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Abstract

Background

Earlier puberty is widely linked with future obesity and cardiometabolic disease. We exam-

ined whether age at puberty onset likely influences adiposity and cardiometabolic traits inde-

pendent of childhood adiposity.

Methods and findings

One-sample Mendelian randomisation (MR) analyses were conducted on up to 3,611 white-

European female and male offspring from the Avon Longitudinal Study of Parents and Chil-

dren (ALSPAC) cohort recruited at birth via mothers between 1 April 1991 and 31 December

1992. Time-sensitive exposures were age at menarche and age at voice breaking. Out-

comes measured at age 18 y were body mass index (BMI), dual-energy X-ray absorptiome-

try–based fat and lean mass indices, blood pressure, and 230 cardiometabolic traits derived

from targeted metabolomics (150 concentrations plus 80 ratios from nuclear magnetic reso-

nance [NMR] spectroscopy covering lipoprotein subclasses of cholesterol and triglycerides,

amino acids, inflammatory glycoproteins, and others). Adjustment was made for pre-puber-

tal BMI measured at age 8 y. For negative control MR analyses, BMI and cardiometabolic

trait measures taken at age 8 y (before puberty, and which therefore cannot be an outcome

of puberty itself) were used. For replication analyses, 2-sample MR was conducted using

summary genome-wide association study data on up to 322,154 adults for post-pubertal

BMI, 24,925 adults for post-pubertal NMR cardiometabolic traits, and 13,848 children for

pre-pubertal obesity (negative control). Like observational estimates, 1-sample MR esti-

mates in ALSPAC using 351 polymorphisms for age at menarche (explaining 10.6% of

variance) among 2,053 females suggested that later age at menarche (per year) was asso-

ciated with −1.38 kg/m2 of BMI at age 18 y (or −0.34 SD units, 95% CI −0.46, −0.23; P =
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9.77 × 10−09). This coefficient attenuated 10-fold upon adjustment for BMI at age 8 y, to

−0.12 kg/m2 (or −0.03 SDs, 95% CI −0.13, 0.07; P = 0.55). Associations with blood pressure

were similar, but associations across other traits were small and inconsistent. In negative

control MR analyses, later age at menarche was associated with −0.77 kg/m2 of pre-pub-

ertal BMI measured at age 8 y (or −0.39 SDs, 95% CI −0.50, −0.29; P = 6.28 × 10−13),

indicating that variants influencing menarche also influence BMI before menarche. Cardio-

metabolic trait associations were weaker and less consistent among males and both sexes

combined. Higher BMI at age 8 y (per 1 kg/m2 using 95 polymorphisms for BMI explaining

3.4% of variance) was associated with earlier menarche among 2,648 females (by −0.26 y,

95% CI −0.37, −0.16; P = 1.16 × 10−06), likewise among males and both sexes combined. In

2-sample MR analyses using 234 polymorphisms and inverse variance weighted (IVW)

regression, each year later age at menarche was associated with −0.81 kg/m2 of adult BMI

(or −0.17 SD units, 95% CI −0.21, −0.12; P = 4.00 × 10−15). Associations were weaker with

cardiometabolic traits. Using 202 polymorphisms, later menarche was associated with lower

odds of childhood obesity (IVW-based odds ratio = 0.52 per year later, 95% CI 0.48, 0.57;

P = 6.64 × 10−15). Study limitations include modest sample sizes for 1-sample MR, lack of

inference to non-white-European populations, potential selection bias through modest com-

pletion rates of puberty questionnaires, and likely disproportionate measurement error of

exposures by sex. The cardiometabolic traits examined were heavily lipid-focused and did

not include hormone-related traits such as insulin and insulin-like growth factors.

Conclusions

Our results suggest that puberty timing has a small influence on adiposity and cardiometa-

bolic traits and that preventive interventions should instead focus on reducing childhood

adiposity.

Author summary

Why was this study done?

• People who enter puberty at younger ages are more likely to develop obesity and cardio-

metabolic diseases in adulthood, but whether this is because of puberty timing itself is

unknown.

• Childhood adiposity (fatness) may induce earlier puberty and may also track forward

into adulthood, making childhood adiposity an important potential confounder. Most

prior studies of puberty timing as a risk factor for adult obesity and cardiometabolic

dysfunction did not consider childhood adiposity and used crude measures of cardio-

metabolic traits. They also relied upon observational methods, which are prone to wider

confounding.

Puberty timing, adiposity, and cardiometabolic traits
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What did the researchers do and find?

• We used naturally occurring genetic variation in age at menarche to examine whether

puberty timing itself is likely to influence adiposity and cardiometabolic traits.

• Using data from >3,600 offspring from a multigenerational British birth cohort study,

we examined genetically proxied age at menarche/voice breaking in relation to body

mass index, objective fat and lean mass indices, blood pressure, and over 200 detailed

traits from targeted metabolomics. These outcome traits were all measured at age 18 y

(after puberty onset) and at age 8 y (before puberty onset), which allowed us to examine

the effects of puberty timing while accounting for outcome trait levels in childhood.

• We found that apparent effects of later puberty onset on lower adiposity and blood pres-

sure at age 18 y were largely attenuated when accounting for adiposity at age 8 y. Effects

on other cardiometabolic traits were small and inconsistent. We also found a strong

effect of higher adiposity at age 8 y on earlier puberty onset.

What do these findings mean?

• Our findings support puberty timing as a marker, not a driver, of adiposity and cardio-

metabolic trait levels.

• These findings suggest that interventions to prevent adult obesity and cardiometabolic

disease should focus on childhood adiposity, not puberty timing.

Introduction

The onset of puberty is pivotal for human growth and development [1–3]. Beyond immediate

effects on physical and sexual maturity, however, earlier onset of puberty is widely linked with

adverse health outcomes in adulthood. These include greater risk of obesity, hyperinsulinemia,

hyperlipidaemia [4], type 2 diabetes [5], hypertension [4], coronary heart disease [6], and early

mortality [7]. Whether puberty timing is a concern for cardiometabolic health in populations,

however, depends on whether it is truly causal. Higher adiposity in childhood may induce an

earlier puberty [8] and track forward into adulthood [9–13], making it an important potential

confounder. Prospective studies of puberty timing in relation to cardiometabolic outcomes

tend not to account for differences in pre-pubertal adiposity [14,15], and the few studies that

do often find substantial attenuation of puberty–outcome associations [4,16,17]. No studies to

our knowledge have yet examined puberty timing in relation to detailed traits from targeted

metabolomics in adulthood, and, importantly, evidence has so far been observational, with

inherent susceptibilities to residual confounding.

Direct manipulation of puberty timing to examine its cardiometabolic effects within a ran-

domised controlled trial setting would be costly, time intensive, and potentially unethical, and

such interventions have not been performed on non-human mammals. Advances in human

population genetics do, however, allow us to employ Mendelian randomisation (MR)—an

instrumental variable method that exploits the random assignment of exposure-associated risk

alleles. This method is by nature less prone to confounding and reverse causation bias, which

Puberty timing, adiposity, and cardiometabolic traits
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limit causal inference from observational data [18–20]. Nearly 400 common genetic variants

so far associate strongly and independently with age at menarche among females [21]. Nearly

half of these variants also associate with age at voice breaking among males, corroborating

functional work that indicates a heavily overlapping genetic and molecular architecture of

puberty timing between sexes [1,21,22]. Of concern, however, is the high degree of genetic

overlap between puberty timing and adiposity [21], which challenges our ability to examine

effects of puberty timing variants that operate exclusively through puberty timing—a core

assumption of MR. Multivariate MR methods exist [23] but carry risk of inducing serious bias

in this instance through stratification on a potential mediator (post-pubertal adiposity) [24].

