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Abstract: Prostate cancer (PC) is one of the most common male cancers worldwide. Until now,
there is no consensus about using urinary metabolomic profiling as novel biomarkers to identify
PC. In this study, urine samples from 50 PC patients and 50 non-cancerous individuals (control
group) were collected. Based on 1H nuclear magnetic resonance (1H-NMR) analysis, 20 metabolites
were identified. Subsequently, principal component analysis (PCA), partial least squares-differential
analysis (PLS-DA) and ortho-PLS-DA (OPLS-DA) were applied to find metabolites to distinguish PC
from the control group. Furthermore, Wilcoxon test was used to find significant differences between
the two groups in metabolite urine levels. Guanidinoacetate, phenylacetylglycine, and glycine
were significantly increased in PC, while L-lactate and L-alanine were significantly decreased. The
receiver operating characteristics (ROC) analysis revealed that the combination of guanidinoacetate,
phenylacetylglycine, and glycine was able to accurately differentiate 77% of the PC patients with
sensitivity = 80% and a specificity = 64%. In addition, those three metabolites showed significant
differences in patients stratified for Gleason score 6 and Gleason score ≥7, indicating potential use to
detect significant prostate cancer. Pathway enrichment analysis using the KEGG (Kyoto Encyclopedia
of Genes and Genomes) and the SMPDB (The Small Molecule Pathway Database) revealed potential
involvement of KEGG “Glycine, Serine, and Threonine metabolism” in PC. The present study
highlights that guanidinoacetate, phenylacetylglycine, and glycine are potential candidate biomarkers
of PC. To the best knowledge of the authors, this is the first study identifying guanidinoacetate, and
phenylacetylglycine as potential novel biomarkers in PC.

Keywords: prostate cancer; urine metabolomics; 1H-Nuclear Magnetic Resonance; metabolite biomarkers

1. Introduction

Prostate cancer is one of the most commonly cancers and the leading cause of cancer-
related deaths in men worldwide [1]. Serum prostate specific antigen (PSA) level and
digital rectal examination (DRE) constitute the major screening tests for prostate cancer
(PC) diagnosis, while the transrectal ultrasound-guided prostate biopsy provides the final
confirmation of cancer presence [2]. PSA level has been extensively used as a biomarker to
detect PC. Nevertheless, due to prostate physiology, PSA testing results in a large frequency
of false positives leading to numerous men each year undergoing unnecessary prostate
biopsy procedures [3–7]. Hence, a non-invasive, cost-effective, efficient, and reasonably
accurate test for early identification of PC is urgently needed.
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Compared with serum, urine is easier to obtain and handle, needs less sample prepara-
tion, and has higher amounts of metabolites and lower protein content [8–10]. Therefore, in
attempt to solve this diagnostic dilemma, many previous studies have focused on urinary
metabolomic profile, to identify the predictive biomarkers for PC [11–14]. However, to date,
no single urine biomarker/biomarker panel meets the requirements for highly sensitive,
and specific detection of PC. Therefore, biomarker discovery in relation to PC continues to
be an active area of research.

Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical approach
for both identification and quantification of analytes with superior advantages, such
as good reproducibility and simple sample processing. In the last decade, NMR has
been applied toward identifying metabolic alterations in PC that may provide clinically
useful biomarkers [15–19]. 1H-NMR spectroscopy followed by multivariate analysis is a
systems biological approach that has been used to identify essential changes in metabolism.
Therefore, metabolomics profiling offers a robust methodology for understanding the
biochemical process of diseases.

Our current study aimed to identify novel biomarkers in the urine and to investigate
the possible function and role of potential biomarkers in PC. Based on 1H-NMR, we
identified 20 metabolites from urine samples. All spectra were analyzed by multivariate
statistical analysis to extract the vital variables. Moreover, to evaluate the discrimination
ability of the variables for diagnosis of PC. Additionally, metabolomics analysis cannot
provide direct information about the active pathways related to the diseases. Furthermore,
the regulation of the reactions and metabolic programs still need to be addressed [20].
Figure 1 summarizes the study design and workflow.
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2. Materials and Methods
2.1. Clinical Samples Selection and Ethics Statement

Urine samples were collected from PC patients from January 2017 to December 2018
from Sir Run Run Shaw Hospital, HangZhou and Zhoupu Hospital, Shanghai, China.
Clinical diagnosis of individuals was performed according to serum PSA, DRE, biopsy
results/pathological results after operation and Gleason score. A total of 50 patients
with prostate cancer were included in this study. The control group consisted of 50 non-
cancerous men, who were without evidence of PC, based on PSA levels, negative findings
in imagological examination and DRE. Clinical and demographics characteristics of the
individuals are shown in Table 1.
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Table 1. Characteristics of the individuals.

