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A phase‑field model by an Ising 
machine and its application 
to the phase‑separation structure 
of a diblock polymer
Katsuhiro Endo1*, Yoshiki Matsuda2,3, Shu Tanaka3,4 & Mayu Muramatsu5

A novel model to be applied to next-generation accelerators, Ising machines, is formulated on the 
basis of the phase-field model of the phase-separation structure of a diblock polymer. Recently, Ising 
machines including quantum annealing machines, attract overwhelming attention as a technology 
that opens up future possibilities. On the other hand, the phase-field model has demonstrated its high 
performance in material development, though it takes a long time to achieve equilibrium. Although 
the convergence time problem might be solved by the next-generation accelerators, no solution has 
been proposed. In this study, we show the calculation of the phase-separation structure of a diblock 
polymer as the equilibrium state using phase-field model by an actual Ising machine. The proposed 
new model brings remarkable acceleration in obtaining the phase-separation structure. Our model can 
be solved on a large-scale quantum annealing machine. The significant acceleration of the phase-field 
simulation by the quantum technique pushes the material development to the next stage.

Diblock polymers are a widely used material for structures1. The microstructure of a diblock polymer changes 
depending on the synthetic conditions. The process of the change in microstructure is spinodal decomposi-
tion, and various phase-separated structures, such as lamellar, cubic, hexagonal, and gyroid structures, can be 
obtained2. Since this material structure has a strong influence on mechanical properties3, it is very important to 
predict which structure will be obtained experimentally.

To date, several methods have been developed to analyze the equilibrium state of diblock polymers, such as 
the molecular dynamics4 Monte Carlo method5, the self-consistent field theory6 and the phase-field model7,8. 
The phase-field model is a continuum model that expresses the interface with a smooth function using a vari-
able called the order parameter. This model has the advantage of being free from solving complicated boundary 
value problems. The governing equation can be derived in a relatively simple form. Hence, it is widely used to 
reproduce various material structures1,9–16. The governing equation of the phase-field model is formulated by 
variation of the energy functional. However, conventional analysis sometimes takes a very long time to obtain 
an equilibrium state, which is a problem when a large-scale simulation is required. Hence, various schemes have 
been proposed to solve this problem17–19, which is the key to accelerating material development.

On the other hand, next-generation accelerators including quantum computers are steadily developing. In 
particular, quantum annealing machines20–23 can search for the minimum value of the objective function at 
high speed. They are often applied to combinational optimization problems involving the objective functions of 
the target. If the objective function can be replaced with energy expressing the target phenomenon, quantum 
acceleration of finding of equilibrium state acquisition can be expected by a physics simulation24–27.

In this study, we propose an objective function for exploring the phase-separated structure of diblock poly-
mers by annealing, with an eye toward the use of quantum annealing. On the basis of the obtained results, we 
confirm the tendency of the microstructure and the simulation performance by comparison with the phase-field 
simulation. The approach is based on the use of a global optimization metaheuristic algorithm, called simulated 
annealing, to directly minimize the Helmholtz free energy instead of minimizing it analytically and then solving 
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the resulting nonlinear, partial differential equation, i.e., the governing equation of the phase-field model. In this 
paper, we illustrate the use of simulated annealing in the solution of the phase-field model by applying it to the 
formation of a microstructure in a diblock polymer.

First, we review the results of the conventional analysis method of the phase-field model and propose the Ising 
model for solving the phase-field model in the following section. Subsequently, we present the calculation results 
of the newly defined quantity for the Ising model. Ising machines are used as a dedicated accelerator for solving 
Ising model, and from the simulation by the Ising machine, we find remarkable results, which indicate the effec-
tiveness of the proposed approach. Finally, we conclude with remarks on the possibilities of a much larger-scale 
simulation and on the application of the annealing method to other problems related to continuum mechanics.

To verify the problem of spinodal decomposition for diblock polymers, we carry out conventional phase-field 
simulations. A phase diagram of the phase-separated structure in the diblock polymer is shown in Fig. 12. The 
phase-field model is composed of the gradient energy, Flory–Huggins interaction energy28,29, and Ohta-Kawasaki 
long-distance interaction energy30. The fineness of the phase-separation structure is controlled by the magnitude 
of the Ohta-Kawasaki energy. The governing equation is derived through the Cahn–Hilliard equation30 and 
discretized by the finite difference method following the conventional manner. The mobility M in the analysis 
is employed as M = 1.0 s−1 . The analysis area of 32µm× 32µm is discretized into 64× 64 grids under the 
periodic boundary condition.

