predicted survival across trials (log-rank p = 0.001; chi-square p = 0.029,  Figures 3D–E). While EVI1 has
been previously linked to prognosis,41 our findings highlight the advantages of mixture modeling over
arbitrary  cut-point  methods  like  OptimalCutpoints,42 which  are  sensitive  to  dataset-specific  noise.
Mixture models define biologically grounded subpopulations, improving reproducibility across cohorts.

In  the  obesity  dataset,  we  identified  292 Structured  Heterogeneity  (SH) genes  via  gene  expression
discordance  in  146  monozygotic  twin  pairs.  These  genes,  enriched  for  immune-related  pathways,
revealed an immuno-inflammatory axis of heterogeneity independent from previously defined UPV-B
endotypes.  18 SH  stratified  individuals  by  adipose  immune  cell  composition  and  suggested  an
environmentally  driven layer  of  variability  distinct  from developmental-epigenetic effects.  Given the
central role of immune dysregulation in obesity-related complications,30,33 this analysis underscores the
importance  of  transcriptome-based  VH  analysis  for  uncovering  subtypes  in  genetically  controlled
models.

Applications Beyond Biology

The ability to detect and interpret VH extends to regulatory agencies, IRBs, and grant reviewers, who
must ensure studies are adequately powered. BifurcatoR offers a means to design such studies from the
outset and gives reviewers an accessible tool to verify calculations. This may be especially crucial for
clinical trials targeting precision medicine, which have stringent requirements for sample justifications. 

VH methods—such as mixture modeling and structured discordance analysis—are also well established
in other domains, including flow cytometry43 and genotype calling.44 In computational science, mixture
models and Hidden Markov Models both support high-dimensional clustering and form the foundation
of applications from speech recognition to biological sequence analysis.45-47 Their success in these fields
points to untapped potential within biomedical research. 

Conclusion
Structured heterogeneity is not noise. It is common, biologically informative, and clinically actionable;
yet  often overlooked. BifurcatoR meets  this  challenge  by  providing  an  accessible,  simulation-driven
framework for VH detection and study design. As precision medicine advances, tools like BifurcatoR will
be key to enabling robust biomarker discovery, patient stratification, and individualized treatment. We
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encourage  broader  adoption  of  VH  analysis  to  advance  understanding  of  disease  mechanisms,
environmental contributions, and therapeutic variability.
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Table 1. Patient demographics for the acute myeloid leukemia and monozygotic twins
cohorts

A) Acute myeloid leukemia (TARGET; n = 470)

Variables MLL Fusion* (n= 367) NSD1 Fusion* (n = 103)

Age Group, n (%)

Adolescent and Young Adult 56 (15.3%) 21 (20.4%)

Child 144 (39.2%) 76 (73.8%)

Infant 166 (45.2%) 6 (5.8%)

Unknown 1 (0.3%) 0

Sex, n (%)

Male 190 (51.7%) 68 (66.0%)

Female 176 (48.0%) 35 (34.0%)

Unknown 1 (0.3%) 0 (0%)

French-American-British  classification  for
categorizing hematologic diseases (%)

    M0 7 (2.9%) 3 (3.6%)

    M1 14 (5.8%) 13 (16%)

    M2 10 (4.2%) 23 (28%)

    M4 105 (44%) 24 (29%)

    M5 97 (40%) 15 (18%)

    M6 0 (0%) 2 (2.4%)

    M7 7 (2.9%) 3 (3.6%)

Blast percent, n (%) 60.8 (28.7) 63.6 (22.3)

Mean survival (SD), years 3.1 (2.3) 2.6 (2.3)

Vital status, n (%)

Alive 188 (51%) 42 (41%)
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    Deceased 179 (49%) 61 (59%)

*Fusion

Variables Concordant*

(n = 94)
Discordant A*

(n = 44)
Discordant B*

(n = 80)
Intermediate*

(n = 66)

Mean age (SD), years 61.4 (7.9) 58.0 (11.6) 61.6 (8.8) 58.8 (6.2)

Sex, n     

Female 94 44 80 66 

Mean BMI (SD), kg/m2 26.3 (4.2) 24.9 (3.0) 26.7 (5.2) 27.9 (5.2) 

