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RDF has become the standard technology for enabling interoperability among heterogeneous biomedical databases. The NCBI
provides access to a large set of life sciences databases through a common interface called Entrez. However, the latter does not
provide RDF-based access to such databases, and, therefore, they cannot be integrated with other RDF-compliant databases and
accessed via SPARQL query interfaces. This paper presents the NCBI2RDF system, aimed at providing RDF-based access to the
complete NCBI data repository. This API creates a virtual endpoint for servicing SPARQL queries over different NCBI repositories
and presenting to users the query results in SPARQL results format, thus enabling this data to be integrated and/or stored with
other RDF-compliant repositories. SPARQL queries are dynamically resolved, decomposed, and forwarded to the NCBI-provided
E-utilities programmatic interface to access the NCBI data. Furthermore, we show how our approach increases the expressiveness
of the native NCBI querying system, allowing several databases to be accessed simultaneously. This feature significantly boosts
productivity when working with complex queries and saves time and effort to biomedical researchers. Our approach has been
validatedwith a large number of SPARQLqueries, thus proving its reliability and enhanced capabilities in biomedical environments.

1. Introduction

Over the last decade, there has been a paradigm shift regard-
ing how biomedical data is used for biomedical research,
moving from a single database based approach towards an
integrative one based on the seamless access and analysis of
data from multiple heterogeneous sources. Different tech-
nological advances have contributed to this shift in focus,
from which two of them stand out over the rest. On one
hand, the breakthrough in high-throughput techniques for
“omics” data—for example, genomic, proteomic, transcrip-
tomic, epigenomic, cytomic, and so forth—generation has led
to the development of novel databases providing a myriad of
original data ready to be exploited [1, 2]. On the other hand,
advances in telecommunications, improvement of transfer
bandwidths, and the increasing ability to access remotely
located databases over the Internet have hugely facilitated
the access and sharing of biomedical repositories. This way,
researchers have gained access to vast amounts of data,
enabling them to undertake new lines of research [3–7].

The benefits of the integrative approach are manifold,
mainly in the area of enhanced diagnosis and treatment

of diverse diseases [8]. For example, Petrik et al. identified
biomarkers for brain tumors by jointly analyzing “omics” data
from brain tumor tissue [9]. Zirn et al. employed integrated
clinical and genomic data to obtain genetic biomarkers that
allow creating a personalized treatment for each patient
[10]. More recent examples are described by Ferrara et al.,
by integrating metabolomic and transcriptional profiling to
“construct causal networks for control of specific metabolic
processes in liver” [11]. Connor et al. performed integration of
metabolomics and transcriptomics data to discover biomark-
ers related to type 2 diabetes [12]. Elkan-Miller et al. identified
several miRNAs functionally important in cases of deafness
in mammals after integrating transcriptomics, proteomics,
and microRNA analyses [13]. Yi et al. carried out integration
of genomic and epigenomic data to “identify key genes and
pathways altered in colorectal cancers (CRC),” leading to a
prognostic signature in colon cancer [14].

However, the integrative data access approach involves a
more complex data handling process. Therefore, researchers
and/or database curators will often need carrying out a
homogenization and integration step prior to analyzing the
data. Heterogeneities among disparate data sources greatly
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hamper this task. Biomedical researchers demand new data
access techniques that relief them from the hassle of handling
multiple heterogeneous data sources at a time and that
allow them to automatically perform the data homogeniza-
tion process. To overcome this problem, there have been
numerous efforts in the bioinformatics community towards
providing methods, tools, and standards aimed at facilitating
the integrated access to heterogeneous data sources. One
of the most important achievements has been the devel-
opment of RDF (http://www.w3.org/RDF/), a framework
for describing generic resources. RDF was created by the
W3C consortium and accepted as a standard in 2004. The
development of RDF has facilitated the creation of numerous
resources for describing specific knowledge areas. These
resources are used in the database integration field as shared
vocabularies, providing unified frameworks—that is, shared
conceptualizations—that simplify the homogenization pro-
cess of disparate data [15]. In this sense, ontologies have
been established as shared vocabularies [16], generally using
RDF itself as the representation language, or any of its
extensions (OWL (http://www.w3.org/2004/OWL/), OWL2
(http://www.w3.org/TR/owl2-primer/)).The development of
ontologies over the last few years has provided an extensive
collection of formal domain descriptions, especially in the
area of biomedicine. Some of the most well-known contri-
butions are, for instance, the Gene Ontology (GO), offering
a representation of gene and gene product attributes across
species [17], the Foundational Model of Anatomy (FMA),
built as a symbolic representation of the phenotypic struc-
ture of the human body [18], the ACGT Master Ontology
(ACGTMO), a thorough description of the area of modern
clinical trials on cancer [19], and the ProteinOntology (PRO),
a “formal, logically-based classification of specific protein
classes including structured representations of protein iso-
forms, variants, and modified forms” [20]. On top of these
developments, there also exist several initiatives targeted at
gathering collections of relevant ontologies and providing
them publicly. One of these initiatives is the OBO Foundry, a
consortium dedicated to the establishment of good practices
in ontology development [21]. Another relevant initiative is
BioPortal, which “provides access via Web Services and Web
browsers to ontologies developed inOWL, RDF, OBO format
and Protégé frames” [22].

