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Abstract: Herein, Bi4Ti3O12 (BIT) ferroelectric thin films were fabricated into Au/BIT/LaNiO3/Si
structures to demonstrate their memristor properties. Repeatable and stable bipolar resistive switch-
ing (RS) characteristics of the device are first reported in this work. The switching ratio of the
device annealed in air reached approximately 102 at 0.1 and −0.1 V. The RS performance was not
significantly degraded after 100 consecutive cycles of testing. We also explored the factors affecting
the RS behavior of the device. By investigating the RS characteristics of the devices annealed in
O2, and in combination with XPS analysis, we found that the RS properties were closely related to
the presence of oxygen vacancies. The devices annealed in air exhibited a markedly improved RS
effect over those annealed in O2. According to the slope fitting, the conduction mechanism of the
device was the ohmic conduction and space charge limited current (SCLC). This study is the first to
successfully apply BIT ferroelectric films to the RS layers of memristors. Additionally, a theory of
conductive filaments is proposed to adequately explain the relationship between RS behavior and
oxygen vacancies, providing meaningful inspiration for designing high-quality resistive random
access memory devices.

Keywords: Bi4Ti3O12; resistive switching; oxygen vacancies; conductive filaments; thin film

1. Introduction

Information storage technology is one of the most rapidly developing areas in the
field of integrated circuits. Memory is the most critical core of information storage technol-
ogy [1,2]. As traditional memristors can no longer satisfy the requirements of improving
information storage and programming speed, developing a new generation of memris-
tors has gained scholarly interest in recent years [3,4]. Numerous studies have shown
that a non-volatile memory has a significant advantage over a volatile memory in the
read-write operation of a storage system due to its capability to maintain information in
case of power failure [5,6]. To date, several competitive non-volatile memories have been
developed, including but not limited to phase change, magnetic, ferroelectric, and resistive
random-access memory (RRAM) [7–9]. Given its excellent scalability, simple structure,
high-endurance cycles, fast operation, and high-density data storage, RRAM is considered
an ideal candidate to meet the demands for the promising non-volatile memory of the
future. Regarding its application in information capacity, however, there are a variety of
issues that need to be addressed, such as retention characteristics, fatigue, and transmission
mechanisms [10,11]. In general, one of the most significant advantages of a typical RRAM
lies in its simple metal-insulator-metal (MIM) device structure, in which resistive switching
(RS) layers are sandwiched between two metal electrodes. When the bias polarity or volt-
age amplitude is stimulated, RRAM can electrically change its resistance state between a
high-resistance state (HRS) and low-resistance state (LRS) to complete the storage of infor-
mation [12,13]. When the “SET” to LRS state occurs at one bias polarity and the “RESET” to
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HRS state on the opposite bias polarity, the RS can be considered a bipolar RS. Conversely,
if the switching procedure only requires the amplitude of the same polarity to obtain the
SET and RESET, the RS is taken into account as a unipolar RS [11,14]. To date, the RS char-
acteristic of an insulator layer has been explored in different materials, including transition
metal oxides (TiO2, ZnO, NiO, Ta2O5, HfO2, and Al2O3 [15–20]), perovskite oxides (SrTiO3,
BaTiO3 [21,22]), etc. On the other hand, RRAM devices based on a MIM sandwich structure
cannot be separated from thin-film synthesis technology. In recent years, breakthroughs
have been made in film synthesis technology. Many physical and chemical methods
have been used to synthesize films, such as atomic layer deposition (ALD) [23], sol-gel
method [24], and metalorganic chemical vapor deposition (MOCVD) [25]. Among them,
the sol-gel method has been widely used due to its advantageous large-area uniformity,
simple equipment, and relatively low processing temperature.