The initial distribution is given by random noise around f = 0.5 , which is shown in Fig. 2a(i). First, we 
conduct a numerical analysis with the constant of long-distance interaction terms c0 equal to zero. Figure 2 
a(ii) shows the equilibrium state obtained by phase-field analysis. Polymer A is shown in blue, and polymer B is 
shown in red, being separated into two large phases. These large phases are considered to minimize the surface 
energy. Next, we change the parameter c0 in the long-distance term derived from the Ohta-Kawasaki energy30. 
We confirm that the incremental error at the final computational step becomes less than 1.2× 10−6 in all cases. 
The incremental error is defined as the product of the time increment per step and the maximum increment of 
the order parameter per step among all the grids. In Fig. 2b, the separation pattern, which is different from that 
in Fig. 2a, becomes finer with increasing parameter c0, which is considered to be induced by the effect of the long-
distance energy term of the Ohta-Kawasaki energy. Additionally, the phase-separation structure in Fig. 2a(ii) 
seems cubic or hexagonal, as in Fig. 1, while that in Fig. 2b(iii) is lamellar-like, as in Fig. 1. The effect becomes 
more significant as the effect of the Ohta-Kawasaki energy increases. Both simulations take approximately 5960 s.

We performed a new phase-field simulation using an Ising machine which solves one of the formalized com-
binatorial optimization problems, i.e., quadratic unconstrained binary optimization (QUBO). QUBO uses a set 
of binary states. The objective function, called the Hamiltonian, is composed only of the quadratic polynomials 
of the states. One of the advantages of Ising machines is that once the problem is well formalized as a QUBO-
style Hamiltonian, Ising machines can be used to solve the problem without paying attention to the details of 
numerical calculations, such as the discretization error of finite time steps and the solver implementation method.

f

Figure 1.   (Top) Phase diagram of a diblock polymer. The horizontal axis is the fraction of a monomer f  , while 
the vertical axis shows χN , the product of the polymerization N and the interaction parameter χ . (Bottom) 
Schematics of the phases of a diblock polymer.
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Our proposed method formalizes the problem of spinodal decomposition for diblock polymers into the 
QUBO-style Hamiltonian. This Hamiltonian is composed of four terms that represent different physical behav-
iors of diblock polymers: the sum amount conservation term, the Flory–Huggins interaction energy term, the 
gradient energy term and the Ohta-Kawasaki long-distance interaction energy term. The strength of the impact 
on each of the four terms is controlled by the parameters αF ,αI ,αA and αOK , respectively, and the parameter f  
determines the fraction of monomer. The strength of the Ohta-Kawasaki energy term controls the fineness of 
the phase-separation structure. Note that Ising machines efficiently find the global minimum solution of a given 
Hamiltonian without becoming trapped at a local minimum solution. Thus, if a desired final state of a phase-field 
model is a local minimum free energy near the initial state, Ising machines may not be able to obtain the same 
results as the conventional method. Therefore, we report a new method of the phase-field model whose final 
simulation state must be the global minimum free energy.

To perform phase-field simulation by the Ising machine, we transform the phase-field model into a QUBO 
model. We set a two-dimensional calculation area and divide it into grids. We assign four binary variables to 
any i-th grid point Si:

and we express the order parameter of the i-th grid point as 
∑

0≤k<4a4i+k . Since a4i+k ∈ {0, 1} , the value range of 
Si is from 0 to 4 in this case. If we assign more binary variables to each grid, the resolution of the result is expected 
to increase, and as a result, the total number of required binary variables also increases.

First, we conduct numerical simulation cases with and without Ohta-Kawasaki energy. We set the material 
properties in the analysis as follows: αI = 20.0,αA = 5.0,αOK = 0.0/0.4 and f = 0.5 . Figure 3 shows the numeri-
cal analysis results of Si . Clearly, the phases of polymer A and polymer B, shown in white and black, respectively, 

(1)Si = {a4i , a4i+1, a4i+2, a4i+3},

a Case without Ohta-Kawasaki energy

(i) Initial condition (ii) Equilibrium state (c0= 0)

(i) c0 = 10 (ii) c0 = 100 (iii) c0 = 1000
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Figure 2.   (a) Results of the phase-field analysis without considering the Ohta-Kawasaki energy at the (i) 
initial state and (ii) equilibrium state. A cubic or two-dimensional hexagonal structure is observed at the 
(ii) equilibrium state. (b) Parametric study of the phase-field analysis with the change in strength of the 
Ohta-Kawasaki energy. The stronger the Ohta-Kawasaki energy becomes, the finer the microstructure at the 
equilibrium state.
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are separated into two large phases without Ohta-Kawasaki energy, as shown in Fig. 3a, while the composition 
of polymers A and B with Ohta-Kawasaki energy equilibrates with a finer pattern, as shown in Fig. 3b.