Regarding state-of-the-art formalisms for querying RDF-
based data sources, SPARQL (http://www.w3.org/TR/rdf-
sparql-query/) is the most widespread query language at the
time of writing this paper. It was developed by the W3C
consortium and became a standard in 2008. Nowadays, RDF
and SPARQL have been established as the de facto datamodel
and query language for representing and accessing biomed-
ical information, respectively. Most biomedical research
institutions provide RDF-based access to their repositories,
and there are several initiatives targeted at automatically
providing RDF views of existing data—for example, Bio2RDF
[23]—and SPARQL endpoints to access them. There are
also approaches that propose adopting RDF as a solution
to increasingly overwhelming sizes of biomedical databases
[24].

Among the biomedical data sources that researchers often
access and use in their work, a very important one is the
public set of databases hosted by the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov/)
(NCBI). The NCBI was founded more than two decades
ago with the mission of providing researchers with access
to the most relevant biomedical databases. However, and
despite its importance, the NCBI data access service lacks the
ability to access the data in an RDF-compliant form. In this
paper, we present NCBI2RDF, a system designed to provide
RDF-based access to the NCBI databases through SPARQL
query endpoint. Furthermore, NCBI2RDF offers increased
expressivity and enhanced functionalities embedded in its
query endpoint, compared to those offered by the native
interface of NCBI.

Next section describes in detail theNCBI database system
and its native querying interface. Section 3 explains our
approach for translating and decomposing SPARQL queries
into simple queries supported by the NCBI databases. In
Section 4,we describe howour systemwould service a sample
query. Section 5 discusses the benefits of our approach and
compares it with other related initiatives. Finally, Section 6
provides a summary and the conclusions.

2. Background

The NCBI was established in 1988 with the goal of offering
computerized access to awide set of biomedical data reposito-
ries. Its infrastructure has been continuously growing by
adding new databases, services, and tools. In 2009, PubMed
itself was accessed almost 100 million times each month
(http://www.ncbi.nlm.nih.gov/About/tools/restable stat pub-
med.html). This has pushed the NCBI data sources as one of
themost important biomedical data resources for biomedical
researchers (http://1degreebio.org/blog/?bid=146/).

The NCBI manages a large set of biomedical databases
storing different types of data, all free to access.These include,
as of May 2013, over 50 databases ranging from citations and
abstracts (PubMed) to genetic repositories (Gene, GenBank,
etc.). The background of users accessing these resources
includes physicians, biologists, and medical informaticians,
bioinformaticians, medical students. In order to provide
these users with Internet-based access to the data, the NCBI
offers a web-based interface for accessing and displaying the
data of their hosted databases. This interface, called Entrez
(http://www.ncbi.nlm.nih.gov/sites/gquery/) [25], provides a
simple entry point for searching biomedical information
based on keyword-based searches—including terms from
selected lexical resources such as the MeSH thesaurus—and
links among related data.