Recently, Bi4Ti3O12 (BIT) thin film, a bismuth layer-structured ferroelectric, was re-
ported to be a promising material replacement of conventional lead zirconate titanate, used
for various electronic components due to its relatively low crystallization temperature, ex-
cellent fatigue endurance, as well as for being environmentally friendly [26]. Additionally,
BIT was studied as a promising photocatalyst with a narrow bandgap below 3 eV, high-
lighting its outstanding photoelectric response performance [27]. However, BIT thin films
with both ferroelectric and RS properties have not been reported in studies. LaNiO3(LNO)
is a kind of pseudocubic perovskite metal oxide with stable chemical properties and good
electrical conductivity. The lattice mismatch with many ferroelectric thin films is small,
which not only affects the crystal orientation of thin films, but also improves the electrical
properties of ferroelectric thin films [28]. In recent years, LNO has mainly been used to
replace Pt/Ti and other metals as electrode materials of ferroelectric thin films, such as
bismuth titanate and lead zirconate titanate, and has been applied in microelectronics and
electronics [29,30]. In this study, BIT films were deposited on LNO/p-Si substrate through
the sol-gel process. We explored the RS characteristics, durability, and conductivity of
BIT-based memory devices.

2. Materials and Methods

Here, BIT thin films grown on LNO/p-Si substrates were prepared via the sol-gel pro-
cess. All chemical reagents used in the experiment were of analytical grade. A LaNiO3 pre-
cursor solution was prepared using lanthanum nitrate La(NO3)3·6H2O (Macklin, Shanghai,
China) and nickel acetate Ni(OCOCH3)2·4H2O (Macklin, Shanghai, China) as raw materi-
als. The solvent used was glacial acetic acid (Aladdin, Shanghai, China). La(NO3)3·6H2O
and Ni(OCOCH3)2·4H2O were dissolved in glacial acetic acid according to a certain stoi-
chiometric ratio and stirred until the solute was dissolved. The concentration of the solution
was adjusted to 0.3 mol/L. First, the p-Si substrate was placed on a homogenizer (Jinyi,
China) and the LNO solution was then dropped onto the p-Si substrate, and rotated at
3000 rpm for 40 s. Finally, the sample was annealed in rapid thermal annealing equipment
(Kejing, Hefei, China) at 650 ◦C for 10 min. Bismuth nitrate pentahydrate Bi(NO3)3·5H2O
(Kermel, Tianjin, China) and tetra-n-butyl titanate Ti(C4H9O)4 (Macklin, Shanghai, China)
were selected as raw materials to prepare the precursor solution of Bi4Ti3O12. The solvent
used was acetic acid with 2-methoxy ethanol (C3H8O2) (Aladdin, Shanghai, China). An
excess of 10 mol % bismuth nitrate pentahydrate was added to compensate for the volatile
Bi. Firstly, Bi(NO3)3·5H2O was dissolved in a mixed solution consisting of C3H8O2 and
acetic acid at a volume ratio of 1:1. Then, Ti(C4H9O)4 was dissolved in acetylacetone
(C5H8O2) (Macklin, Shanghai, China) at room temperature. Next, the two solutions were
mixed and stirred at room temperature for 3 h until fully dissolved. Afterward, a 2-methoxy
ethanol solvent was added to adjust the concentration of the solution to 0.05 mol/L. No
additive was mixed with the final solution after an appropriate duration, which was
ready for fabrication. Then, the precursor solution was filtered using a filter and used for
spin-coating. The precursor solution was dropped in a clean LNO/p-Si substrate using
a syringe. Thereafter, the LNO/p-Si substrate was placed on the platform of the rotary
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coating machine for spin-coating at 2000 rpm for 20 s, and then at 4000 rpm for 30 s. The
as-coated films were set on a plate at 300 ◦C for 15 min to promote thermal decomposition.
The above-mentioned process was repeated three times to achieve a film thickness of
120 nm. Afterward, the devices were annealed in 700 ◦C air for 20 min by using rapid
thermal annealing equipment (Kejing, Hefei, China). After annealing, the Au dots with
diameters of 0.5 mm were prepared on the top layer of the film of the top electrode by
using an ultra-high vacuum chamber (Saintins, Beijing, China).