Figure 4 shows the emulation process of the annealing optimization in other cases with and without Ohta-
Kawasaki energy. Note that this figure shows the results obtained when the Ising machine is interrupted before 
the process has finished and does not directly correspond to the physical time in the conventional method. 
We set αI = 20.0,αA = 5.0,αOK = 0.0/0.5 and f = 0.3. The simulation result without Ohta-Kawasaki energy 
(Fig. 4a(iv)) shows a larger pattern than the one with Ohta-Kawasaki energy (Fig. 4b(iv)). With the proposed 
Ising models, the simulation takes only 1 s.

To show the exact execution times of the two methods, we studied how the energy decreases with time in the 
conventional method and our new method in one simulation as an example. In Fig. 5a, we show the time evolu-
tion of the free energy of one randomly selected simulation using the conventional method. This figure shows 
that the simulation using the conventional method converges in about 4000 s (64 × 64 cells). Correspondingly, 
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Figure 3.   Results of a phase-field analysis in the case of f = 0.5 at the equilibrium state for a quantum 
annealing simulator. (a) Without Ohta-Kawasaki energy and (b) with Ohta-Kawasaki energy. In (b), the 
observed microstructure corresponds to that in the phase diagram, i.e., a lamellar structure.
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Figure 4.   Temporal change until equilibrium is reached by the quantum annealing simulator in the case of 
f = 0.3 (a) without Ohta-Kawasaki energy and (b) with Ohta-Kawasaki energy. As for the results obtained 
by the conventional phase-field analysis, the stronger the Ohta-Kawasaki energy becomes, the finer the 
microstructure at the equilibrium state. Without Ohta-Kawasaki energy, all the microstructures equilibrate as 
two large phases.
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we performed some simulations using our new method with different timeout times. In Fig. 5b–d, we show the 
minimum energy that was found in less than a specified time. This figure shows that the simulations using Ising 
machines reach the minimum energy in about 0.8 s (32 × 32 cells), 1.5 s (40 × 40 cells), and 2.5 s (48 × 48 cells), 
which is very fast compared with the conventional method.

Finally, we carry out inclusively large-scale parametric analyses. Figure 6a shows the numerical analysis results 
in the case of fraction rate f = 0.5 , and Fig. 6b shows the case of f = 0.3.

a b c d

Figure 5.   Energy during iterations of the conventional phase-field method and Ising machines. (a) Time 
evolution of the free energy in one simulation using the conventional method. (b–d) Minimum energy found in 
less than a specified time with different grid sizes.
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Figure 6.   Large-scale parametric phase-field analyses for the quantum annealing simulator. (a) shows the case 
where the volumetric fraction is 0.5, and (b) shows the case where the volumetric fraction is 0.3. Using our 
proposed method, these simulations are completed in dozens of minutes. As for the previous simulation results, 
the microstructures are coincident with those in the phase diagram.
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When you look at the phase diagram in Fig. 1, the case of f = 0.5 shows only lamellar patterns, indicating 
that the parametric study using the defined Hamiltonian outputs physically correct results. In the case of f = 0.3 , 
hexagonal or cubic patterns should be observed from the phase diagram of Fig. 1, and it seems that the dotted 
pattern or the striped patterns may change depending on the viewing direction of these patterns because of the 
carrying out of two-dimensional calculations. Similar to the conventional phase-field analysis results, the char-
acteristic length of the pattern seems to be shortened; thus, it makes sense that the pattern becomes finer as the 
long-distance interaction becomes stronger with increasing Ohta-Kawasaki energy.

When the coefficient of the gradient energy term becomes large, the parameter corresponding to the diffusion 
coefficient increases. This parameter change does not appear in the phase diagram in Fig. 1. The phase diagram 
should generally be created with the same material at a constant environmental temperature. However, the above 
outcome makes sense because the larger the gradient energy becomes, the larger the structure tends to be (the 
farther the material is distributed) in Fig. 6a,b. Additionally, in the region where the interaction energy is small, 
the pattern tends to be disordered, which is consistent with the phase diagram.