The Entrez system is focused on ease of use. Its interface
features a simple HTML form for specifying search filters
over either one of the databases or the entire repository
set. This provides users lacking technical background an
adequate access point to the stored data. Searches through
the Entrez system produce web pages containing a list of
UIDs, the global identifier used in NCBI to refer to every
entry, independent of the database. Each UID provides a link

http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/About/tools/restable_stat_pubmed.html
http://www.ncbi.nlm.nih.gov/About/tools/restable_stat_pubmed.html
http://1degreebio.org/blog/?bid=146/
http://www.ncbi.nlm.nih.gov/sites/gquery/
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Figure 1: Screen capture of the Entrez system. This screen shows the UIDs of the results for the search of the term “rdf semantic” over the
PubMed database. For example, the first result shows the UID 23026232.

to an HTML page displaying detailed information about
the selected entry—a scientific publication in the case of
the PubMed database or a gene description in the case of
the Gene database. The inner details of these HTML pages
depend on the nature of the queried database. For instance,
results from PubMed include details about the retrieved
scientific publication—title, journal, authors, abstract, and so
forth. These individual result pages may also cross-reference
other UIDs which are related to the currently selected result.
Figure 1 depicts a screenshot of the Entrez interface showing
the results of the sample query “rdf semantic.”

The Entrez navigation-based system allows nontechnical
users to easily access the data stored at the NCBI repositories.
The interface allows either performing a general term search
in all NCBI databases or defining a more complex query for
one specific database. However, the system lacks the ability
to enable users to customize the structure of the results—
that is, choosing the data fields to be retrieved for each
item on the result set—or even to display compound results
created by integrating records from different databases.These
constraints greatly limit the expressivity of allowed queries
in Entrez. Therefore, we believe that Entrez is a suitable
interface for performing simple searches, but impractical for
more complex situations involving accessing large amounts
of interrelated data.

The NCBI offers a second approach for accessing their
data: the Entrez Programming Utilities (E-utilities) (http://
www.ncbi.nlm.nih.gov/books/NBK25500/). The E-utilities
are a set of web-based services where queries are submitted as
URLs and results are provided in simpleHTMLpages orXML

documents. The URLs contain all the information needed
by the server to resolve the query—database, filters, number
of desired results, and so forth— and can be constructed
using a simple set of rules. This interface is targeted at
developers who intend to build applications that access the
NCBI repositories. The E-utilities also implement a powerful
feature for reusing results from queries: the history server.
The history server maintains recently retrieved lists of UIDs
and provides keys for accessing them. The goal is twofold:
on one hand, client applications are relieved from repeating
queries for accessing frequent data, and on the other hand,
the NCBI servers receive a lesser amount of requests. The
adoption of the E-utilities by other applications is rather sim-
ple. URL codification and result parsing is straightforward.
Nevertheless, this is a proprietary format that does not follow
any existing standard. In addition, limitations regarding the
type of queries allowed with respect to Entrez persist, since
queries must be targeted to the whole repository set or to a
specific database, excluding any sort of complex query that
uses join statements.

3. Methods

3.1. Overview. NCBI2RDF is a Java API for setting up
SPARQL-query endpoints over the NCBI databases. It pro-
vides a channel for performing SPARQL queries over the
NCBI repositories and retrieving data in SPARQL results
format. The goal is twofold. On one hand, the API provides
RDF-based access to the entire NCBI data, facilitating its

http://www.ncbi.nlm.nih.gov/books/NBK25500/
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Figure 2: NCBI2RDF system architecture.

<eInfoResult>
<DbList>
<DbName>pubmed</DbName>
<DbName>protein</DbName>
<DbName>nuccore</DbName>
<DbName>nucleotide</DbName>
<DbName>nucgss</DbName>
⋅ ⋅ ⋅

</DbList>
</eInfoResult>

Figure 3: The master XML file listing all available databases.

integration with other biomedical resources. On the other
hand, more powerful queries can be performed compared to
the native NCBI querying system, enabling users to launch
complex queries involving multiple NCBI databases.