The grazing incidence X-ray diffraction (Bruker, Bremen, Germany) was employed
to analyze the crystal structures of the BIT and LNO-buffered film. The current-voltage
(I-V) characteristics of the device were analyzed using a Keithley 2400 (Solon, OH, USA)
semiconductor parameter analyzer. The surface and cross-sectional image of the sample
were captured using scanning electron microscopy (Hitach, Tokyo, Japan). The O 1s
spectrum of the BIT films was measured using X-ray photoelectron spectroscopy (Thermo
Fisher, Manchester, England). Moreover, the ferroelectric properties of the BIT film were
investigated by a ferroelectric test system (Radiant, Redmond, WA, USA).

3. Results
3.1. Structure Analysis

The BIT films were successfully deposited on p-Si substrates with LNO-buttered films
via the sol-gel method. Figure 1 exhibits the XRD patterns of BIT films grown on the
LNO/p-Si substrate. The diffraction peaks of the LNO-buffered films are also displayed
in Figure 1 for comparison. The peaks marked in red are consistent with the diffraction
data of the standard card PDF#50-0300, indicating the BIT film is polycrystalline and has a
single phase of the bismuth-layered perovskite structure. The BIT film shows a preferred
orientation of (117), which may be due to the effect of the high annealing temperature. The
remnant peaks at 23.26◦, 32.81◦, and 47.33◦ belong to the (101), (110), and (202) lattice planes
of hexagonal LNO, respectively, corresponding to the blue standard card PDF#34-1077.
Furthermore, there were no intermediate or additional peaks apart from BIT films and LNO-
buffered films. Figure 2a shows the surface SEM photographs of the samples. The BIT films
are well-crystallized. The crystal grains are clearly visible, and their diameters range from
about 30 to 70 nm. Figure 2b shows the cross-sectional view of the sample. The thickness
of the BIT films and LNO-buffered films are approximately 120 and 60 nm, respectively. In
addition, XPS was also used to study the chemical composition and elemental oxidation
states of BIT-thin films. The results are shown in Figure S1 of the Supplementary Materials.
The results show that no other impurities were introduced into the sample during the
preparation process.
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3.2. Electrical Performance

To test the electrical properties of the Au/BIT/LNO/Si device, the ferroelectric and I-V
performances were investigated according to the schematic diagram of the device shown
in Figure 3a. Figure 3b shows the room-temperature polarization-voltage (P-V) hysteresis
loops of the device measured at 1 KHz. It is shown that the ferroelectric hysteresis loop
begins to appear when the bias voltage is greater than 3 V. It shows symmetric hysteretic
loops. When the applied bias voltage reached 9 V, the maximum polarizability (2Pmax)
and residual polarizability (2Pr) were 61.86 and 19.38 mC/cm2, respectively, indicating that
the BIT film exhibits good ferroelectricity. Furthermore, the coercive voltages of the films
were about −1.7 V for negative bias and +1.3 V for positive bias. Due to the differences
between the Au/BIT and BIT/LNO interfaces, a built-in electric field forms in the BIT film
and results in the asymmetry of coercive voltages, which has been widely observed in
asymmetrical metal ferroelectric metal (MFM) devices [31].

To investigate the RS characteristics of the Au/BIT/LNO/Si device, I-V curves were mea-
sured at room temperature according to the schematic illustration depicted in Figure 3a. The
inset in Figure 3c displays the I-V characteristics of the device. The arrows indicate the voltage-
sweeping directions. The order of voltage scanning is 0 V→0.8 V→0 V→−0.8 V→0 V. We ob-
served that the device has a diode-like rectification effect and traditional resistance-switching
characteristics. To analyze the RS characteristics of the device, a semilogarithmic plot of the
I–V measurements is shown in Figure 3c. The device was initially at the HRS. In the “1” path,
with the increase in the positive bias, a SET occurred at about 0.6 V, where the current of
the device was markedly elevated, and the HRS was simultaneously converted to the LRS.
Afterward, with the voltage scanned in “2” and “3”, the LRS was maintained until the voltage
reached about−0.4 V. Then, an adverse process formed, in which RESE” took place at around
−0.4 V, and the LRS was simultaneously triggered to the HRS. Finally, the HRS followed in
its initial state for the next uninterrupted sweeping cycle. To further assess the durability
and stability of the RS characteristics of the devices, the RS characteristics with 100 voltage
sweeping cycles are illustrated in Figure 3d. The semi-logarithmic I-V curves measured after
100 cycles were found to be similar to those measured in the first cycle. We observed that
the Au/BIT/LNO/Si memory device possesses excellent forming-free bipolar, non-volatile
RS characteristics.