Given the time-sensitive nature of pubertal age, it would be advantageous to account for a pre-

pubertal measure of adiposity within an MR setting as this may help to further address

confounding.

This study aimed to determine whether puberty timing is likely to have a distinct influence

on adiposity and cardiometabolic traits in adulthood. First, we used data from a British birth

cohort study (the Avon Longitudinal Study of Parents and Children [ALSPAC]) to examine

observational estimates of age at menarche among females in relation to adiposity and a large

set of cardiometabolic traits measured at age 18 y, accounting for pre-pubertal body mass

index (BMI) measured at age 8 y. We then examined 1-sample MR estimates of age at menar-

che in relation to adiposity and cardiometabolic traits, also accounting for pre-pubertal BMI.

Data from international genome-wide association study (GWAS) consortia were used for rep-

lication of MR estimates.

Methods

Study population

Data on offspring from ALSPAC were used for the main analyses. ALSPAC is a population-

based birth cohort study in which 14,541 pregnant women with an expected delivery date

between 1 April 1991 and 31 December 1992 were recruited from the former Avon county of

southwest England. Since then, the mothers and their offspring (N = 13,988 who were alive at

1 y) have been followed repeatedly with questionnaire- and clinic-based assessments [25], with

an additional 713 children enrolled over the course of the study. Non-sibling participants were

considered for the present analyses (excluding 202 non-first-borns). A further 604 participants

of a non-white ethnicity were excluded to minimise the confounding of associations by ances-

tral population structure. Participants provided written informed consent, and ethical

approval was obtained from the ALSPAC Law and Ethics Committee and the local research

ethics committee. Cohort details and data descriptions are publicly available (http://www.

bristol.ac.uk/alspac/researchers/access).

Prespecified study protocol

A study protocol was written in December 2016 for an ALSPAC data proposal prior to analy-

ses (S1 Protocol) as part of wider investigations into puberty timing and cancer. Analyses that

were not prespecified but added following peer review included 1-sample MR analyses of BMI

with summary cardiometabolic trait outcomes for sample power comparisons, funnel plots of

polymorphisms for age at menarche in relation to adult adiposity and blood pressure to assess

heterogeneity, multivariate MR of age at menarche and childhood BMI in relation to adult adi-

posity and blood pressure to compare estimates with main results, and 2-sample MR of the

effect of age at menarche on childhood obesity.

Puberty timing, adiposity, and cardiometabolic traits
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Assessment of puberty timing

Among females, puberty timing was indicated by the age (in years) at which menarche

occurred. Data were reported by females through questionnaires distributed annually from the

ages of 8 y to 17 y, covering the expected duration of puberty. The earliest report of age at men-

arche was used for analyses when several were available, assuming this to be closer to the event

and thus most accurate. Among males, puberty timing was indicated by the age (in years) at

which voice breaking occurred. Items from annual questionnaires asked whether voice

changes had partially or totally occurred by the time of assessment but not the specific age of

occurrence; we therefore estimated age at voice breaking by taking the age at which any stage

of voice breaking (partial or total) was first reported and subtracting 6 months from this age to

represent the midpoint between this occasion of first report and the occasion immediately

prior. In cases where data on this most recent prior occasion were missing yet data on an older

occasion were not, this subtraction was increased to 12 months, 24 months, etc., to reflect the

midpoint between the occasion of first report and the most recent prior occasion known.

Assessment of genotype and genetic instruments

Genotype was assessed using the Illumina HumanHap550 quad chip platform. After quality

control through exclusion of participants with sex mismatch, minimal or excessive heterozy-

gosity, disproportionately missing data, insufficient sample replication, cryptic relatedness,

and non-European ancestry, 500,527 single nucleotide polymorphisms (SNPs) were measured

directly. Imputation using the 1000 Genomes reference panel from the Impute2 repository

resulted in coverage of 8,099,747 SNPs after further quality control.

An instrument for puberty timing was constructed within a 1-sample MR framework

[18,26,27] using genetic variants robustly and independently associated with age at menarche

in the largest GWAS to date, which meta-analysed imputed genomic scans of self-reported age

at menarche (in years, unadjusted for BMI) from 329,345 post-pubertal women from 42 cohort

studies [21]. A total of 389 independent variants reached a P-value threshold for genome-wide

significance (P< 5 × 10−8) in a discovery sample; these were largely replicated in a separate

sample of 39,543 post-pubertal women from the Icelandic deCODE study, explaining 7.4% of

the variance in age at menarche in the replication sample. Of these 389 variants, 363 were

SNPs (not deletion/insertion polymorphisms). Twelve of these SNPs were not available in

ALSPAC imputed genotype files, leaving 351 SNPs for instrumentation. A genetic risk score

(GRS) was constructed using PLINK 1.9 software, specifying the effect (age at menarche–rais-

ing) allele and beta coefficients from the source GWAS as external weightings. Scoring was

done by multiplying the number of effect alleles (or probabilities of effect alleles if imputed) at

each SNP (0, 1, or 2) by its weighting, summing these, and dividing by the total number of

SNPs used. The score therefore reflects the average per-SNP effect on age at menarche. Among

1,831 females eligible for analyses in ALSPAC, this score was associated with measured age at

menarche (P = 1.87 × 10−46), explaining 10.6% of the variance (F = 216.8). It was less strongly

associated with age at voice breaking among 1,312 males (P = 0.01), explaining 0.50% of the

variance (F = 6.5). Among 3,143 females and males combined, this score was associated with

age at puberty onset (P = 2.18 × 10−18), explaining 2.4% of the variance (F = 77.5). This GRS

was also directly associated with BMI at age 18 y among females (P = 3.44 × 10−06), among

males (P = 0.002), and among both sexes combined (P = 1.37 × 10−07).

A refined GRS for puberty timing was also considered based on SNPs associated genome-

wide with age at menarche that were also associated (at P< 0.05) with age at voice breaking

(measured in years) in a separate sample of 55,871 males in the 23andMe study [21], to better

represent exposure among males. Of 119 SNPs, 115 were available in ALSPAC imputed

Puberty timing, adiposity, and cardiometabolic traits
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genotype files for instrumentation. This refined GRS was similarly associated with age at voice

breaking among males as the full GRS (P = 0.01) and explained a similarly low amount of vari-

ance (0.58%, F = 7.7). Its P-value for direct association with BMI at age 18 y was 0.11.

A GRS for BMI was also constructed using SNPs associated genome-wide with adult BMI

from the most recent meta-analysis of the Genetic Investigation of Anthropometric Traits

(GIANT) consortium, which comprises 322,154 men and women from 114 cohort studies

[28], using the same methods described above. Of 97 SNPs, 95 were available in ALSPAC

imputed genotype files for instrumentation. Among 3,171 females and males in ALSPAC, this

score was associated with BMI measured at age 8 y (P = 6.62 × 10−26), explaining 3.44% of the

variance (F = 112.8).

Assessment of adiposity and cardiometabolic traits

Height and weight were measured while in light clothing and without shoes during each

clinic visit from age 3 y onwards; data from approximate ages of 8 y and 18 y were used in the

present analyses. Weight was recorded to the nearest 0.1 kg using a Tanita scale, and height to

the nearest 0.1 cm using a Harpenden stadiometer. BMI was calculated based on weight (in

kilograms) divided by the square of height (in meters). Participants also underwent body

composition scanning with dual-energy X-ray absorptiometry using a Lunar Prodigy narrow

fan beam densitometer, from which estimates of total body fat and lean mass (in kilograms)

were obtained. Fat mass index and lean mass index were derived in the same way as for BMI

(in kg/m2).