NCBI2RDF adopts a dynamic query translation approach
for resolving queries. For each SPARQL query posed against
the system, NCBI2RDF sets up a workflow of requests to
NCBI that allows fetching the data requested by users.
This approach stands upon two main processes: metadata
generation and query resolution. The metadata generation
process consists of building a set of formal descriptions of the
data sources available at the NCBI and how to access them.
The query resolution process is the one in charge of solving
SPARQL queries posed by users. Figure 2 depicts the system
architecture.

The next subsections describe these two processes in
detail.

3.2. Metadata Generation. The first step in the develop-
ment of NCI2RDF was obtaining formal descriptions of
the databases hosted by the NCBI. NCBI2RDF requires
these descriptions to build the RDF schema for the NCBI
databases and to be able to access them.The data required by
NCBI2RDF includes a list of identifiers of databases stored
by the NCBI, a list of fields that each of those databases
includes, distinguishing between retrievable fields, that is,
those that can be shown within the results, and filterable

fields, that is, those that can be used to constrain the searches,
and the identifiers of the existing relations between databases.
All these descriptions can be obtained through specific web
services provided by the NCBI.

In a first attempt,we decided to generate the neededmeta-
data manually. However, the rather frequent changes that
these descriptions undergo forced us to develop an automated
process capable of retrieving the repository descriptions and
generating the metadata files automatically. This process,
called metadata generation, must be triggered regularly to
keep the API up to date with the changes in the NCBI
databases structure.

NCBI provides formal descriptions of all its databases
through XML files. Through the web service available
at http://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi/, a
master file listing all available databases can be retrieved.
Figure 3 shows a code snippet of this master file.

Using the available NCBI database names, it is also
possible to retrieve XML files describing each individ-
ual database.These XMLs provide general information about
the database—that is, a natural language description of the
database—and details on its structure, including a thorough
description of which fields can be filtered and what rela-
tions to other databases are supported. Figure 4 shows a
snippet of the XML file related to the PubMed database, as
extracted from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/
einfo.fcgi?db=pubmed.

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi/
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=pubmed
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/einfo.fcgi?db=pubmed
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<eInfoResult>
<DbInfo>
<DbName>pubmed</DbName>
<MenuName>PubMed</MenuName>
<Description>PubMed bibliographic record</Description>
<Count> </Count>
<LastUpdate> </LastUpdate>
<FieldList>
<Field>
<Name>ALL</Name>
<FullName>All Fields</FullName>
<Description> </Description>
<TermCount> </TermCount>
<IsDate>N</IsDate>
<IsNumerical>N</IsNumerical>
<SingleToken>N</SingleToken>
<Hierarchy>N</Hierarchy>
<IsHidden>N</IsHidden>
</Field>
<Field>
⋅ ⋅ ⋅

</eInfoResult>

Figure 4: The XML file describing the structure of the PubMed database.

PubMed
Retrievable
UID
Author

Filterable
UID
Journal

Relations
GeneLinks (to gene)

Gene
Retrievable
UID

Filterable
UID
Organism

PubMed Gene
GeneLinks

String

UID

String

Journal

String

UID

String

Organism

String
Author

Figure 5: The databases PubMed and Gene in the NCBI repository set produce two related classes in the corresponding RDF model.

Although these files provide the necessary information
about filterable fields and relations between related databases,
the list of retrievable cross-linked fields is still missing. The
NCBI database management system handles filterable and
retrievable fields in a different way, meaning that there exist
fields that can be filtered but not retrieved—for example
“PDAT”—and vice versa— for example, “LANG.”

The list of retrievable fields is created as follows. For
the databases that support the fetch operation—such as
PubMed—a related Document Type Definition (DTD) that
specifies the retrievable fields can be obtained through a
dedicated web service. For any other database which does not
support the fetch operation, a valid result document must be
manually analyzed for obtaining the final list of retrievable
fields. These results are obtained by performing a simple test
query.

Once the list of retrievable and filterable fields and the
properties relating different databases has been generated,
NCBI2RDF is able to automatically generate the RDF schema
that will allow users building correct SPARQL queries. For

eachNCBI database, an RDF class named after the database is
automatically created. Each filterable and/or retrievable field
is translated into a String datatype in this class. Finally, the
generated classes are linked by object properties according
to the previously discovered relations between the NCBI
databases. Figure 5 shows a piece of the RDF schema gen-
erated from part of the information of the PubMed and the
Gene databases.