The resistance state values of the HRS and LRS measured at 0.1 and −0.1 V for
100 consecutive cycles are displayed in Figure 4a,b, respectively. We found that a larger
ratio of RHRS/RLRS can be obtained at smaller voltages of−0.1 V and 0.1 V. It is noteworthy
that the overall HRS and LRS tend to be stable. Moreover, the ratio of RHRS/RLRS of the
device could reach 102 and did not remarkably degrade after 100 cycles, demonstrating that
the device has good durability and stable, repeatable read/write characteristics. To explore
the RS uniformity of devices, the cycle-to-cycle and device-to-device distributions were
investigated and are shown in Figure 4c,d, respectively. The relative standard deviation
(σ/µ) was used to indicate the degree of variation. The cumulative probability of cycle-to-
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cycle distribution of the HRS and LRS was extracted from 100 consecutive switching cycles
within a device, as shown in Figure 4c. The devices manifest a stable distribution for the
on/off properties. The cumulative probability of the device-to-device distribution in the
HRS and LRS was obtained from 20 randomly selected devices, as shown in Figure 4d. The
results show a low device-to-device variability, indicating the device has good reliability
and repeatability. To confirm its potential in memory storage applications, we investigated
the data-retention characteristics of the device at room temperature (25 ◦C) and 85 ◦C.
As shown in Figure 4e, the two resistance states of HRS and LRS are stable over 104 s at
25 and 85 ◦C under 0.1 V, without significant degradation. The excellent data-retention
performance of the device demonstrates the potential for non-volatile memory applications.
Table 1 compares key performance aspects of the Au/BIT/LNO/Si device with other
recently reported devices.
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Figure 4. Endurance and retention test results of the device. The HRS and LRS read at (a) 0.1 V
and (b) −0.1 V for 100 cycles. The cycle-to-cycle distribution of HRS and LRS for 100 cycles in (c),
device-to-device distribution of HRS and LRS for 20 devices in (d), the retention characteristics of (e),
and HRS and LRS at room temperature (25 ◦C) and 85 ◦C.
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Table 1. Comparison of resistive switching performance of RRAM devices.

Device Structure ON/OFF Endurance Cycles Retention Time Year/Ref.

Ag/BaTiO3/Nb:SrTiO3 ~200 40 104 s/85 ◦C 2020/[32]
SRO/BaTiO3-δ/SRO ~7 270 — 2013/[33]

Au/BaTiO3/Nb:STO ~41 50 — 2017/[34]
Pt/BiFeO3/SRO ~750 — 103 s/RT 1 2013/[35]
Al/BiFeO3/ITO ~2.3 10 — 2020/[36]
Ag/BiFeO3/FTO ~12 100 — 2020/[37]

Pt/Hf0.5Zr0.5O2/LSMO ~210 104 103 s/RT 2021/[38]
Cu/Ti/HfO2/TiN ~100 2000 10 years/200 ◦C 2019/[39]

Ag/HfO2/Pt ~105 108 >1 day/150 ◦C 2021/[40]
TiN/Sr:HfO2/Pt ~50 50 — 2018/[41]

Au/Bi4Ti3O12/LNO/Si ~100 100 104 s/85 ◦C This work
1 RT, measured at room temperature.