Systolic and diastolic blood pressure (SBP and DBP, respectively) were additionally exam-

ined twice in succession while seated and at rest, with the arm supported, using a cuff and

DINAMAP 9301 device; the mean of these 2 measures represented resting blood pressure.

Blood samples were drawn during these same 2 clinic visits, the age 8 y sample while not

fasting and the age 18 y sample while fasting (the metabolic trait concentrations included

in the study have shown stability over different durations of fasting time [29]). Proton

nuclear magnetic resonance (NMR) spectroscopy as part of a targeted high-throughput

metabolomics platform [30] was performed on both blood samples to quantify 230 cardiome-

tabolic traits (150 concentrations plus 80 ratios) comprising lipoprotein cholesterol subclass

particle concentrations and sizes, glycerides and phospholipids, apolipoproteins, fatty acids,

glycolysis-related factors, amino acids, ketone bodies, and factors related to fluid balance and

inflammation.

Assessment of covariates

Covariates considered were basic demographic variables of participant age (in months) at the

time of each outcome trait assessment and the highest level of education attained by their

mother as answered by her through questionnaire after birth (grouped based on English stan-

dards as Certificate of Secondary Education, vocational, O level, A level, or degree) as an indi-

cator of childhood socioeconomic position. Health behaviour covariates were not considered

due to individual differences in exposure timing.

Statistical analyses

The conceptual framework of this study is outlined in Fig 1.

In observational analyses, linear regression models were used to examine age at menarche/

voice breaking (in years) separately among females and males in relation to the dependent var-

iables BMI, fat mass index, lean mass index, SBP, DBP, and other cardiometabolic traits, mea-

sured at approximately age 18 y. Outcomes were standardised (mean = 0, SD = 1) to allow

Puberty timing, adiposity, and cardiometabolic traits
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comparability of effect sizes, and robust standard errors were used to accommodate skewed

outcome distributions [31]. The following models were constructed: (i) adjusted for age (in

months) at outcome assessment and maternal education; (ii) adjusted for age, maternal educa-

tion, and BMI measured at age 8 y, to examine whether puberty timing is associated with out-

comes at age 18 y independent of pre-pubertal BMI; and (iii) adjusted for age, maternal

education, and the age 8 y value of the specific outcome trait being examined at age 18 y, to

examine whether puberty timing is associated with post-pubertal outcomes independent of

pre-pubertal values of those same traits. Observational analyses were repeated among females

and males combined.

One-sample MR analyses were first conducted among females only, given the greater

strength of age at menarche instruments. Two-stage least squares (2SLS) regression models

with robust standard errors were used to examine the full GRS for age at menarche (351 SNPs

with external weightings) as an instrument for age at menarche in relation to the outcomes of

BMI, fat mass index, lean mass index, SBP, DBP, and other cardiometabolic traits at age 18 y.

The following models were constructed: (i) unadjusted; (ii) adjusted for measured BMI at age

8 y (in both first- and second-stage models), to examine whether instrumented age at menar-

che is associated with outcomes at age 18 y independent of pre-menarche BMI; and (iii)

adjusted for the age 8 y value of the specific outcome trait being examined at age 18 y, to exam-

ine whether instrumented age at menarche is associated with post-menarche outcomes inde-

pendent of pre-menarche values of those specific traits. These models were repeated among

females and males combined (based on age at menarche/voice breaking, respectively) to exam-

ine whether greater sample size improves the precision of results despite reduced instrument

strength. Models were also repeated using the refined GRS for age at menarche (115 SNPs also

associated with age at voice breaking among males) among males only.

In the second set of 1-sample MR analyses, 2SLS models with robust standard errors were

used to examine the full GRS for age at menarche as an instrument for age at menarche among

females in relation to BMI, fat mass index, lean mass index, SBP, DBP, and other cardiometa-

bolic traits measured at age 8 y (before menarche). This analysis served as a negative control

analysis intended to illustrate the extent of pleiotropy within the genetic instrument, given that

any associations of instrumented age at menarche with traits measured before menarche can-

not be generated by age at menarche itself (because this is temporally implausible). These mod-

els were repeated on females and males combined.

In the third set of 1-sample MR analyses, 2SLS models with robust standard errors were

used to examine the GRS of 95 SNPs for BMI as an instrument for BMI at age 8 y in relation to

age at puberty onset among females, among males, and among both sexes combined.

Fig 1. Conceptual framework of this study.

https://doi.org/10.1371/journal.pmed.1002641.g001
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All analyses described above were performed on unrestricted samples of participants (sam-

ple sizes varying across models). To examine the extent to which potentially non-randomly

missing data biased results, all models were repeated on complete case samples of participants

with all relevant data.

To gauge the adequacy of ALSPAC sample power to generate reliable 1-sample MR esti-

mates, we examined estimates for BMI at age 8 y and 18 y (each standardised, given dissimilar

variance over time) in relation to standardised summary cardiometabolic traits at age 8 y and

18 y. Strong evidence of association is expected for BMI at least in relation to SBP, DBP, and

triglycerides, based on known effects among young adults [12], if the sample is adequately

powered.

For comparison with 1-sample MR estimates based on measured pre-pubertal BMI adjust-

ments, we performed multivariate MR analyses of age at menarche in relation to adiposity and

blood pressure at age 18 y using genetically predicted trait adjustments in ALSPAC. For unad-

justed models, genetically predicted age at menarche and childhood BMI were first derived by

regressing each exposure trait with its externally weighted GRS as an independent variable

(using the same SNP inclusion criteria as prior). Predicted values from first-stage regressions

were then used as independent variables in relation to outcome traits in second-stage models.

For multivariate adjusted models, genetically predicted age at menarche and childhood BMI

were first derived by regressing each exposure trait with both externally weighted GRSs as 2

independent variables. Predicted values from first-stage regressions were then used as inde-

pendent variables in relation to outcome traits in second-stage models [32].

Given the large number of statistical tests performed and the correlated nature of outcome

traits, the P-value threshold of 0.05 commonly used for guiding nominal statistical significance

can be corrected for multiple testing using the Bonferroni method assuming 33 independent

tests (the number of principle components explaining 95% of the variance in the cardiometa-

bolic outcomes studied here in previous multi-cohort analyses [12]); the P-value threshold for

statistical significance becomes P< 0.002. Here, P-values were interpreted as continuous indi-

cators of the strength of evidence against the null hypothesis [33], with effect size and precision

considered most informative. Analyses were conducted using Stata 14 (StataCorp).

Replication analyses

As a replication analysis for 1-sample MR, 2-sample MR was additionally carried out using

summary-level GWAS data available through the MR-Base platform (http://www.mrbase.org)

[34]. Data for BMI were from the GIANT consortium [28], described above, representing

322,154 post-pubertal females and males. Data for cardiometabolic traits were from Kettunen

et al. [35], based on trait concentrations derived from an NMR-based metabolomics platform

(the same used for the above ALSPAC analyses) on 13,171 to 24,925 post-pubertal females and

males from 14 cohort studies. Following additional SNP pruning for high linkage disequilib-

rium (LD) using R2 < 0.01 within a 10,000-kb distance to satisfy modelling criteria, inverse

variance weighted (IVW) regression models were used to produce estimates of linear associa-

tion (assuming no sample overlap and the same underlying population [20]). Coefficients

were interpreted as standardised mean differences in outcome per year later age at menarche

[21]. When an exposure-associated SNP was absent in the outcome GWAS, a proxy SNP in

high LD (R2� 0.80) was used with the same criteria as above [34]. If no proxy SNP was avail-

able, then that SNP was excluded. Because of this and possible allele harmonisation issues, the

number of instruments used for estimates varies and is reported. Where IVW coefficients

showed strong evidence of effect, results from 2 sensitivity models were examined to account

for directional pleiotropy. The first was MR-Egger regression [36], which tests for differences
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from a 0 intercept representing the average pleiotropic effect across all variants assuming that

pleiotropic effects on the outcome are independent of their effects on the exposure; the slope

provides an estimate of association magnitude allowing all such variants to be pleiotropic. The

second sensitivity method was weighted median (WM) regression [37], which is interpreted

similarly to IVW models but allows the weight of up to half of the contributing variants to be

pleiotropic and is less influenced by outliers. To complement negative control 1-sample MR

analyses for adiposity, we also examined the effect of later menarche on childhood obesity,

defined as a�95th percentile BMI value (versus <50th percentile BMI value) using outcome

data on 13,848 children (mean age across 14 cohorts = 2–10 y) from the Early Growth Genetics

(EGG) consortium [38]. Analyses were performed using R-Studio 1.0.44 (R version 3.3.2) and

publicly available code (TwoSampleMR; https://mrcieu.github.io/TwoSampleMR).