It must be noted that the asymmetry between retriev-
able fields and filterable fields is lost when constructing
the RDF schema given the inability of this paradigm
to model this situation. While our API is able to han-
dle this difference, users will not be able to obtain this
information from the RDF schema alone. For this rea-
son, the RDF schema is accompanied with side docu-
mentation describing this situation. Users are expected to
generate SPARQL queries compliant both with the RDF
schema and with the side documentation that forbids that
some specific fields are retrieved and other fields are fil-
tered.
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Figure 6: This diagram explains how the tree of results translates into actual results of the queries that the system receives. Each leaf of the
tree produces one result, composed of the leaf itself and all the super nodes of that leaf node.

3.3. Query Resolution. The query resolution process is in
charge of accepting SPARQL queries in terms of the pre-
viously generated RDF schema and translating them into
an equivalent set of requests to the E-utilities services that
effectively allow solving the user query. Obviously, SPARQL
queries might contain joins between databases—expressed
as relations between classes of the RDF schema. As it was
described in the background section, NCBI does not allow
this type of queries. To overcome this issue, we were forced to
develop a solution thatwould allowus to raise the expressivity
of the queries to the desired level, just by using the functions
available at the E-utilities services. The solution relies on the
simulation of this behavior by means of workflows of simple
requests to NCBI that fulfill the original query.

The workflows of requests to NCBI are built in a dynamic
fashion. The results of each request help determining the
subsequent requests; therefore, it is not possible to assess
the complete sequence of requests at once. In essence, each
database is queried separately with its own parameters—
retrieved variables and filters. Each result produced with this
access allows fetching more results from a related database in
the query.This process produces what we call “tree of results.”
The branches of this tree are built sequentially in a depth-
first mode, as each level corresponds to one database in the
query. Whenever a branch reaches the last level, results to the
original query are gathered from all the different branches
that reach from the root node to one leaf. When the results
of a branch are exhausted, the algorithm moves backwards
in the tree and explores another branch. Figure 6 depicts this
process.

The retrieval of each database’s results implies several
requests to the E-utilities services. As it was described before,
these web services provide means to query the NCBI data
by external applications. However, complex queries involving
more than one database are, as well as with the Entrez
interface, not permitted. The operations offered by the E-
utilities services are described in the following—only the
operations relevant to our query execution process are shown.

(i) eSearch allows retrieving a list of entries of a single
database matching some specific criteria. This is the
equivalent of the SELECT operation in SQL. The

actual result of this operation is not the entries
themselves, but the entry identifiers. It is not possible
to retrieve entries from more than one database in
a single eSearch operation—that is, joins are not
permitted.

(ii) eFetch/eSummary allows accessing the information
of a single entry from a single database, once the
entry identifier has been retrieved using an eSearch
operation.The eFetch operation retrieves all the fields
available for the entry, while the eSummary operation
offers a subset of this information. Not all NCBI
databases support the eFetch operation.

(iii) eLink retrieves the list of entry identifiers of a database
that are related to a specific entry in another database.
This operation resembles the join in SQL. Only one
relation can be specified in an eLink operation.

Using these operations, a dynamic query resolutionwork-
flow is generated. The following algorithm describes this
process.

(1) The first database in the user query is accessed
according to the specified retrievable fields and filters,
and its results are stored in the first level of the
tree (eSearch + eFetch/eSummary). This is now the
current level.

(2) If the current level does not correspond to the last
database in the sequence, go to 3. Else, the paths from
the root of the tree to all the generated leaves form
results to the original query. Gather these results and
move up one level.

(3) Go through the nodes of the current level and, for
each node 𝑖, do:

(a) Retrieve the entry identifiers from the next
database in the sequence that are related to 𝑖
(eLink). These identifiers are stored in a new
level hanging from the node 𝑖.

(b) Retrieve the required information for the new
nodes (eFetch/eSummary).

(c) Make the new level the current one and go to 2
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PREFIX base: < >

WHERE {
?pubmed base:pubmed UID ?pubmedUID.
?pubmed base:pubmed TITL ?title.
?pubmed base:pubmed gene ?gene.
?gene base:gene UID ?geneUID.
?gene base:gene

FILTER (?title = “wilms tumor”).
}

Figure 7: The tested SPARQL query that retrieves articles from PubMed, then related records from Gene, and finally articles that talk about
those records from PubMed again.