To analyze the influence of oxygen vacancies in the RS properties, we remanufactured
a sample annealed in O2, keeping the other experimental processes the same as that of
samples annealed in air. Moreover, the XPS test was conducted for both of the devices.
To date, many studies have shown that XPS results can confirm the existence of oxygen
vacancies [36,42]. As shown in Figure 5a, the O 1s spectrum of the devices annealed in
air was fitted by two Gaussian peaks at 529.5 and 531.5 eV. The Gaussian peak with a
lower binding energy at 529.5 eV was indexed to the crystal lattice oxygen, and the other
with a higher binding energy at 531.5 eV arose from adsorbed oxygen, which could be
associated with the oxygen vacancies in the BIT film [43,44]. In Figure 5b, the O 1s narrow
sweep spectrum of the device annealed in O2 also deconvoluted into two clearly separated
Gaussian peaks at 529.8 eV and 531.6 eV, defined as crystal lattice oxygen and adsorbed
oxygen, respectively. The ratio of the area of adsorbed oxygen to the total peak area can be
defined as the content of oxygen vacancies [44,45]. The results show that the content of
oxygen vacancies of the device annealed in air is significantly higher than that of the device
annealed in O2, which is 55.5% and 40.0%, respectively. In addition, the RS properties
and the high/low resistance state values of the device annealed in O2 are depicted in
Figure 6a,b, respectively. The results show the ratio of RHRS/RLRS of the device annealed in
O2 was much smaller than the device annealed in air, by about 101. This demonstrates that
the oxygen vacancies in BIT film are core to its RS characteristics. The results show that the
existence of oxygen vacancies plays a crucial role in determining the RS properties of the
Au/BIT/LNO/Si device. Higher concentrations of oxygen vacancies in these materials can
effectively enhance resistance switching properties, as also found in previous work [46].
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TiN/Sr:HfO2/Pt ~50 50 — 2018/[41] 

Au/Bi4Ti3O12/LNO/Si ~100 100 104 s/85 °C This work 
1 RT, measured at room temperature. 
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of HRS and LRS read at a bias of +0.1 V.

3.3. Mechanism Discussion

To interpret the conduction mechanism of the RS properties, the I-V double-logarithmic
curves of the device annealed in air were selected to fit and analyze the carrier transmission.
The positive and negative voltage regions are shown in Figure 7a,b, respectively. For the
LRS, the slope obtained by the fitting curves for both positive and negative sweeps is
roughly equal to one, demonstrating that the conduction mechanism is regulated by Ohm’s
law. For the HRS, the slope of the fitting curves in the low-voltage region (0 ≤ V ≤ 0.18 V
for the positive voltage region, and −0.24 ≤ V ≤ 0 V for the negative voltage region) is
close to one, indicating that the initial HRS state follows Ohm’s law. The I-V characteristics
of Ohmic conduction can be expressed as [47]:

JOhm = qn0µ(V/d) (1)

where JOhm is the current density, q is the elementary charge, n0 is the free carrier density, µ
is the carrier mobility, d is the film thickness, and V is the applied bias.
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However, in the high-voltage region in the HRS (0.18 ≤ V ≤ 0.62 V for the positive
voltage region, and −0.24 ≤ V ≤ −0.36 V for the negative voltage region), the slope is
approximately equal to two (the slope for the positive voltage region is equal to 2.02, and
the slope for the negative voltage region is equal to 1.93), which was subjected to the space-
charge-limited conduction (SCLS; Child’s law). It was indicated that the threshold voltage
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from the Ohmic conduction area to the Child’s square area corresponded to the transforma-
tion from the trap-unfilled region to the trap-filled region of the SCLC mechanism [48,49].
The conduction current density of SCLC can be expressed as follows [50],