Characteristics
Control Group (n = 50) PC Group (n = 50) Significance

Mean (SD) Group Size Mean (SD) Group Size p-Value

Age (years) 63.30 (9.61) 50 70.00 (8.98) 50 <0.0001
Prostate volume (mL) 26.24 (8.77) 24 39.77(19.00) 50 0.0169

PSA (≤ 10 ng/mL) 1.56 (0.89) 50 6.69 (1.96) 14
PSA (10.1–20 ng/mL) NA 0 14.01 (2.08) 14

PSA (> 20 ng/mL) NA 0 89.82 (86.28) 22
GS (pre) 6 NA NA NA 13

GS (pre) ≥7 NA NA NA 34
GS (post) 6 NA NA NA 6

GS (post) ≥7 NA NA NA 35
Treatment: 50

Radical operation 41
Seed implantation 5

Endocrine 2
Chemotherapy 1

TURP 1
GS = Gleason Score; GS (pre) = GS of biopsy; 41 patients have accepted radical operation and got the post-operation
GS (GS (post)); SD = standard deviation; prostate volume was calculated as volume: volume (mL) = (length × width
× height) × π/6. TURP = Transurethral resection of the prostate; NA = not applicable; PC = prostate cancer.

Patients recruitment and sampling procedures were performed in accordance with the
Declaration of Helsinki and applicable local regulatory requirements and laws. All patients
provided written informed consent. Ethical approvals were obtained from the local ethics
committees of the Sir Run Run Shaw Hospital affiliated to Zhejiang University (Ethical
review approval number: 20190725-290) and Shanghai University of Medicine & Health
Sciences (Ethical review approval number: HMMEP-2016-017).

2.2. Sample Preparation and 1H-NMR Based Metabolomics Analysis

Midstream urine samples of all PC patients and controls were taken in the morning
during standard clinical routine procedure. The samples were frozen within 1 h after
collection and stored at −80 ◦C. At the time of 1H-NMR analysis, urine samples were
thawed in an ice-water bath. Where not otherwise stated, chemicals were from Sigma-
Aldrich Trading Co., Ltd., Shanghai, China. Two hundred µL of phosphate buffered
saline (PBS) solution (0.1ml Na2HPO4 and 0.1ml NaH2PO4; 10% D2O and 0.03% TSP
(trimethylsilylpropionic acid-d4 sodium salt; pH 7.4) was added and the samples were
centrifuged at 13,000 rpm for 20 min. After this, 550 µL of the supernatants were transferred
to a 5-mm NMR tube for analysis. 1H-NMR spectral acquisition was performed using a
Bruker Avance III NMR spectrometer equipped with 600 MHz magnets Ultrashield Plus
(spectrometer frequency: 600.13 MHz; Bruker BioSpin Corporation, Billerica, MA. USA).
All 1H-NMR experiments were performed at 25 ◦C.

All spectra were phase and baseline corrected, and chemical shifts were adjusted with
reference to TSP signal using MestRenova 6.2 software (Mestrelab Research S.L., Santiago
de Compostela, Spain). The spectra were binned into 0.02 ppm buckets between 0.52 and
9.30 ppm, and the region between δ 4.32 and 6.10 ppm, including the water (δ 4.32 and
5.26 ppm), and urea signal (δ 5.58 and 6.10 ppm) regions, was excluded from the analysis
to avoid interference arising from differences in water suppression and variability from the
urea signal.

2.3. Data Modelling and Statistical Analysis

Before data analysis, we checked the data integrity. All missing values, zeros, and nega-
tive values were replaced by the 1/5 of the minimum positive value of each variable [21,22].
In addition, after the replacement, we compared the two data sets: before replacement
and after replacement. We made sure that all the necessary information has been collected,
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and that there was no significant difference between the two data sets (Table S1) and sub-
groups (cancer group and control group) (Tables S2 and S3). The normalization of the
spectra was performed by R statistical package 4.0.2 (http://www.r-project.org) based on
geometric mean, and generalized log transformation was performed to make features more
comparable (Figure S1 Supplementary Materials; Figure 2).
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2.4. Identification of Relevant Metabolites

For identification of relevant metabolites, we used several statistical approaches
resulting in the definition of a subset of metabolites identified by at least two methods. The
Multivariate statistical analysis was carried out using R packages “MetaboAnalyst” [21–23],
”ropls” [24], ”mixOmics” [25]. Principal component analysis (PCA) as a non-supervised
statistical method, we used to uncover the outliers and the directions that best explain
the variance in the dataset. Partial Least Squares discriminant analysis (PLS-DA), and
Orthogonal Partial Least Squares discriminant analysis (OPLS-DA) were used to reduce the
number of metabolites in high-dimensional data to produce robust and easy-to-interpret
models, and to identify spectral features that drive group separation. Subsequently, based
on R, Wilcoxon rank sum test was performed to find the difference between the cancer
group and control group. The difference was considered significant at a Bonferroni-adjusted
p-value < 0.05.

