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Abstract Driesch’s statement, made around 1900, that the
physics and chemistry of his day were unable to explain
self-regulation during embryogenesis was correct and could
be extended until the year 1972. The emergence of theories
of self-organisation required progress in several areas
including chemistry, physics, computing and cybernetics.
Two parallel lines of development can be distinguished
which both culminated in the early 1970s. Firstly, physico-
chemical theories of self-organisation arose from theoretical
(Lotka 1910–1920) and experimental work (Bray 1920;
Belousov 1951) on chemical oscillations. However, this
research area gained broader acceptance only after thermo-
dynamics was extended to systems far from equilibrium
(1922–1967) and the mechanism of the prime example for a
chemical oscillator, the Belousov–Zhabotinski reaction,
was deciphered in the early 1970s. Secondly, biological
theories of self-organisation were rooted in the intellectual
environment of artificial intelligence and cybernetics.
Turing wrote his The chemical basis of morphogenesis
(1952) after working on the construction of one of the first
electronic computers. Likewise, Gierer and Meinhardt’s
theory of local activation and lateral inhibition (1972) was
influenced by ideas from cybernetics. The Gierer–Mein-
hardt theory provided an explanation for the first time of
both spontaneous formation of spatial order and of self-
regulation that proved to be extremely successful in
elucidating a wide range of patterning processes. With the

advent of developmental genetics in the 1980s, detailed
molecular and functional data became available for com-
plex developmental processes, allowing a new generation
of data-driven theoretical approaches. Three examples of
such approaches will be discussed. The successes and
limitations of mathematical pattern formation theory
throughout its history suggest a picture of the organism,
which has structural similarity to views of the organic
world held by the philosopher Immanuel Kant at the end of
the eighteenth century.
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From Kant to Driesch

A hallmark of Immanuel Kant’s philosophy is its openness
towards all developments of empirical sciences (Watkins
2001). In one of his earliest works, Kant presented a theory
of the formation of the planetary system on the basis of
Newton’s laws of gravitation (Universal natural history
and the theory of heavens, 1755). He reflected extensively
about foundational questions of physics (Metaphysical
physical foundation of natural science, 1786). Throughout
his life, he absorbed all new developments in chemistry,
although he states that the chemistry of his days is still far
away from becoming a science. According to Kant, ‘in
every discipline of natural sciences there is present only so
much real science, as there is mathematics’ (Kant 1900ff
Vol 4, 470). Contemporary chemistry clearly was not living
up to this ideal. Kant also showed eager interest in biology
(Löw 1980; Ginsborg 2001). His essays on the concept of
the biological species (1775, 1785) were received as
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important contributions to this topic by contemporary
biologists (Roth 2008). Biology was even of great
importance for the general architecture of Kant’s philoso-
phy reflected in his three Critiques. While the Newtonian
laws were the prime example for a science in his first
Critique, the Critique of Pure Reason (1781, 1787), biology
represented a central topic in his third critique, the Critique
of Judgment (1790). Here, Kant developed a theory of the
organism, which would become influential for the life
sciences of the nineteenth century.

This theory makes a strong claim about the way we
analyse organisms as opposed to other objects of nature.
Organisms, Kant believes, are not fully accessible for us
through mechanistic explanations on the basis of general
laws exemplified by Newton’s principles. In a famous
passage, he says: ‘…it would be absurd for humans even…
to hope that there may yet arise a Newton who would make
comprehensible even the generation of a blade of grass
according to natural laws…’ (Kant 1900ff Vol 5, 400). One
may well rephrase this sentence by saying human beings
are not able to mathematise biology. In spite of such a
strong proposition, Kant supports mechanistic studies of
organisms because ‘…without this no insight into the
nature of things can be attained’ (Kant 1900ff Vol 5, 410).
Thus, Kant’s attitude appears to be almost schizophrenic.
On the one hand, he posits that organisms will always resist
complete mechanistic and, in particular, mathematical
explanations. The reason is that they have a certain goal-
directedness (purposiveness), which humans can describe
only in functional terms, i.e. in the same way as we
describe a machine. He calls the type of judgment we use in
analysing organisms and artefacts teleological judgement.
On the other hand, biology as a science requires, according
to Kant, a mechanistic approach using forward causal
explanations, which ultimately need to be expressed in
mathematical terms. Kant repeatedly stresses the point that
the necessity of this dual approach for studying organisms
is not a property of nature itself, but rather due to our
limited faculties. He explicitly criticises all vitalistic
approaches which ask for special laws of living matter.