JSCLC = (9/8)µε(V2/d3) (2)

where µ is the electron mobility, ε is the permittivity of the film, d is the thickness of the film,
and V is the applied voltage. In SCLC theory, an electron defect trap is treated as an oxygen
vacancy. With a rise in voltage corresponding to the increase in injected carriers, oxygen
vacancies are filled with electrons, and the current passing through the film increases.
At the time when defects composed of oxygen vacancies brim with injected electrons,
the current will noticeably increase, representing a switch from the HRS to LRS [51]. In
addition, both the positive and negative voltage regions of the conduction mechanism of
the LRS were governed by Ohm’s law, indicating the conductive filaments formed in the
BIT films [52]. The most prominent feature of the filament principle is the sudden increase
or decrease in the current during the SET and RESET steps. Thus, this further indicates
that the conductive filaments control the resistance switching characteristics of the device.

According to the above analysis, it can be concluded that the RS characteristic is
associated with the presence of numerous oxygen vacancies in the film, and the forma-
tion and fracture of conductive filaments composed of oxygen vacancies can lead to the
transition between HRS and LRS [53,54]. As displayed in Figure 8, a typical conductive
filaments theory was proposed to describe the effects of oxygen vacancies. The hollow
circles represent oxygen vacancies in the BIT thin films, the red balls represent oxygen
ions, and the purple pellets are the electrons in the film. Initially, the regular oxygen sites
were evenly distributed in the film, as shown in Figure 8a, corresponding to the HRS of
the device. An electrochemical reaction occurs when a forward bias is applied to the top
Au electrode of the device. This electrochemical reaction can be written in Kr
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ger-vink
notations as [55]:

Oo → V++
o + O−2 (3)

where Oo represents an oxygen ion on a regular site, V++
o denotes oxygen vacancies with

a double positive charge, and O−2 represents oxygen ions. The electrochemical reaction
separates oxygen ions from the regular oxygen sites, and these oxygen ions can drift under
the applied electric field, which is equivalent to the movement of the oxygen vacancy [56].
With the elevation in applied voltage, the injected electrons fill the defects and control the
flow of electricity. The conduction mechanism of this process is controlled by SCLC. Due to
the positive voltage acting on the Au electrode, oxygen ions drift toward the Au electrode
and leave oxygen vacancies behind. At this point, the electrons are directed toward the Au
electrode to form the conductive filament. As shown in Figure 8b, when the conductive
filaments connected the LNO and Au electrode, a steep current simultaneously increased,
and the SET process could be achieved [44]. When negative voltage was applied to the Au
electrode, the opposite electric field forced the oxygen ions to move toward the LNO. The
oxygen ion recombined with the oxygen vacancy, leading to the disruption of conductive
filaments, as illustrated in Figure 8c. The device switches from HRS corresponding to the
RESET process. The formation and rupture of the conductive filaments illustrated the
carrier transport characteristics of the device, showing consistency with the RS performance,
as well as the conduction mechanism of the device.
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3.4. Conclusions

In summary, the Au/BIT/LNO/Si devices were prepared via the sol-gel process. First,
the V-I characteristics of the devices annealed in air were investigated, and the results
showed a high stability and reliability of bipolar RS properties. The ratio of RHRS/RLRS
of the device annealed in air reached about 102, and the RS characteristic showed no
significant deterioration after 100 successive cyclic tests. However, the RHRS/RLRS ratio
of the device annealed in O2 was only 101, which is significantly lower than the device
annealed in air. Through XPS test analysis of both devices, we found this was due to the
effect of the concentration of oxygen vacancies in the films. We found that the oxygen
vacancies have an enhanced effect on the resistance switching characteristics of BIT films.
The conduction mechanism of the RS properties was also studied, and the results indicated
that the conduction mechanism in HRS was regulated by SCLC, and the conduction
mechanism of LRS was governed by Ohm’s law. Moreover, the formation and rupture of
oxygen vacancy filaments were presented to specify the switching of the LRS and HRS
states. In this study, the excellent bipolar RS properties of Au/BIT/LNO/Si devices were
first reported. It is suggested that the BIT thin films are worthy of further research to extend
the application fields of ferroelectric films in RRAM.
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