The variable importance in projection (VIP), and corresponding loading/contribution
value in each model was used to identify the variables responsible for distinguishing.
Furthermore, a permutation test with 100 permutations was employed to validate the
performance of PLS-DA models and OPLS-DA models. For quality criterion we chose in
PCA model, R2X > 0.4; in PLS-DA or OPLS-DA, R2Y (goodness of fit parameter) and Q2

(predictive ability parameter) > 0.5 [26,27].

2.5. Acquisition of the Pathways and Biological Processes Corresponding to Metabolites

To explore the significance of a specific metabolite for prostate cancer, we used public
databases to identify associated pathways. We focused on the most prominent metabo-
lites defined by several criteria: (i) the metabolite was at least recommended in two
different models (PCA, PLS-DA, or OPLS-DA); (ii) Wilcoxon test adjusted p-value < 0.01;
(iii) VIP-values of the OPLS-DA >1.

Furthermore, the R package “MetaboAnalyst” [21–23] was performed analyze the
contribution of the metabolites in depth. To implement a knowledge-based network of
metabolite-metabolite interactions we used the Search Tool for Interactions of Chemicals
(STITCH) database [28]. We also performed a Metabolite Sets Enrichment Analysis (MSEA),
including pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Small Molecule Pathway Database (SMPDB) [29,30]. A hyper-
geometric test was used to evaluate whether a particular metabolite set is represented,
and the metabolite set contains at least more than 2 metabolites in the given compound
list. Additionally, one-tailed p-values were provided after adjusting for multiple testing. A
p-value < 0.05 was considered statistically significant.

http://www.r-project.org
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2.6. Statistics

All statistical analyses were performed using SPSS software (version 26; IBM Corp.,
Armonk, NY, USA) or R statistical package 4.0.2 (http://www.r-project.org). Univariate
analysis was performed using ANOVA, t-test, Wilcoxon test, hypergeometric test and
permutation test. Bonferroni was used to adjust p-values. The correlation analyses were
performed by Pearson’s test. Multivariate analyses were also performed using the PCA,
PLS-DA, and OPLS-DA model. Subsequently, we used binary regression and a linear
fitting model to do receiver operating characteristic (ROC) curve analysis to evaluate the
performance of the metabolite or metabolite panel for the prediction of PC. p-values < 0.05
or adjusted p-values < 0.05 were considered statistically significant.

3. Results
3.1. Metabolites in Urine Samples of PC

NMR offers the opportunity of quantifying metabolites directly from 1H-NMR metabo-
lite profiles through analyzing the chemical shift, coupling constant, and shapes of peaks
from NMR experiments, and to identify the metabolites based on existing public databases
and literature reports [31–36]. Typical 1H-NMR spectra were derived from urine samples
of the PC group and the Control group; interesting metabolites were identified (labeled as
digits from 1 to 30 in Figure 3).
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two representative urine samples. Signals were analyzed from δ 0.52 to 9.30 ppm, excluding water and urea regions
(δ 4.32–6.10 ppm). (A) Control group; (B) Cancer group; f1 (ppm) = chemical shift to TSP.

The region at 0.0–3.10 ppm shows aliphatic compounds including prominent signals
from organic acids and amino acids, such as L-alanine, citric acid, pyruvate, succinate,
and L-lactate; the region at 5.5–9.0 ppm shows aromatic compounds, such as hippurate
and also formate, deeply downshifted due to the adjacent carboxy group. Additionally,
moieties and chemical shifts of the 30 metabolites were summarized in Table S4. Finally,
after removal of metabolites with overlapping signals, we got 20 metabolites which were
further analyzed in this study (Table 2). For intensity quantification, the peak areas of these
20 metabolites were integrated using sodium trimethylsilyl propionate (TSP) as standard
for further analysis.

http://www.r-project.org
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Table 2. Twenty identified metabolites.

Key Metabolites HMDB ID Moieties Chemical Shifts a VIP

1 L-lactate HMDB0000190 αCH, βCH3 1.33 (d,J = 6.6Hz),4.13 (q,J = 4.8Hz) 1.43
2 L-alanine HMDB0000161 βCH3 1.48 (d, J = 7.2Hz) 1.76
3 acetate HMDB0000042 CH3 1.92 (s) 1.45
5 succinate HMDB0000254 CH2 2.41 (s) 0.06
6 citrate HMDB0000094 half CH2, half CH2 2.54 (d,J = 16.2 Hz), 2.70 (d, J = 15.6 Hz) 0.42
7 dimethylglycine HMDB0000092 N-CH3, CH2 2.92 (s), 3.72 (s) 1.06
8 formate HMDB0000142 CH 8.46 (s) 0.99