(4) Once all nodes were used, prune this branch. If there
are levels above the current level, go up one level. Else,
finish the data retrieval process.

Once the results are retrieved, they are automatically
translated into SPARQL results format and given back to
the user. The result returning is performed in a progressive
manner, due to the time it requires to completely solve some
queries—for example, in queries involving the gene database,
there can be millions of results. With our API, clients must
request results one by one. To do this, the API offers the
typical “iteration” programming schema, with the hasNext
and next methods for exploring the result set.

The constructed workflows are always designed to pro-
duce a minimum possible count of requests to the NCBI
resources. This helps avoiding the performance penalties
imposed for launchingmultiple requests in a short time lapse.
In addition, all accessions to the NCBI databases by means of
the E-utilities services are performedusing the E-utilities own
history service. This allows reducing overload on the NCBI
datamanagement system and optimizing performance of our
API.

4. Experiments

This section describes howour systemdealswith an incoming
query, providing details of what NCBI-compliant queries are
performed to obtain the requested results.The data we intend
to retrieve involves three different NCBI databases. We will
retrieve papers indexed by PubMed which contain the string
“Wilms tumor” in their title. For each of these results, we
will retrieve related genes—toWilms tumor—from the Gene
database. Finally, for each of these genes, we will gather again
the PubMed database searching for papers that mention that
specific gene. Using the NCBI2RDF system, this query can be
performed in a single step. The resulting query in SPARQL is
depicted in Figure 7.

To process this query, NCBI2RDF automatically gener-
ates a dynamic workflow, which is executed as follows. First,
a single eSearch query targeted at PubMed and including
the filter TITLE=“wilms tumor” is generated, producing 3026

unique results which are stored in the NCBI history server.
Then, the first result of this set is retrieved with an eFetch
query and stored locally—by parsing the XML file repre-
senting this result. A third eLink query is performed using
the recently obtained UID and the pubmed gene relation
as arguments, which generates one single result. This result
is again retrieved with an eFetch query, and a new eLink
query is realized with the relation gene pubmed. This query
returns 557 results from the PubMed database, all of which
are fetched simultaneously.The concatenation of the firstUID
from PubMed, the subsequent UID from Gene, and each
of these UIDs composes the first set of retrieved results. To
complete the query, the algorithm backtracks twice—since
Gene only produces a single result—and selects the second
result from the initial PubMed query.This process is repeated
until all branches have been fully explored.

Processing a similar query with the NCBI native web
interface would involve manually visiting hundreds of thou-
sands of pages. For each of the 3026 initial results in PubMed,
the user would have to visit each result individually, and after
that, navigate the set of related results in the Gene database.
In addition, each Gene result would have to be opened
separately, together with its related PubMed records. In the
sample query previously shown, our system performed all
these steps automatically, producing an average of 50 results
per second—note however that this value depends on the
complexity of the query.

5. Discussion

The example presented in the previous section shows the
advantages that our system presents when compared to the
native NCBI interface.The sample query in Section 4 belongs
to a test set that we created to validate the system, which
included over 200 queries. By raising the expressiveness of
the NCBI query processing system, our API enables users to
launch complex queries while relieving them fromnavigating
through the NCBI pages that display each result.

To our knowledge, only the Bio2RDF [23] system is tar-
geted at offering RDF-based access to the NCBI repositories.
This system was designed to provide data from multiple
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Table 1: Comparison of features provided by Entrez, Bio2RDF, and NCBI2RDF for accessing the NCBI databases.