Results

Sample characteristics

Characteristics of ALSPAC females who were eligible for any analysis (i.e., who had data on

age at menarche, covariates, at least 1 adiposity indicator, and at least 1 cardiometabolic trait)

are shown in Table 1. Among 2,112 females, age at menarche ranged from 8 y to 16 y (mean =

12.37 y). Among 1,499 males, age at voice breaking ranged from 9.08 y to 16.67 y (mean =

13.21 y) (S1 Table). Females and males who had missing data on age at menarche/voice break-

ing but were otherwise eligible for inclusion in analyses had lower maternal education but

showed no clear difference in adiposity and cardiometabolic traits (S2 Table).

Observational associations of age at menarche with adiposity and

cardiometabolic traits at age 18 y

Females in the latest versus earliest group of age at menarche had a lower BMI at 18 y (22.04

versus 24.39 kg/m2, P = 4.53 × 10−20), a difference already apparent at age 8 y (15.71 versus

17.21 kg/m2, P = 4.41 × 10−29; Table 1). In models adjusting for age and maternal education

among 2,230 females (S3 Table; Fig 2), each year later age at menarche was associated with

−0.81 kg/m2 of BMI at age 18 y (or −0.20 SD-units, 95% CI −0.24, −0.17; P = 5.91 × 10−29).

Upon additional adjustment for BMI at age 8 y to account for differences in pre-pubertal BMI,

this coefficient attenuated 4-fold from −0.81 kg/m2 to −0.20 kg/m2 (or −0.05 SDs, 95% CI

−0.07, −0.02; P = 0.002). Patterns were similar for fat mass index but less apparent for lean

mass index. Similar results were seen among males based on age at voice breaking: lower BMI

was already observed at age 8 y with later voice breaking (S1 Table), and associations of later

voice breaking with lower BMI at age 18 y attenuated upon adjustment for BMI at age 8 y (S4

Table). These associations were weaker among females and males combined than among the

sexes separately (S5 Table).

Differences in summary cardiometabolic traits at age 18 y and at age 8 y among females in

the latest versus earliest group of age at menarche were small, being largest for SBP and DBP

(Table 1). In models adjusting for age and maternal education on up to 2,087 females (S3

Table; Figs 2–4), associations of later age at menarche with other cardiometabolic traits at age

18 y were generally small in magnitude, with moderate-to-high P-values. The direction of the

effect with later age at menarche was inconsistent across very low-density lipoprotein (VLDL)

traits, but was generally positive across intermediate-density lipoprotein (IDL), low-density

lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride, and fatty acid traits, and neg-

ative across SBP, DBP, and amino acid traits. The largest effect size was observed with DBP, at

−0.63 mm Hg (or −0.10 SD-units, 95% CI −0.13, −0.06; P = 1.00 × 10−07). Attenuation was
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slight when adjusting for BMI at age 8 y, and when adjusting for specific outcome trait values

at age 8 y (S1–S3 Figs) (e.g., the coefficient for DBP at age 18 y reduced from −0.63 mm Hg to

−0.38 mm Hg when adjusting for BMI at age 8 y, and from −0.63 mm Hg to −0.50 mm Hg

when adjusting for DBP at age 8 y). Among males, associations of age at voice breaking with

cardiometabolic traits were generally smaller in magnitude; attenuations were slight upon

adjustment for BMI at age 8 y and for specific outcome traits at age 8 y (S4 Table), likewise

among females and males combined (S5 Table; S4–S9 Figs).

One-sample MR of age at menarche for adiposity and cardiometabolic

traits at age 18 y

Using the full GRS as an instrument among 2,053 females (S6 Table; Fig 2), each year later age

at menarche was associated with −1.38 kg/m2 of BMI at age 18 y (or −0.34 SD-units, 95% CI

−0.46, −0.23; P = 9.77 × 10−09). Effect size was larger for fat mass index (at −1.11 kg/m2) than

for lean mass index (at −0.28 kg/m2). Upon adjustment for measured BMI at age 8 y, the

Table 1. Characteristics of females by age at menarche group in ALSPAC at age 8 y and 18 y.

Characteristic Age at menarche among females

Sample mean (SD) = 12.37 y (1.12 y)

P-value

Earliest

(8–11 y)

N = 447

Intermediate

(12 y)

N = 722

Latest

(13–16 y)

N = 943

Intermediate versus earliest Latest versus earliest

Mother has no further academic education—N (%) 249 (55.70) 384 (53.19) 493 (52.28) 0.40 0.23

After puberty onset (age 18 y assessment)
Body mass index (kg/m2)—mean (SD) 24.39 (4.73) 23.15 (4.30) 22.04 (3.67) 6.76 × 10−06 4.53 × 10−20

Fat mass index (kg/m2)—mean (SD) 9.06 (3.76) 8.08 (3.32) 7.21 (3.04) 7.85 × 10−06 4.70 × 10−19

Systolic blood pressure (mm Hg)—mean (SD) 111.07 (8.19) 110.23 (7.84) 109.23 (7.58) 0.09 7.70 × 10−05

Diastolic blood pressure (mm Hg)—mean (SD) 66.30 (6.22) 64.97 (6.20) 64.34 (5.76) 4.42 × 10−04 3.19 × 10−08

Triglycerides (mmol/l)—mean (SD) 0.93 (0.32) 0.92 (0.31) 0.92 (0.31) 0.54 0.60

HDL cholesterol (mmol/l)—mean (SD) 1.47 (0.23) 1.49 (0.23) 1.50 (0.23) 0.22 0.05

LDL cholesterol (mmol/l)—mean (SD) 1.12 (0.35) 1.14 (0.35) 1.16 (0.36) 0.39 0.15

Total cholesterol (mmol/l)—mean (SD) 3.71 (0.65) 3.76 (0.65) 3.80 (0.68) 0.30 0.08

Glucose (mmol/l)—mean (SD) 4.06 (0.36) 4.04 (0.31) 4.05 (0.41) 0.42 0.68

Glycoprotein acetyls (mmol/l)—mean (SD) 1.26 (0.15) 1.24 (0.13) 1.24 (0.13) 0.11 0.06

Before puberty onset (age 8 y assessment)
Body mass index (kg/m2)—mean (SD) 17.21 (2.32) 16.42 (2.13) 15.71 (1.72) 6.03 × 10−08 4.41 × 10−29

Fat mass index (kg/m2)—mean (SD) 5.91 (2.32) 5.01 (2.26) 4.26 (2.02) 2.68 × 10−09 1.47 × 10−31