11 dimethylamine HMDB0000087 CH3 2.73 (s) 0.82
12 methylguanidine HMDB0001522 CH3 2.85 (s) 0.17
13 trimethylamine HMDB0000906 CH3 2.88 (s) 0.89
14 creatinine HMDB0000562 CH3, CH2 3.04 (s), 4.06 (s) 0.45
15 taurine HMDB0000251 S-CH2, N-CH2 3.27 (t), 3.42 (t) 0.29
16 betaine HMDB0000043 N(CH3)3, CH2 3.27 (s), 3.90 (s) 0.09
17 guanidinoacetate HMDB0000128 CH2 3.80 (s) 1.94

18 hippurate HMDB0000714 CH2, CH, CH, CH 3.97 (d,J = 6Hz), 7.55 (t,J = 7.8Hz),
7.64 (t,J = 7.8Hz), 7.84 (d,J = 7.2Hz) 0.02

19 N-methylnicotinamide HMDB0003152 2-CH, 4-CH, 6-CH,
5-CH, CH3

9.29 (s), 8.97 (d,J = 6Hz), 8.91 (dt),
8.19 (m), 4.48 (s) 0.55

20 2-Hydroxyisobutyrate HMDB0000729 CH3 1.36 (s) 0.36
21 glycine HMDB0000123 CH2 3.57 (s) 1.36
22 fumaric acid HMDB0000134 CH 6.56 (s) 0.32
28 Phenylacetylglycine HMDB0000821 CH2, CH, CH 3.68 (s), 7.37 (m), 7.43 (m) 1.59

a Signal position in parts per million (ppm) in relation to TPS (set to 0 ppm).

3.2. Identification of Important Metabolites and the Metabolic Changes

PCA, PLS-DA, and OPLS-DA were performed to evaluate the metabolic pattern
changes in PC patients compared to non-cancerous controls. PCA could not distinguish
the cancer patients from the non-cancerous cases (Figure 4(A1)). The first two princi-
pal components (PC) explained 66.2% variables; however, no trends in differences were
detected (Figure 4(A2)). Based on the contribution value, we obtained the top seven metabo-
lites, including guanidinoacetate, betaine, phenylacetylglycine, taurine, dimethylglycine,
L-alanine, and L-lactate (Figure 4(A3)) (Table S3). The goodness of fit of the PCA model
was R2X = 0.607.

Key numbers are related to the metabolite numbering in Figure 1; the variable impor-
tance in the projection (VIP) values were obtained from the OPLS-DA model.

If PLS-DA was used as classification model, we found a trend to distinguish can-
cer from the control (Figure 4(B1)). In this model, the first two principal components
explained 55.6% of the variance (Figure 4(B2)). Based on the |loading values| > 0.2, we
found 8 significant metabolites: guanidinoacetate, L-alanine, phenylacetylglycine, L-lactate,
glycine, acetate, dimethylglycine, and formate (Figure 4(B3)) (Table S3). Furthermore, the
PLS-DA performance was assessed by the goodness of fit R2Y = 0.628 and quality assess-
ment statistic Q2Y = 0.447; the outcome indicated good class separation and a moderate
predictive ability.

Further improvement in discrimination of the sample groups was achieved by using
the OPLS-DA model (Figure 4(C1)). Based on the |loading values| > 0.2, OPLS-DA iden-
tified nine critical metabolites: guanidinoacetate, L-alanine, phenylacetylglycine, acetate,
l-lactate, glycine, dimethylglycine, formate, and trimethylamine (Figure 4(C3)) (Table S3).
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Figure 4. Metabolic pattern recognition analysis. Classifying PC from non-cancerous men based on the metabolomic
profiles in the urine; (A1) PCA based on the first two principal components; (A2) sample scatterplot displays the first two
components in each data set in PCA; (A3) contribution of each feature selected on the first component in PCA; (B1) PLS-DA
based on the first two components; (B2) sample scatterplot display the first two components in each data set in PLS-DA;
(B3) loading plot weights of each feature selected on the first component of PLS-DA; (C1) OPLS-DA based separation of
the groups; (C2) internal validation of the corresponding OPLS-DA model by permutation analysis (n = 100); fraction of
the variance of descriptor class response (Y) (R2Y) = 0.675 (Green bar), p-value < 0.01; fraction of the variance predicted
(cross-validated)(Q2) = 0.508 (Red bar), p-value < 0.01; (C3) loading plot weights of each feature selected from OPLS-DA;
The color in B3 and C3 indicates the class in which the variable has the maximum level of expression; control = blue;
cancer = orange.