Query language Support for complex
queries

Support for full NCBI
database structure

Access to up-to-date
data

Adaptability to changes in
NCBI databases

Entrez HTML form No Yes Yes Yes

Bio2RDF HTML form No No No No

NCBI2RDF SPARQL Yes Yes Yes Yes

biomedical databases in an RDF-compliant form—data can
be retrieved in different formats, such as RDF, N3, or plain
HTML. However, they base their approach on the manual
analysis of HTML documents representing results of queries
in order to map its contents to a prefixed RDF structure. This
RDF structure wasmanually created (the Bio2RDF ontology)
and only covers some general concepts which are common to
all the covered databases.Therefore, Bio2RDF is only capable
of providing a few fields for each database. Furthermore,
the Bio2RDF interface does not support SPARQL queries
and instead resorts to a simple HTML form that allows
specifying either single results—through a result ID—or a
general search term. This approach allows a quick adoption
of new data sources—the system is prepared to be adapted
for new relational, HTML, XML, or unstructured databases,
but lacks the ability to cover the complexity of each integrated
database. Conversely, our approach focuses on maintaining
all the information contained in all the NCBI databases and
providing SPARQL querying capability over these databases.
Moreover, the automated metadata generation procedure
permits our system to seamlessly adapt to future changes
in the structure of the NCBI databases, or even cover new
databases not currently included in the NCBI repositories.
Bio2RDF, however, bases its approach on Java Server Pages
manually codified for each database, which must be reen-
coded with each database structure modification. Table 1
compares the features provided by NCBI2RDF with those of
Bio2RDF and the Entrez interface. Conversely, our approach
focuses on automatically building a new RDF schema that
reflects all databases, relations among these databases, vari-
ables, and filterable fields of the NCBI repositories. It is
possible, in addition, to define a mapping of this schema
to any existing domain ontology—for example, GO, FMA,
and PRO—thus enabling the integration of the NCBI data in
terms of these vocabularies. The NCBI2RDF approach solves
all syntactic heterogeneities between NCBI and the rest of
RDF-compliant biomedical data sources.

This research has been carried out in the context of a
large-scale European-funded research project, p-Medicine
[26]. This project is aimed at creating a technological
infrastructure with data integration capabilities for advanced
knowledge discovery in clinical trials in cancer. By integrating
the genomic information stored in theNCBI databaseswithin
the RDF-enabled p-medicine data infrastructure—which
already includes RDF-based access to other relevant sources
such as ArrayExpress [27]—we hope to further enhance

clinical and genomic information to foster the development
of novel personalized drugs for cancer patients based on their
genomic profile.

6. Conclusions

In this paper, we present NCBI2RDF, an API for provid-
ing SPARQL-based access to the NCBI databases. This is
achieved by dynamically building native NCBI query work-
flows. Results from different databases are merged to service
complex SPARQL queries involving multiple repositories.
The API has been thoroughly tested with a wide range
of queries, one of which was presented in Section 4. The
presented system effectively provides RDF-based access to all
the databases managed by the NCBI.

Our approach is based on two steps: metadata generation
and query resolution. The metadata generation stage gathers
information about the structure of the NCBI databases in
order to build the subsequent query workflows. This stage
is mostly automatic, although some human intervention
is still required. However, metadata generation is seldom
needed, as the structure of the NCBI databases does not
undergo frequent changes. Conversely, the query resolu-
tion aims at dynamically constructing the query work-
flows that will effectively allow servicing SPARQL queries.
These workflows emulate the manual work that a researcher
would have to carry out in order to retrieve the infor-
mation distributed across several databases—as explained
in Section 4. The workflows are designed to minimize the
interaction with the NCBI querying system, in order to save
resources.

Our system has two advantages compared to other exist-
ing systems—including the NCBI query services themselves.
First, the query expressiveness level is raised, since multiple
databases can be specified in a single query, saving both
time and resources for researchers who wish to perform
complex queries against the NCBI system. Second, it enables
the semantic integration of the data hosted by the NCBI with
other RDF-compliant biomedical resources.

Current biomedical research is highly dependent on
the ability of researchers to uniformly access different data
sources—both private and public. However, this capability
is mainly hampered by heterogeneities in the data structure,
formats, and interfaces. By providing RDF-compliance to
the NCBI databases, these heterogeneities are automatically
solved, enabling the integrated access of these data with other
existing RDF-based repositories.
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7. Availability

The software can be freely downloaded as a Java library.
Detailed instructions of use are included, as well as complete
Javadocs.The project homepage is located at http://www.bio-
informatics.org/ncbi2rdf/.
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