Systolic blood pressure (mm Hg)—mean (SD) 100.88 (9.93) 99.02 (9.18) 97.73 (8.72) 0.003 1.25 × 10−07

Diastolic blood pressure (mm Hg)—mean (SD) 57.79 (6.67) 57.07 (6.56) 56.29 (6.34) 0.09 2.21 × 10−04

Triglycerides (mmol/l)—mean (SD) 1.09 (0.42) 1.09 (0.36) 1.06 (0.36) 0.98 0.27

HDL cholesterol (mmol/l)—mean (SD) 1.45 (0.21) 1.48 (0.19) 1.50 (0.20) 0.02 0.001

LDL cholesterol (mmol/l)—mean (SD) 1.23 (0.31) 1.29 (0.36) 1.27 (0.32) 0.03 0.09

Total cholesterol (mmol/l)—mean (SD) 3.94 (0.58) 4.04 (0.62) 4.02 (0.59) 0.04 0.06

Glucose (mmol/l)—mean (SD) 4.17 (0.51) 4.14 (0.47) 4.11 (0.51) 0.40 0.14

Glycoprotein acetyls (mmol/l)—mean (SD) 1.27 (0.14) 1.25 (0.13) 1.23 (0.14) 0.06 0.001

Sample sizes vary as participants described are those with data on age at menarche, covariates, at least 1 adiposity trait, and at least 1 cardiometabolic trait. Age at

menarche was self-reported rounded down to the nearest whole year; the mean value was calculated from these values. ‘No further academic education’ defined as

highest level of education attained being Certificate of Secondary Education, vocational, or O level (not A level or degree).

HDL, high-density lipoprotein; LDL, low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1002641.t001
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coefficient for BMI at 18 y attenuated over 10-fold from −1.38 kg/m2 to −0.12 kg/m2 (or −0.03

SDs, 95% CI −0.13, 0.07; P = 0.55), with similar attenuations for fat and lean mass indices and

upon adjustment for specific outcome trait values at age 8 y (S1–S3 Figs). Among females and

males combined, attenuation of the coefficient for BMI was also evident, but with a greater effect

on lean mass index than on fat mass index (S7 Table; S7 Fig). Similar results were seen when

using the refined GRS among males (S8 Table). Results of a multivariate MR model using full

GRSs among females (S9 Table) showed a similar unadjusted effect of later genetically predicted

age at menarche on BMI at age 18 y (−0.28 SD-units, 95% CI −0.36, −0.19; P = 2.92 × 10−10) and a

similar near-complete attenuation of this effect upon adjustment for genetically predicted BMI at

age 8 y (to −0.001 SD-units, 95% CI −0.10, 0.10; P = 0.99). In this multivariate model, higher

genetically predicted BMI at 8 y showed an expectedly greater effect on BMI at 18 y; this effect

was minimally attenuated upon adjustment for genetically predicted age at menarche.

Using the full GRS among females, effect sizes for later age at menarche for cardiometabolic

traits were close to 0, with the direction of coefficients being inconsistent across VLDL traits;

Fig 2. Associations of age at menarche with adiposity and blood pressure at age 18 y among females in ALSPAC.

https://doi.org/10.1371/journal.pmed.1002641.g002
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positive across IDL, LDL, HDL, triglyceride, and fatty acid traits; and negative across SBP, DBP,

and amino acid traits (S6 Table; Figs 5 and 6). Substantial attenuation of coefficients for SBP

and DBP was seen with adjustment for BMI at age 8 y; this attenuation was less pronounced

when adjusting for genetically predicted BMI at age 8 y in a multivariate MR model (S9 Table).

Attenuations showed no clear pattern across other cardiometabolic traits. Attenuations were

similarly unclear with adjustment for specific outcome trait values at age 8 y (S1–S3 Figs).

Among females and males combined (S7 Table; S4–S9 Figs), associations with cardiometabolic

traits were more pronounced, with effect size being largest for SBP, at −3.88 mm Hg (or −0.40

SD-units, 95% CI −0.59, −0.22; P = 2.00 × 10−05), and for citrate, at 0.40 SD-units (95% CI 0.19,

0.61; P = 1.55 × 10−40). Attenuations, if any, were modest with adjustment for BMI at age 8 y

but were more substantial with adjustment for specific outcome trait values at age 8 y. Using the

refined GRS of 115 SNPs as an instrument among males (S8 Table), associations were generally

weaker with adiposity and cardiometabolic traits, with greater inconsistency and imprecision

than when using the full GRS among females and among both sexes combined, both before and

after adjustment for BMI at age 8 y and for specific outcome trait values at age 8 y.

Negative control 1-sample MR of age at menarche for adiposity and

cardiometabolic traits at age 8 y

Using the full GRS among females (Fig 7; S10 Table), each year later age at menarche was asso-

ciated with −0.77 kg/m2 of BMI (or −0.39 SDs, 95% CI −0.50, −0.29; P = 6.28 × 10−13) mea-

sured at age 8 y. Effect sizes were similar for fat and lean mass indices, and were relatively high

Fig 3. Observational associations of age at menarche with lipid cardiometabolic traits at age 18 y among females in ALSPAC. HDL, high-density lipoprotein; IDL,

intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density lipoprotein; XL VLDL, chylomicrons and extremely large very low-density

lipoprotein.

https://doi.org/10.1371/journal.pmed.1002641.g003
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for SBP, at −1.73 mm Hg (or −0.19 SD-units, 95% CI −0.30, −0.08; P = 4.94 × 10−04), and DBP,

at −1.13 mm Hg (or −0.17 SD-units, 95% CI −0.27, −0.07; P = 1.25 × 10−03), measured at age 8

y. Associations with other cardiometabolic traits at age 8 y were of a similar or higher magni-

tude to those seen at age 18 y (S10 Fig). Associations using the full GRS were of a larger magni-

tude among females and males combined than among females only (S11 Table; S11 and S12

Figs), likewise when using the refined GRS as an instrument among males (S12 Table).

One-sample MR of pre-pubertal adiposity for age at puberty onset

Using the GRS of 95 SNPs for BMI as an instrument, higher BMI (per 1 kg/m2) at age 8 y was

associated with an earlier age at menarche among 2,648 females, at −0.26 y (95% CI −0.37,

−0.16; P = 1.16 × 10−06); an earlier age at voice breaking among 2,150 males, at −0.33 y (95%

CI −0.57, −0.09; P = 0.01); and an earlier age at puberty onset among females and males com-

bined, at −0.27 y (95% CI −0.39, −0.16; P = 3.43 × 10−06).

Additional analyses

Results of complete case analyses for all above analyses are presented in S3–S12 Tables. Obser-

vational associations among a consistent sample of 664 females and 605 males were similar as

among unrestricted samples; the largest effect sizes for later age at menarche were for BMI, fat

mass index, lean mass index, SBP, and DBP at age 18 y, with similar attenuation patterns seen

with adjustment for BMI and specific outcome trait values at age 8 y. Estimates from 1-sample

MR models among a consistent sample of 629 females were similar as among unrestricted

samples, as were those among a consistent sample of 1,193 females and males.

In additional analyses for power comparisons (S13 Table), higher BMI at age 8 y (per SD-

unit higher) among males and females combined was expectedly associated with higher SBP

Fig 4. Observational associations of age at menarche with non-lipid cardiometabolic traits at age 18 y among females in ALSPAC.

https://doi.org/10.1371/journal.pmed.1002641.g004

Puberty timing, adiposity, and cardiometabolic traits

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002641 August 28, 2018 13 / 25

https://doi.org/10.1371/journal.pmed.1002641.g004
https://doi.org/10.1371/journal.pmed.1002641


(at 0.47 SD-units, 95% CI 0.33, 0.61; P = 3.75 × 10−11) and higher DBP (at 0.35 SD-units, 95%

CI 0.20, 0.50; P = 5.93 × 10−06) at age 8 y. These associations were weaker but directionally con-

cordant at age 18 y. Associations were also relatively strong with glycoprotein acetyls, HDL-

cholesterol, triglycerides, and glucose. These associations were most consistent by sex for BMI

with SBP, DBP, and glycoprotein acetyls.