As shown in Figure 4, we could not completely discriminate the two groups based on
PLS-DA and OPLS-DA scores plot. However, more samples were separated in OPLS-DA
in contrast to the PCA method. This OPLS-DA model showed a proper fitting of the data
(R2Y = 0.675, p-value < 0.01), and exhibit predictive power (Q2 = 0.508, p-value < 0.01)
(Figure 4(C2)).
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The variable importance in the projection (VIP) values of all peaks from OPLS-DA models
were taken for selection, and those variables with VIP > 1 [37] were considered as potential
biomarker candidates for group discrimination (Table 2). Accordingly, metabolomics revealed
prominent alterations in seven metabolites: guanidinoacetate, l-alanine, phenylacetylglycine,
acetate, l-lactate, glycine, and dimethylglycine (Table S3). In summary, the 1H-NMR spectra
potentially discriminate the urine samples between PC patients and controls.

For direct comparison of the levels of the 20 metabolites, an integrated strategy
combining Wilcoxon analysis was used to identify critical metabolites between the PC
and the control group. We compared the urinary metabolomic profiles of the two groups,
based on the Bonferroni method of p-value adjustment. The analysis revealed a total of
eight significant metabolites (adjusted p-value < 0.05): guanidinoacetate, l-lactate, l-alanine,
phenylacetylglycine, glycine, acetate, formate, and dimethylglycine (Figure 5A–I).

Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 5. Wilcoxon test results and hierarchical clustering of the metabolites. (A–H) Box plots of 
levels of significant metabolites based on Wilcoxon test; (I) hierarchical clustering of the significant 
metabolites; the samples on the left of the black bar are non-cancerous samples (control group, n = 
50); the samples on the right of the black bar are PC samples (n = 50); values in the heatmap = Log 
(Spectral area); p-values were Bonferroni-adjusted. 

3.3. Acquisition of the Most Prominent Metabolites, Correlation Analysis, and ROC Analysis 
Regarding the criterion of the most prominent metabolites: (i) the metabolite was at 

least recommended in two different models, from PCA, PLS-DA and OPLS-DA (Figure 6 
(A1)) (Table S5); (ii) Wilcoxon test adjusted ps < 0.01 (Figure 6 (A2); Table S5); (iii) the VIP-
values of the OPLS-DA >1 (Figure 6 (A2); Table S5). Herein, after the overlapping progres-
sion, we focused on the five most prominent metabolites: guanidinoacetate, phenylacetyl-
glycine, glycine, L-lactate and L-alanine (Figure 6 (A3); Table S5). Interestingly, based on 
the Human Metabolome Database (HMDB) [37], guanidinoacetate and phenylacetylglycine 
have not been detected in prostate tissue, so far (Table S4). We found a strong positive corre-
lation between guanidinoacetate and phenylacetylglycine (Pearson’s correlation coeffi-
cient; r = 0.93, p-value < 0.001), and moderate positive correlations between l-alanine and 
l-lactate (r = 0.65, p-value < 0.001), guanidinoacetate and glycine (r = 0.67, p-value<0.01), 
and phenylacetylglycine and glycine (r = 0.64, p-value < 0.001) (Figure 6B). 

Figure 5. Wilcoxon test results and hierarchical clustering of the metabolites. (A–H) Box plots of levels of significant
metabolites based on Wilcoxon test; (I) hierarchical clustering of the significant metabolites; the samples on the left of the
black bar are non-cancerous samples (control group, n = 50); the samples on the right of the black bar are PC samples
(n = 50); values in the heatmap = Log (Spectral area); p-values were Bonferroni-adjusted.
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3.3. Acquisition of the Most Prominent Metabolites, Correlation Analysis, and ROC Analysis

Regarding the criterion of the most prominent metabolites: (i) the metabolite was at least
recommended in two different models, from PCA, PLS-DA and OPLS-DA (Figure 6 (A1))
(Table S5); (ii) Wilcoxon test adjusted ps < 0.01 (Figure 6 (A2); Table S5); (iii) the VIP-values
of the OPLS-DA >1 (Figure 6 (A2); Table S5). Herein, after the overlapping progression, we
focused on the five most prominent metabolites: guanidinoacetate, phenylacetylglycine,
glycine, L-lactate and L-alanine (Figure 6 (A3); Table S5). Interestingly, based on the
Human Metabolome Database (HMDB) [37], guanidinoacetate and phenylacetylglycine
have not been detected in prostate tissue, so far (Table S4). We found a strong positive
correlation between guanidinoacetate and phenylacetylglycine (Pearson’s correlation coef-
ficient; r = 0.93, p-value < 0.001), and moderate positive correlations between l-alanine and
l-lactate (r = 0.65, p-value < 0.001), guanidinoacetate and glycine (r = 0.67, p-value<0.01),
and phenylacetylglycine and glycine (r = 0.64, p-value < 0.001) (Figure 6B).
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between OPLS-DA (blue circle, VIP > 1, n = 7), metabolites with Wilcoxon test adjusted p-value < 0.01 (red circle, n = 5),
and overlap result was obtained from A1 (green circle, n = 8); (A3) identification and chemical formula of the 5 significant
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ROC analysis of significant metabolites in multiple t-test revealed for guanidinoacetate
an AUC of 0.77 (sensitivity = 60%, specificity = 88%; Figure 6C), phenylacetylglycine an
AUC of 0.73 (sensitivity = 74%, specificity = 60%; Figure 6D), and glycine an AUC of 0.70
(sensitivity = 72%, specificity = 64%; Figure 6E). The AUCs of l-alanine and l-lactate were
lower than 0.70, respectively (data not shown).