Mean height (SD), m 161.2 (5.9) 159.5 (6.1) 161.4 (5.4) 160.0 (7.0) 

Weight (SD), kg 68.3 (11.6) 63.5 (8.5) 69.6 (14.1) 71.9 (16.4) 

Obesity, n (%)     

normal weight (BMI < 25) 77 (82%) 42 (95%) 61 (76%) 45 (68%) 

obese (BMI ≥ 25) 13 (14%) 2 (4.5%) 13 (16%) 14 (21%) 

severely obese (BMI ≥ 30) 4 (4.3%) 0 (0%) 6 (7.5%) 7 (11%) 

Mean lean mass (SD), kg 38.9 (5.0) 37.5 (4.5) 39.5 (4.6) 40.4 (7.1) 

Mean fat mass (SD), kg 27.9 (7.5) 24.4 (5.6) 28.5 (10.3) 29.8 (9.8) 

Mean lean mass index (SD), kg/m2 15.0 (1.6) 14.7 (1.4) 15.2 (1.7) 15.7 (2.0) 

Mean fat mass ndex (SD), kg/m2 10.8 (2.9) 9.6 (2.2) 10.9 (3.9) 11.6 (3.5) 

Mean  fasting  serum  insulin  (SD),
mmol/L

3.8 (0.6) 3.6 (0.6) 3.7 (0.6) 4.0 (0.9) 

B. Characteristics of monozygotic twins in the TwinsUK cohort (n = 284).

* Twin clusters are defined as in Yang et al.18
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Figure  1.  Workflow  for  variance  heterogeneity  and  bimodality  study  planning  and
analysis with BifurcatoR. 

1. Upload either a full dataset for analysis or pilot data
2. Perform exploratory data analysis to better understand shape, scale, and modality of

data.
3. Either:
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i. Run desired tests of significance on a full dataset for final inference
ii. Gather relevant parameters from 2. for use in a respective power analysis 

1.  Module 1: comparing two unimodal groups
2.  Module 2: testing for bimodality
3.  Module 3: comparing two bimodal groups

 Figure 2. Real data analysis of within-group variation in acute myeloid leukemia.

A. Kaplan-Meier curves with 95% confidence bands for fusion partners appearing in n  ≥ 5 patients.
B. Densities  and  histogram  plot  of  overall  survival  generated  with  mixR,  assuming  a  Weibull

distribution, and revealing strong evidence for bimodality (p < 0.001).
C. Densities  and histogram plot  of  EVI1 gene expression (log2)  generated with mixR using  the

Gaussian family, which shows strong evidence of bimodality (p < 0.001).
D. Kaplan-Meier curves with 95% confidence bands for splitting the cohort into ‘low’ and ‘high’

EVI1  expression  using  mixR  component  probabilities  (classification  was  based  on  the  most
probable mode).

E. Mosaic plot of the classification matrix of EVI1 high vs low expression and long- vs short-term
survival where survival was based on mixR component probabilities from B. Chi-square test on
this  classification table revealed significant evidence against  independence between survival
groups and EVI1 expression groups (p = 0.029). 
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Figure 3. Analysis of ‘Structured Heterogeneity’ in gene expression profiles stratifies humans into two
distinct metabolic state clusters with differing adipose tissue immune cell composition signatures.

A. The TwinsUK data  has  expression measured on 25106 genes.  Structured heterogeneity  was
investigated on the 4000 most variable genes based the gene expression discordance between
cotwin  pairs  where  292  has  significant  evidence  of  being  SH  after  BH  multiple  testing
corrections.

B. The  densities  and  histograms  of  the  top  eight  SH  genes  ranked  by  bimodality  coefficients
generated with mixR and a Gaussian family.

C. Over-representation network containing gene ontologies (purple) significantly enriched with SH
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genes (shown in green) (FDR < 0.05). Size is the number of genes found in a given pathway. The
4000 most variable genes were used as the “background universe”

D. UMAP of in silico estimates of cell-type proportions colored by clusters identified using Seurat
E. Boxplots of each twin’s cell-type proportion split by Seurat cluster. Wilcoxon tests were used to

determine if cell-type proportions differed between clusters. ‘*’ p < 0.05; “**’ p < 0.01
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