Funnel plots of individual SNP-based effects of later age at menarche on adiposity and

blood pressure at age 18 y (those outcomes with the strongest evidence of association in prior

analyses) are shown in S13–S17 Figs. Effects were generally symmetrical around 0 for each out-

come, with attenuations upon adjustment for measured BMI at age 8 y appearing general

rather than SNP-specific. Some extreme outliers existed but carried the lowest 1/SE values,

indicating the lowest precision.

Replication analyses

Of 363 instrumentable SNPs for age at menarche identified in the source GWAS, up to 303

were available in summary-level outcome data after pruning. Based on IVW models using 234

SNPs and summary-level data for adult BMI, each year later age at menarche was associated

with −0.81 kg/m2 of adult BMI (or −0.17 SD units, 95% CI −0.21, −0.12; P = 4.00 × 10−15; S14

Table). The Cochran Q-statistic for heterogeneity in this overall IVW estimate was 1,721.5 (P
= 5.33 × 10−225), indicating a high degree of heterogeneity in individual SNP effects. The

MR-Egger intercept did not differ from 0 however (P = 0.83), suggesting that individual SNP

heterogeneity was largely balanced (no directional pleiotropy). Corresponding effect estimates

Fig 5. Mendelian randomisation of age at menarche for lipid cardiometabolic traits at age 18 y among females in ALSPAC. HDL, high-density lipoprotein; IDL,

intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density lipoprotein; XL VLDL, chylomicrons and extremely large very low-density

lipoprotein.

https://doi.org/10.1371/journal.pmed.1002641.g005
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Fig 6. Mendelian randomisation of age at menarche for non-lipid cardiometabolic traits at age 18 y among females in ALSPAC.

https://doi.org/10.1371/journal.pmed.1002641.g006

Fig 7. Negative control Mendelian randomisation of age at menarche for adiposity and blood pressure at age 8 y among females in ALSPAC.

https://doi.org/10.1371/journal.pmed.1002641.g007

Puberty timing, adiposity, and cardiometabolic traits

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002641 August 28, 2018 15 / 25

https://doi.org/10.1371/journal.pmed.1002641.g006
https://doi.org/10.1371/journal.pmed.1002641.g007
https://doi.org/10.1371/journal.pmed.1002641


from MR-Egger and WM sensitivity models were −0.18 SD units (95% CI −0.30, −0.06; P =
0.003) and −0.04 SD units (95% CI −0.06, −0.02; P = 0.002) of BMI, allowing for directional

pleiotropy in up to 100% and 50% of genetic weights, respectively. Based on 202 SNPs, later

menarche was associated with lower odds of childhood obesity in the EGG consortium data

(IVW-based odds ratio = 0.52 per year later, 95% CI 0.48, 0.57; P = 6.64 × 10−15). Individual

SNP heterogeneity was apparent (IVW Q = 384.7; P = 1.19 × 10−13), with 137 SNPs exerting a

negative effect and 67 exerting a positive effect. This heterogeneity did not appear unbalanced

(MR-Egger intercept P = 0.56).

Effect sizes for associations of age at puberty onset with adult cardiometabolic traits were

generally low in magnitude (absolute values between 0.01 to 0.04 SD units). The direction of

effects related to later age at menarche was generally negative across VLDL, IDL, and LDL

traits, positive across HDL traits, and negative across fatty acids and amino acids. Using 82

SNPs as instruments for both age at menarche and voice breaking (S15 Table) resulted in a

similar magnitude of association of later puberty onset with lower BMI, at −0.16 SD units

(95% CI −0.24, −0.08; P = 4.33 × 10−05). The MR-Egger intercept did not differ from 0 (P =
0.93), and MR-Egger and WM models estimated the association as being −0.17 SD units (95%

CI −0.37, 0.03; P = 0.10) and −0.04 SD units (95% CI −0.08, −0.00; P = 0.06), respectively.

Association magnitudes with cardiometabolic traits were similar but generally more modest

using 104 SNPs for both age at menarche and voice breaking (S15 Table).

Discussion

We sought in this study to determine whether puberty timing is likely to have a distinct influ-

ence on adiposity and cardiometabolic traits in adulthood. To do this, we used both observa-

tional and genetically informed methods, which together allow more reliable inference on

causality than previously possible. Our results suggest that apparent effects of puberty timing

on adiposity and cardiometabolic traits in adulthood are largely confounded by pre-pubertal

adiposity and are not likely driven by puberty timing itself. Strong evidence was also found for

an effect of higher pre-pubertal adiposity on earlier age at puberty onset. These findings

together point to childhood adiposity as a primary intervention target.

Our first set of analyses used observational data on age at menarche among females and age

at voice breaking among males in relation to adiposity measured at age 18 y. Results suggested

that later menarche among females was associated with lower subsequent adiposity (assessed

using both BMI and objective fat mass), but that these associations were largely statistically

accounted for by differences in adiposity at age 8 y, and thereby reflect known tendencies

within individuals for adiposity levels in childhood to track forward to later life stages [9,10].

We also examined over 200 detailed cardiometabolic traits in adulthood using the same

approach, generally finding weaker evidence for associations and some attenuation of already

small effect sizes when accounting for pre-pubertal trait values, again suggesting that metabolic

disturbances likely predate puberty onset. Associations were similar albeit weaker among

males, possibly due to greater measurement error in age at voice breaking.

Our second set of analyses used genetic variants as instruments for puberty timing within a

1-sample MR framework to minimise issues of confounding. However, since genetic variants

for age at menarche are expected to be pleiotropic with BMI [21], these MR estimates were fur-

ther adjusted for BMI at age 8 y, which should help further address residual confounding since

this measure preceded the onset of puberty (a time-sensitive exposure). Unadjusted results

among females suggested a causal effect of later menarche on lower adult adiposity as reported

previously [21,39], but this effect was almost completely attenuated with adjustment for BMI

measured at age 8 y, supporting confounding by pre-pubertal adiposity. The time-sensitive
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nature of puberty timing as an exposure also allowed us to conduct negative control MR analy-

ses, whereby pre-pubertal traits were examined as outcomes to confirm the non-existence of

effects that should not exist if age at puberty onset were a distinct exposure with valid instru-

ments. Any effects of puberty timing on traits measured before puberty onset must be gener-

ated not by puberty timing itself (because it is temporally implausible) but by confounding

factors. Results of these negative control analyses suggested apparent effects of later menarche

on lowering pre-menarche adiposity and blood pressure that were at least as strong as when

outcomes were measured post-menarche—likewise for the effect of later menarche on lower

odds of childhood obesity in the 2-sample MR setting—further indicating confounding of

puberty timing effects, likely by adiposity. Beyond reinforcing the need to adjust MR estimates

of puberty timing for a pre-pubertal measure of BMI, known overlap in genetic variants also

challenges the notion of puberty timing and adiposity being distinct phenomena.