Based on a linear fitting model, various combinations were evaluated for their ability
to predict PC. The combination of guanidinoacetate, phenylacetylglycine and glycine
identified PC with an AUC = 0.77, sensitivity = 80%, and specificity = 64%. However,
while improving the sensitivity from 60% to 80% (p-value = 0.03), this combination did
not significantly improve the diagnostic probability of PC (Figure 6F). The combination
of guanidinoacetate, phenylacetylglycine, glycine, l-alanine, and l-lactate showed less
performance (AUC = 0.65, sensitivity = 52%, specificity = 80%; data not shown), as did the
combinations of l-alanine and l-lactate and others (AUCs < 0.7 with low specificity and
sensitivity; data not shown).

3.4. Subgroup Analysis

To explore the property of the metabolites to separate between different PC stages, we
compared the urine levels of the five metabolites L-lactate, L-alanine, glycine, guanidinoac-
etate, and phenylacetylglycine in different subgroups of PC. Three metabolites: glycine,
guanidinoacetate, and phenylacetylglycine showed significant differences between low
GS ≤ 6 and high GS ≥ 7 when using the biopsy GS (GS (pre)) or final post-surgery GS
(GS (post)) for stratification (Figures S3 and S4, ANOVA with Bonferroni-adjusted p-values,
p < 0.05).

In addition, we found significant differences in the urine levels of glycine, guanidi-
noacetate and phenylacetylglycine between PSA-groups (low PSA: ≤10 ng/mL and high
PSA: >20 ng/mL), while l-lactate and l-alanine were not different (Figure S5). Comparison
of TNM or risk groups did not reveal significant differences (data not shown).

3.5. Analysis of the Metabolite Interaction Networks and Corresponding Pathways

The network explorer module is a comprehensive tool to describe potential impacts,
and to visualize interactions between metabolites. Network analysis highlights potential
functional relationships between a broad set of annotated metabolites. Based on the degree
of interaction cut-off value >2, we found another 16 annotated metabolites potentially inter-
acted with the five metabolites defined above, and we also found 53 different interactions
among them (Figure 7A).

According to the p-values from the pathway enrichment analysis, the pathways contain-
ing at least two components of the five prominent metabolites are listed in Figure 7B. Based on
KEGG database analysis, “Glycine, serine, and threonine metabolism” and ”Aminoacyl-tRNA
biosynthesis” were the associated pathways with p-value < 0.05. Figure 7C describes the
five associated pathways based on SMPDB, such as “Glycine and Serine Metabolism” and
“Arginine and Proline Metabolism”. Figure 7D Detailed view of the “Glycine, serine, and
threonine metabolism” as the most significant pathway.
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metabolites in KEGG database; prominent metabolites as a result of the current analysis are marked in red. Key signaling
pathways with p-values < 0.05 were marked in boxes with red font in (B,C).

4. Discussion
4.1. The Location and Expression of Metabolites in PC

Notably, urine is a challenging bio-specimen used for biomarker discovery due to its
compositional variability [38,39]. Multiple factors can affect the composition and quality of
urine liquid biopsy, such as disease state, prescription taken by individuals, diet, gender,
and collection time [38,39]. In the present study, multivariate statistical models were used
to identify reliable candidate biomarkers of PC. Eventually, we found that guanidinoacetate,
phenylacetylglycine, glycine, l-lactate, and l-alanine were the most prominent metabolites.

Lima and colleagues reported that lactate and alanine were frequently altered in PC tis-
sues [40]. Our finding of glycine upregulation is supported by Giskeodegard GF et al. [41],
who studied the metabolome in prostate cancer tissue from a Spanish cohort by high reso-
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lution magic angle spinning magnetic resonance spectroscopy (HR-MAS). While glycine,
L-lactate, and L-alanine have already been shown in literature, to the best knowledge of the
authors, the present study for the first time describes guanidinoacetate and phenylacetyl-
glycine as significant metabolites in PC [42].

More evidence for PC-specific metabolic alterations come from metabolomics studies
in serum. Kumar et al. found by 1H-NMR that alanine, pyruvate, glycine, and sarco-
sine were significantly altered in serum of an Indian cohort of PC patients [43]. These
results were supported by Miyagi et al., using high performance liquid chromatography-
electrospray ionization mass spectrometry (HPLC-ESE-MS), showing a significant change
of alanine, glutamine, valine, tryptophan, arginine and isoleucine, ornithine, and lysine
levels associated with PC in a Japanese cohort [44]. However, while Kumar et al. found
an upregulation of alanine [43], the alanine levels were downregulated in the study by
Miyagi et al. [43]. The discrepancy of two studies showed that the different methods
potentially may cause different findings [45].