As shown in Fig. 6, the results are quite similar to those obtained by the conventional method, which means 
that the proposed modeling based on the Ising model is quite useful.

Note that there is no strict symmetry in the Ohta-Kawasaki term, but essentially, in the case of f = 0.7 and 
f = 0.3 , the colors are simply swapped. If αOK equals zero, there is strict symmetry; thus, the same pattern with 
completely inverted colors will appear. Additionally, since the Hamiltonian has symmetry when rotated 90 
degrees about the xy axes, the direction of the lamellar structure appears randomly.

In terms of accuracy evaluation, the new QUBO model is not exactly the same as the conventional one and, 
thus, does not shared exactly the same parameters as the conventional method; making a direct comparison 
with the same model parameters is impossible. Instead of comparing the accuracy between the two methods, we 
evaluate errors due to the discretization of continuous order parameters in a simulation. In our QUBO model, 
the order parameters Si was discretized to (0, 1, 2, 3, 4). We now introduce a continuous version of our QUBO 
model, called continuous-QUBO, that is, the term 

∑

ka4i+k in Eqs. (11)–(14) is replaced with continuous vari-
ables xi ∈ [0, 4] . Then, the Hamiltonian of continuous-QUBO is minimized and the optimal order parameter 
x∗i  is obtained using the gradient descent method. The error is calculated between the result obtained with the 
Ising machine, S∗i  , and the result of continuous-QUBO, x∗i  , which is considered the true value. This enables us 
to calculate the accuracy of the same model parameters. Figure 7 shows (a) one of the results obtained with the 
Ising machine, S∗i  , (b) the corresponding optimal order parameter of continuous-QUBO, x∗i  , and (c) the differ-
ence between the two plots. In this result, the mean error per cell �

∣

∣S∗i − x∗i
∣

∣�
i
 is about 0.018, which is sufficiently 

smaller than 1.0, which is the discretization size of the order parameter S∗i .
In this study, we proposed a novel method to solve the phase-field model by the objective function for 

exploring the phase-separated structure of diblock polymers by an Ising machine, with an eye toward the use 
of quantum annealer. We confirmed the tendency from the obtained results and the performance by compar-
ing them with the phase-field simulation. The approach involves the use of a global optimization metaheuristic 
algorithm, called simulated annealing, to directly minimize the Helmholtz free energy instead of minimizing it 
analytically and then solving the resulting nonlinear, partial differential equation, i.e., the governing equation 
of the phase-field model. As a result, we obtained the following:

1.	 The results obtained by Ising machine showed the same tendency as the results obtained from the conven-
tional phase-field analysis.

2.	 The obtained results were consistent with the phase diagram.
3.	 The analysis time was shortened to the extent that high-speed comprehensive analysis becomes possible.

The proposed modeling based on the Ising model has been shown to be very useful. In the future, we will 
address the following remaining issues for the practical use of this method. First, we will investigate the useful-
ness of the intermediate results obtained with an Ising machine, which may correspond to the non-equilibrium 

a b c

Figure 7.   Difference between the result obtained with the Ising machine and the minimized result of 
continuous-QUBO. (a) One of the results obtained with the Ising machine, (b) corresponding optimal order 
parameters of continuous-QUBO, and (c) difference between the two results.
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time history of the distribution obtained by the conventional method. Second, as the number of bits that Ising 
machines can handle increases, it will be possible to apply our method to the 3D domain. Third, as noted above, 
a direct comparison with the same model parameters is not yet possible. We will clarify the relationship between 
the parameters of our model and these of the conventional model by introducing correction terms using machine 
learning methods.

This scheme on how to discretize the continuum variable and formulate the QUBO will help in solving the 
other problems related to continuum mechanics.

Methods
Theory of the phase‑field model.  The phase-field model for spinodal decomposition is introduced. First, 
the Cahn–Hilliard equation31 can be written as follows:

where c is the concentration of a phase, which is the order parameter in the phase-field model, F is the free 
energy functional and M is the mobility. Here, F is formulated with consideration of the long-distance interac-
tion as follows:

where Fgrad is the gradient energy, Fchem is the chemical potential and Flong is the long-distance interaction. 
These variables are defined as

where the variables with indices a and b denote the quantities of phase a and phase b , respectively. Addition-
ally, c is the concentration, κ is the diffusion coefficient, and x and x′ are the position vectors. Moreover, χ is the 
interaction coefficient (Flory), and A is the coefficient of the long-distance interaction. These coefficients are 
defined by κ = 1/(12r(1− f )) and A = c0/(2N