Conceptual overlap certainly exists between pre-pubertal growth and pre-pubertal adiposity

(body size), with ‘age at puberty onset’ likely intended as a marker of the rate of pre-pubertal

growth. Overlap was also supported statistically by way of a high degree of heterogeneity in indi-

vidual puberty-variant effects on adult BMI in the 2-sample MR setting, suggesting that multiple

pathways of effect exist, although this heterogeneity appeared balanced. In MR terms, this could

therefore be a case of vertical rather than horizontal pleiotropy if genetic variants influence

puberty timing by first influencing pre-pubertal adiposity, which in turn brings puberty for-

ward. Primary effects of puberty-inducing variants could also operate via pathways unrelated to

pre-pubertal adiposity. Effects of puberty timing on later adiposity may therefore be genuine

but part of a wider chain of events in which pre-pubertal adiposity influences puberty timing,

which then further influences adiposity. Still, a literal and direct interpretation of age at puberty

onset within a confounding framework can serve as a means of interrogating these conceptual

overlaps and identifying a unifying root cause that can then be targeted for intervention.

Together with evidence of an effect of higher pre-pubertal BMI on earlier puberty onset, our

results support puberty timing as a marker, not a driver, of adiposity and cardiometabolic trait

levels, positioning childhood adiposity as a primary intervention target. Interventions are

important given results of a recent Danish study suggesting that moderately raised adiposity in

childhood (at age 7 y, before puberty) does not confer increased risk for type 2 diabetes in older

age if it does not persist into post-pubertal life stages [40]. Moderately raised adiposity during

puberty (age 13 y) conferred increased diabetes risk in older age whether it persisted or not, as

did very high childhood adiposity. Current MR results in ALSPAC support strong effects of

higher childhood adiposity on adulthood adiposity, indicating that exposure tends to persist.

Lifelong high exposure likely confers the greatest long-term diabetes risk [40].

Beyond blood pressure, generally weak evidence was found for causal associations of geneti-

cally instrumented later age at menarche among females with lipid- and glycaemic-related

traits derived from targeted metabolomics. Coefficients were practically null across VLDL,

IDL, LDL, HDL, and fatty acid traits, but slightly positive across glycolysis and amino acid

traits. All were accompanied by relatively weak levels of statistical significance, particularly

when considering a more stringent threshold corrected for multiple testing. Attenuations of

already weak associations after adjustment for pre-pubertal BMI were minimal, and changes

were instead often away from the null, likewise when adjusting for pre-pubertal values of spe-

cific trait outcomes. Association patterns across non-blood-pressure cardiometabolic traits

also differed when considering females and males combined, with coefficients generally being

positive across lipid-related and fatty acid traits and negative across amino acid traits; these

coefficients were largely uninfluenced by adjustment for pre-pubertal BMI. Despite larger

sample size, the reliability of the results in the sex-combined analyses is questionable given

markedly reduced instrument strength (the variance explained in exposure traits was
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approximately 11% among females versus approximately 2% among females and males com-

bined). Overall, the inconsistent association patterns across cardiometabolic traits are more

indicative of chance than robust causality.

Two-sample MR analyses were also conducted using publicly available GWAS data as a

means of external replication. Results supported effects of later age at puberty onset on lower-

ing adult BMI, and suggested associations with a range of adult cardiometabolic traits. Direc-

tions of effect were often opposite to those seen with 1-sample MR estimates however: negative

across lipid traits except HDL, and negative across fatty acids, amino acids, and inflammatory

glycoproteins. These patterns closely reflect what would be expected in response to lower adi-

posity [12] and likely indicate pleiotropy of puberty timing instruments with BMI. Two-sam-

ple models have the advantage of larger sample sizes and newly developed sensitivity methods

to account for directional pleiotropy, but only 1-sample models could account for adiposity

and cardiometabolic trait values as specifically measured before puberty onset. Results of one

recent MR study using UK Biobank data also support an effect of later puberty on lowering

adult BMI; this effect attenuated 2-fold when adjusting puberty-variant effects for their effect

on childhood BMI in the EGG consortium data using multivariate MR [39]. Genetic variants

used were based on an older GWAS and were fewer in number (122 versus up to 351 here),

and a P-value threshold for association with childhood BMI in EGG was relied upon for subse-

quent analyses; this is likely inadequate given strong residual associations of manually BMI-

pruned puberty GRSs with BMI [21]. Thus, it is likely that despite lower estimate precision in

our study due to smaller sample size, the attenuation patterns seen for adiposity in adjusted

1-sample MR models are most reflective of the influence of puberty timing itself.

Strengths and limitations

Key strengths of this study include its use of both prospective observational and genetically

informed analyses to address causality more comprehensively than previously possible. Repeat

data were used for BMI, objective fat mass, and over 200 detailed cardiometabolic traits mea-

sured before and after puberty onset, offering rare and extensive insight into temporality. Rep-

lications of 1-sample MR analyses were carried out using large-scale genetic data within a

2-sample MR setting on up to 322,154 adults. The strength of genetic instruments for puberty

timing was high among females in ALSPAC, explaining nearly 11% of exposure variance.

Limitations of this study include modest completion rates of puberty questionnaires in

ALSPAC (e.g., 58.4% among females), as is typical for sensitive topics; results here and else-

where are thus prone to selection bias. This proportion of responders is higher among those

with adiposity and cardiometabolic outcome data, at 83.2%, and comparisons suggested little

influence of selection on adiposity and cardiometabolic traits. Measurement error is likely

among those who did participate [41], especially among males [42] given the sporadic nature of

voice breaking. Estimates may therefore be less precise among males than among females. This

imprecision may have also made MR analyses of males prone to weak instrument bias, which

would bias association estimates towards the observational estimate in a 1-sample setting and

towards the null in a 2-sample setting. That evidence for association was generally weak in both

settings, as well as observationally, suggests that measurement imprecision is a core concern.

The non-blood-pressure cardiometabolic traits examined were heavily lipid-focused [30], and

relations of puberty timing with hormone-related traits such as insulin and insulin-like growth

factors were not examined. As noted, health behaviour covariates were not considered in obser-

vational analyses due to individual differences in exposure timing. Behaviours such as physical

activity are also subject to change over the course of puberty [43], and recorded levels in child-

hood may not represent levels in adolescence. The prevalence and duration of cigarette smoking
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and alcohol consumption are also expected to be low at puberty onset. In any case, MR analyses

negated the need for such covariates as risk alleles are expected to be distributed randomly [44].

Not all cardiometabolic traits were available for 2-sample MR analyses, but available traits cov-

ered most lipid subclass, fatty acid, amino acid, and inflammatory domains.

Participants not of a white-European ancestry were excluded to reduce confounding by

population stratification and because genetic variants for puberty timing were identified in

predominantly white-European samples. Future GWAS efforts could focus on other ethnic

ancestries to allow causal inference across diverse populations. The MR methods used assume

that modelled associations are linear. Some previous observational studies have suggested that

age at puberty onset may relate non-linearly to cardiometabolic and other diseases, with

increased risk apparently conferred by both early and late onset [45,46]. But the extent to

which these non-linear relations reflect genuine biology or confounding is unclear. Several

apparently non-linear associations, such as those observed between BMI and mortality [47]

and between alcohol consumption and cardiovascular disease [48], are not supported by

instrumental variable methods [49–52] and may therefore reflect confounding by subclinical

disease or social factors. Similar distortions of observed associations are possible with age at

puberty onset. Finally, despite extensive participant phenotyping, sample sizes for ALSPAC

analyses were modest. Substantial variance in age at menarche explained by its genetic instru-

ment afforded reasonable precision, however, and expectedly positive estimates of higher BMI

with higher SBP, DBP, and several other summary cardiometabolic traits at age 8 y and 18 y

provided further reassurance of adequate sample power.