Extensive literature survey revealed only few studies of urine metabolite levels in PC
(Table 3). Only one study reported changes for two of the metabolites identified in our
study: glycine and dimethylglycine. However, opposite to our results, those metabolites
were downregulated in the study of Pérez-Rambla and colleagues [46]. No urine level data
are available for the other metabolites that turned up significantly altered in our PC cohort.

Table 3. Metabolites studied in previous studies of Prostate cancer (PC).

Metabolites
Samples (Methods) Reference EthnosUp-Regulated Down-Regulated

BCAA, glutamate;
pseudouridine

Glycine @, dimethylglycine @,
fumarate,

4-imidazole-acetate

Urine
(1H-NMR) Pérez-Rambla et al. [46] Spanish

glycocholic acid,
hippurate,

chenodeoxycholic acid

5-Hydroxy-l-tryptophan,
taurocholic acid

Urine
(FPLC/MS) Liang, et al. [47] Chinese

(Northern of China)

citrate,
Myo-inositol, spermine

EPS
(1H-NMR) Serkova et al. [48] American

sarcosine Urine/PT/Plasma
(GC-MS) Sreekumr et al. [49] American

propenoic acid,
dihyroxybutanoic acid

xylonic acid

pyrimidine, creatinine,
purine, glucopyranoside,

xylopyranoseand,
ribofuranoside

Urine
(GC-MS) Wu et al. [50] Chinese

(Southern of China)

@ opposite to the present study; EPS: Human expressed prostatic secretions; BCCA: Branched-chain amino acids; PT: Prostate Tissue;
GC-MS: Gas chromatography/mass spectrometry; FPLC/MS: Faster ultrahigh performance liquid chromatography-mass spectrometry;
1H-NMRS: Proton nuclear magnetic resonance spectroscopy.

The interpretation of these differences is difficult. Different compositions of the PC
cohorts in respect to tumor stage may be one reason, as the majority of our samples were
from patients with metastasis and high-grade tumors. In addition, the control cohort in the
study of Pérez-Rambla et al., were BPH patients, which could possibly explain the different
findings [46]. Only 36% (18/50) of our control patients were diagnosed with BPH and the
expression levels of glycine and dimethylglycine were not significantly different between
BPH and non-BPH patients (Figure S2). Furthermore, the studies listed in Table 3, were
done in different populations. Caucasian population samples were from western countries,
which not only have a different genetic background but also represent different lifestyle
and diet [51]. The study populations of two other studies were from Chinese patients, as in
our study, but used different methods. Moreover, the lifestyle and diet of the patients from
northern and southern China may not be comparable to the urban population we studied.
Therefore, the results might reflect a research method, ethnic peculiarity and/or lifestyle or
diet impact [45,51].

4.2. Potential Biomarkers of PC

Over the past 30 years, NMR and MRSI (magnetic resonance spectroscopic imag-
ing) as a non-invasive test, are continuous performed to identify predictive/prognostic
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metabolic marker of PC [52]. Furthermore, considerable efforts are ongoing to develop
high precision, reliable, safe and non-invasive diagnosis strategies. Kumar proposed a
great question: “Metabolomics-Derived Prostate Cancer Biomarkers: Fact or Fiction?” In
fact, their findings confirmed that NMR-based serum metabolomics analysis is a promising
method for probing PC [43].

Using serum metabolomics, Kumar et al. found that L-alanine, pyruvate, glycine,
and sarcosine were able to accurately differentiate 90.2% of cancer cases from healthy
persons, with high sensitivity (84.4%) and specificity (92.9%) [43]. Glycine alone showed
an AUC of 0.817 [43]. In our 1H-NMR study, we found, that glycine in urine was up-
regulated in PC, and ROC analysis revealed for glycine an AUC of 0.70 (sensitivity = 72%,
specificity = 64%), which is comparable to the performance in serum. Furthermore, ROC
analysis was also performed to evaluate the various combination; however, the best
combination of guanidinoacetate, phenylacetylglycine, and glycine did not significantly
improve the discriminant ability (AUC of 0.77, sensitivity = 80%, and specificity = 64%),
but significantly improved the sensitivity. In essence, the ROC findings revealed that
guanidinoacetate, phenylacetylglycine, and glycine were potential biomarkers.