2ds2f 2(1− f )2) , with the numerical constant c0 defined as in a 
previous work27, the ratio of phase b denoted by f  , the number of segments denoted by N and the length of the 
segment denoted by ds . Here, we can see that c0 is the constant associated with the long-distance interaction 
term derived from Ohta-Kawasaki energy. Note that ca + cb = 1 . The variation in the energy with respect to cb 
can be calculated as

Substituting Eq. (7) into the Cahn–Hilliard Eq. (2) and eliminating the index b , the equation can be reduced as

Here, µ is defined as µ ≡ −κ∇2c + χRT lnc , and M is considered constant. For the implementation of Eq. (8) 
in a program code, the finite difference method is generally employed. In addition, δ(x − x

′
) = ∇2

�ab(x − x
′
) , 

and δ is the Green function, which is calculated through a Fourier transformation.

Calculation by an Ising machine.  We conducted the calculations using Fixstars Amplify Annealing 
Engine (Amplify AE)32 with timeout of 1 s. Amplify AE is GPU-based Ising machine that can handle 100,000 
bit-class problems.

When solving a problem by using Ising machines, we must design QUBO models of the binary variables. 
The QUBO model is formulated as

(2)
∂c

∂t
= ∇ ·

{

M∇

(

δF

δc

)}

,

(3)F = Fgrad + Fchem + Flong,

(4)Fgrad =

∫

V

(

κa

2
|∇ca|

2 +
κb

2
|∇cb|

2
)

dv,

(5)Fchem = χ

∫

V
(RTcalnca + RTcblncb)dv,

(6)Flong = A

∫

V
�ab

(

x − x
′
)

ca

(

x
′
)

cb(x)dv,

(7)

δF

δcb
=
δFgrad

δcb
+

δFchem

δcb
+

δFlong

δcb

=− κb∇
2cb + χRT ln cb + A ∫

V ′

�ab

(

x − x
′
)

ca
(

x
′
)

dv′,

(8)

∂c

∂t
=∇ ·

[

κ∇

{

−a∇2c + χRT ln c + A ∫
V ′

�ab

(

x − x
′
)

ca
(

x
′
)

dv′
}]

=M∇2

[

µ+ ∫
V ′

�ab

(

x − x
′
)

ca
(

x
′
)

dv′
]

=M∇2
µ+M ∫

V ′

∇2
�ab

(

x − x
′
)

ca
(

x
′
)

dv′

=M∇2
µ+M ∫

V ′

δ

(

x − x
′
)

ca
(

x
′
)

dv′.
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where H is the Hamiltonian or the energy, N is the number of binary variables, ai ∈ {0, 1} is a binary variable, 
and Qij denotes the interaction parameters. Ising machines search the values {ai} so that the Hamiltonian H is 
minimized. The diagonal and off-diagonal elements of Q represent the strength of bias and quadratic interactions, 
respectively. Here, it is necessary to set Qij properly depending on the problem.

Hamiltonian.  We formulate the Hamiltonian. We construct the whole Hamiltonian H as a linear combina-
tion of the summation preservation term Hsum , the interaction (internal) energy term Hint , the gradient (adja-
cent) energy term Hadj , and the long-distance energy term (the so-called Ohta-Kawasaki energy) Hlong:

where

The term Hsum constrains the total order parameter of space. Equation (11) uses the square constraint because 
a strict preservation term cannot be used in QUBO models. The constant αF controls the strictness of preserva-
tion, and the constant f  denotes the target total ratio of the order parameter. The term Hint makes the order 
parameter of each point 0 or 4 to avoid intermediate states as much as possible, with strength αI . The term Hadj 
controls the strength of adjacent interactions by bringing closer the order parameter of adjacent pairs of the grid 
points together. Padj denotes the set of all adjacent pairs. The coefficient αA is the strength of adjacent interactions. 
The term Hlong expresses the Ohta-Kawasaki energy, and gij is defined as gij ≡ 1/rij , with the distance between 
grids i and j denoted by rij . Pall denotes the set of all pairs of all grid points.

Multiplying the coefficient of each term by a constant does not influence the simulation results; thus, we set 
αF to 1. In this setting, the whole Hamiltonian contains at most a quadratic term of the variables {ai} ; therefore, 
rearranging the whole Hamiltonian immediately yields the coefficient of QUBO models 

{

Qij

}

.
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