Puberty spans several years for both sexes; the exposure of interest here was the age at

which it begins as this is what has been widely linked with health outcomes, cardiometabolic

and otherwise [46]. Data permitting, future studies among females could examine the full

duration of time between menarche and end of menopause to better capture lifetime exposure

to sex-hormone-related growth factors. Future work may also utilise observational and genetic

data on more objective and precise measures of puberty timing such as age at peak height

velocity [53]. Use of a 2-sample MR design allowed large sample sizes and for inferences to be

drawn from multiple cohorts. Relevant to this, however, is the issue of participant overlap

between exposure and outcome GWAS datasets, which may bias effect estimates towards the

confounding-prone observed association [54,55]. Potentially 25 of the 42 cohorts forming the

GWAS for age at menarche [21] were also part of the GWAS for BMI [28], while 3 of the age at

menarche cohorts may have also been part of the GWAS for metabolic traits [35]. A further 9

of the 114 cohorts for BMI may have also been part of the metabolic trait GWAS (this repre-

senting over half of the cohorts in the latter). Removing these participants from existing sum-

mary-level data is infeasible and would carry trade-offs including reduced power. This overlap

issue will become increasingly important with the growing scale of multi-cohort collaborations

and large-scale biobanks. Methodological advancements are needed to address this.

Conclusions

Results of this study suggest that age at puberty onset has only a small influence on adiposity

and cardiometabolic traits in adulthood because effects are largely confounded by pre-pubertal

adiposity. Strong evidence was also found for an effect of higher pre-pubertal adiposity on ear-

lier puberty onset, together pointing to childhood adiposity as a primary intervention target.
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S1 Fig. Associations of age at menarche with adiposity and blood pressure at age 18 y

among females in ALSPAC, with adjustment for specific outcome trait values at age 8 y.

(TIF)

S2 Fig. Associations of age at menarche with lipid cardiometabolic traits at age 18 y among

females in ALSPAC, with adjustment for specific outcome trait values at age 8 y.

(TIF)

S3 Fig. Associations of age at menarche with non-lipid cardiometabolic traits at age 18 y

among females in ALSPAC, with adjustment for specific outcome trait values at age 8 y.

(TIF)

S4 Fig. Associations of age at puberty onset with adiposity and blood pressure at age 18 y

among females and males in ALSPAC.

(TIF)

S5 Fig. Associations of age at puberty onset with lipid cardiometabolic traits at age 18 y

among females and males in ALSPAC.

(TIF)

S6 Fig. Associations of age at puberty onset with non-lipid cardiometabolic traits at age 18

y among females and males in ALSPAC.

(TIF)

S7 Fig. Associations of age at puberty onset with adiposity and blood pressure at age 18 y

among females and males in ALSPAC, adjusted for specific outcome trait values at age 8 y.

(TIF)

S8 Fig. Associations of age at puberty onset with lipid cardiometabolic traits at age 18 y

among females and males in ALSPAC, adjusted for specific outcome trait values at age 8 y.

(TIF)

S9 Fig. Associations of age at puberty onset with non-lipid cardiometabolic traits at age

18 y among females and males in ALSPAC, adjusted for specific outcome trait values at

age 8 y.

(TIF)

S10 Fig. Negative control MR of age at menarche for cardiometabolic traits at age 8 y

among females in ALSPAC.

(TIF)

S11 Fig. Negative control MR of age at puberty onset for adiposity and blood pressure at

age 8 y among females and males in ALSPAC.

(TIF)

S12 Fig. Negative control MR of age at puberty onset for cardiometabolic traits at age 8 y

among females and males in ALSPAC.

(TIF)

S13 Fig. Individual SNP effects of later age at menarche on BMI at age 18 y among females

in ALSPAC, unadjusted (N = 2,054) and adjusted (N = 1,839) for measured BMI at age 8 y.

(TIF)

S14 Fig. Individual SNP effects of later age at menarche on fat mass index at age 18 y

among females in ALSPAC, unadjusted (N = 1,977) and adjusted (N = 1,780) for measured
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BMI at age 8 y.

(TIF)

S15 Fig. Individual SNP effects of later age at menarche on lean mass index at age 18 y

among females in ALSPAC, unadjusted (N = 1,977) and adjusted (N = 1,780) for measured

BMI at age 8 y.

(TIF)

S16 Fig. Individual SNP effects of later age at menarche on SBP at age 18 y among females

in ALSPAC, unadjusted (N = 1,934) and adjusted (N = 1,740) for measured BMI at age 8 y.

(TIF)

S17 Fig. Individual SNP effects of later age at menarche on DBP at age 18 y among females

in ALSPAC, unadjusted (N = 1,934) and adjusted (N = 1,740) for measured BMI at age 8 y.

(TIF)

S1 Protocol. Prespecified study protocol.

(PDF)

S1 Table. Characteristics of males by age at voice breaking in ALSPAC.

(PDF)

S2 Table. Characteristics of participants by missing data status on age at menarche/voice

breaking in ALSPAC.

(PDF)

S3 Table. Observational associations of age at menarche (per year later) with adiposity and

cardiometabolic traits at age 18 y among females in ALSPAC.

(PDF)

S4 Table. Observational associations of age at voice breaking (per year later) with adiposity

and cardiometabolic traits at age 18 y among males in ALSPAC.

(PDF)

S5 Table. Observational associations of age at puberty onset (per year later) with adiposity

and cardiometabolic traits at age 18 y among females and males in ALSPAC.

(PDF)

S6 Table. One-sample MR estimates of associations of age at menarche (per year later)

with adiposity and cardiometabolic traits at age 18 y among females in ALSPAC, using a

full GRS of 351 SNPs for age at menarche.

(PDF)

S7 Table. One-sample MR estimates of associations of puberty timing (per year later) with

adiposity and cardiometabolic traits at age 18 y among males and females in ALSPAC,

using a full GRS of 351 SNPs for age at menarche.

(PDF)

S8 Table. One-sample MR estimates of associations of age at voice breaking (per year

later) with adiposity and cardiometabolic traits at age 18 y among males in ALSPAC,

using a refined GRS of 115 SNPs for age at menarche/voice breaking.

(PDF)

S9 Table. One-sample multivariate Mendelian randomisation estimates of genetically pre-

dicted age at menarche and childhood BMI with adulthood adiposity and blood pressure
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among females in ALSPAC, for comparisons with Fig 2.
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S10 Table. Negative control 1-sample MR estimates of associations of age at menarche (per

year later) with adiposity and cardiometabolic traits at age 8 y among females in ALSPAC,

using a full GRS of 351 SNPs for age at menarche.

(PDF)

S11 Table. Negative control 1-sample MR estimates of associations of puberty timing (per

year later) with adiposity and cardiometabolic traits at age 8 y among males and females in

ALSPAC, using a full GRS of 351 SNPs for age at menarche.

(PDF)

S12 Table. Negative control 1-sample MR estimates of associations of age at voice breaking

(per year later) with adiposity and cardiometabolic traits at age 8 y among males in

ALSPAC, using a refined GRS of 115 SNPs for age at menarche/voice breaking.

(PDF)

S13 Table. One-sample MR estimates of associations of BMI with blood pressure and sum-

mary cardiometabolic traits at age 8 y and 18 y in ALSPAC, for sample power compari-

sons.

(PDF)

S14 Table. Two-sample MR estimates of associations of puberty timing (per year later)

with post-pubertal adiposity and cardiometabolic traits among males and females in

GWAS data, using a full set of up to 303 SNPs for age at menarche.

(PDF)

S15 Table. Two-sample MR estimates of associations of puberty timing (per year later)

with post-pubertal adiposity and cardiometabolic traits among males and females in

GWAS data, using a refined set of up to 104 SNPs for age at menarche.

(PDF)
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