4.3. Metabolite Interactions and Pathways Potentially Involved in PC

A better understanding of relative correlation and interaction of the potential biomark-
ers in urine could provide insights into the pathological progression of the disorder. Inter-
estingly, we observed a strong positive correlation between guanidinoacetate and pheny-
lacetylglycine (r = 0.93, p-value < 0.001), while only moderate positive correlation between
guanidinoacetate and glycine, phenylacetylglycine, and glycine. Furthermore, the compre-
hensive network showed that the direct and indirect interactions between the prominent
metabolites (Figure 7A). Thus, the above results probably indicated that these metabolites
are conditioning each other through direct or intermediates interaction.

Glycine is a nonessential amino acid with a central role in protein metabolism and also
functions as inhibitory neurotransmitter in the central nervous system [53,54]. Additionally,
glycine is involved in the body’s production of DNA and in the energy balance [55–57]. No-
tably, its role in the biosynthesis of purines and in mitochondrial oxidative phosphorylation
has been recognized as driver of cancer initiation and proliferation [58,59]. The elevated
glycine urine levels in PC support this view and could explain the higher guanidinoacetate
levels measured. Guanidinoacetate is a direct metabolite of glycine formed by the glycine
aminotransferase. Interestingly, guanidinoacetate is further methylated by the guanidinoac-
etate N-methyltransferase to creatine, which can be converted to creatinine, which also was
elevated in our PC patients as a trend [60]. In addition, Kim et al. found an association of
aberrant genes of the “Glycine, serine, and threonine metabolism” pathway with metastasis
in PC [61]. Our results also support the notion of altered “Glycine, serine, and threonine
metabolism” pathway in PC, and that two of the related metabolites, namely glycine and
guanidinoacetate, are potential biomarkers for differentiation of PC from healthy controls.

Previous research described that phenylacetylglycine is working as an acyl glycine [45].
As we known, acyl glycines as classical minor metabolites are one kinds of fatty
acids [45,62,63]. Together with phenylacetylglutamine and phenylalanine, phenylacetyl-
glycine is a representative of the phenylalanine/tyrosine metabolism (KEGG: map00360)
and showed significant association with T stage in gastric cancer [42,64]. Our study for
the first time shows elevated levels of phenylacetylglycine in the urine of prostate can-
cer patients and thereby further supports the importance of the phenylalanine/tyrosine
metabolic pathway in cancer.

4.4. The Major Findings of the Present Study

In summary, the present study identified five prominent metabolites: guanidinoacetate,
phenylacetylglycine, glycine, l-lactate, and l-alanine. NMR-derived urinary metabolomics
seem sufficiently robust to detect PC. In comparison with previous studies, the most
interesting findings were
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I. The metabolites guanidinoacetate, phenylacetylglycine, and glycine were signifi-
cantly upregulated in urine samples of PC. On the contrary, l-alanine and l-lactate
were significantly downregulated. Furthermore, the majority of them were posi-
tively correlated. Especially strong correlations were seen between guanidinoac-
etate, phenylacetylglycine and glycine.

II. Guanidinoacetate, phenylacetylglycine, and glycine urine levels were significantly
different between PC patients stratified for low GS (≤6) and high GS (≥7).

III. Using the network module, we comprehensively described the potential inter-
action between the most prominent metabolites. ROC analyses of prominent
metabolites revealed a reasonably high diagnostic accuracy of guanidinoacetate,
phenylacetylglycine, and glycine.

IV. Pathway enrichment analysis indicated “Glycine, Serine, and Threonine metabolism”
as the most importantly altered pathway. Those results provide evidence for the
metabolites, and associated pathway potentially playing an essential role in PC.

V. Here, we reported for the first time that guanidinoacetate, and phenylacetylglycine
could be promising novel urine biomarkers for PC.

The limitations of our study are (1) the cohort size is small, and we lack an external
validation cohort; therefore, our results are at risk of overfitting; (2) as the aim of this study
was to evaluate the performance of urine 1H-NMR metabolomics in an Asian cohort, we did
not include Caucasian patients for comparison; (3) due to the small cohort we were not able to
analyze PC subgroups, e.g., PSA/Gleason Score/Metastases; and (4) In addition, we focused
on the metabolites in urine. Therefore, we cannot estimate the differences of discrimination
ability between the blood sample, urine sample and tissue sample at the same time.

Further research will have to validate the urine metabolite biomarker panel in a larger
cohort. Comparison to a matched Caucasian cohort could provide interesting insights into
ethnical differences, which would have a severe impact on the clinical implementation of
urine metabolomics biomarker in different populations.

5. Conclusions

Based on the metabolic profiling of urine, the present study showed that PC could be
distinguished from non-cancerous individuals by guanidinoacetate, phenylacetylglycine,
and glycine. The findings may add to our understanding of the basic mechanisms and
progression of PC and indicated that these metabolites are potential candidate markers
for PC. Moreover, the present study supported the view that urine metabolomics-derived
biomarkers for PC can be a new option for non-invasive PC diagnostics.
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