Kant’s third Critique was widely read by scientists in the
nineteenth century and apparently had a significant impact
on the research agenda of biologists. It freed the working
biologist from the burden to explain every aspect of
organisms on the scarce basis of the mechanical laws of
the early nineteenth century—chemistry was still in its
infancy—but at the same time motivated experimental
approaches aiming for causal explanations. This attitude
was termed teleomechanism (Lenoir 1989) because it
combined mechanistic analyses with the idea of a given
machine-like (purposive) structure that itself required no
further theoretical grounding in known natural laws. We
can still see this attitude at the end of the nineteenth century

in the work of Hans Driesch, who wrote: ‘On the basis of
this given structure, this machine, we gain a causal
understanding of the functions with the help of chemistry
and physics…. But the given structure of the living can
only be understood in teleological terms’ (Driesch 1894).
This passage is from Driesch’s Analytical theory of
development, one of the great and influential books in the
history of developmental biology. Inspired by ideas of
Wilhelm Roux who had coined the term Entwicklungsme-
chanik, Driesch started his research with the goal to explain
development on the basis of physics and mathematics. But
soon, his experiments with sea urchins brought him into
opposition to Roux who was a follower of Weismann’s
Keimplasmtheorie which held that differentiation in devel-
opment results from the specific partitioning of the genetic
material. Driesch, on the other hand, correctly assumed that
the complete genetic material was present in each cell
nucleus. ‘Insofar as it contains a nucleus, every cell, during
development, carries the totality of all primordia…’
(Driesch 1894). This conclusion was in part based on
Driesch’s observation of self-regulation and scaling during
development. When he separated the blastomeres of two-
cell sea urchin embryos, each isolated blastomere gave rise
to a complete embryo which was only smaller in size
compared to a normal one. The experiments worked also
with four-cell and partially with eight-cell embryos. How
could it happen that a part of an embryo reconstituted the
whole structure with all its elements correctly arranged, but
just on a smaller scale? To explain the scaling behaviour,
Driesch described the sea urchin embryo as a ‘harmonious
equipotential system’. The potential of a given cell to
differentiate into a particular part of the body depends on its
position within the embryo. Thus, Driesch introduced the
concept of ‘positional information’ 75 years before it was
re-introduced and refined by Lewis Wolpert (Wolpert
1969). Although Driesch first sought physical explanations
for the ‘harmonious equipotential system’, further experi-
mental studies convinced him that the phenomena of
scaling and self-regulation could not be explained by the
laws of physics and chemistry known at his time (Driesch
1899). Embryonic development seemed to require a form of
self-organisation, which had not been observed in inani-
mate nature. Driesch postulated additional laws restricted to
organismic life, and thus became one of the last famous
vitalists in the history of biology. Now, he also explicitly
broke with Kant’s more cautious attitude. In Kant und das
Ganze, Driesch states that Kant’s use of teleological
principles as mere methodological tools for analysing
organisms was inconsistent and that Kant, on the basis of
his own theory, should have adopted a vitalistic stance
(Driesch 1924).

Driesch was harshly criticised by his colleagues, in
particular by Wilhelm Roux in his reply The self-regulation,
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a characteristic and not necessarily vitalistic capacity of all
organisms (Roux 1914). However, when it comes to
mechanisms of self-regulation, Roux could not offer much.
He mentions phenomena in the inorganic world which
seemed to be examples of self-regulation to him. One of
these examples is the flame of a candle. The flame has
metabolism, it exists only through the flow and consump-
tion of material and it regulates its size according to the
supply. The other example is the regeneration of defects in
crystals, which inorganic chemists had observed (Przibram
1906). What these examples have in common is the highly
inhomogeneous starting situation. They do not provide
instances for spontaneous pattern formation emerging from
unstructured initial conditions. Such examples were virtu-
ally non-existent when Driesch argued for his vitalistic
view in 1899.

In later years, Driesch was confronted with attempts of
colloid chemists to provide physicochemical analogues for
life. In 1896, Raphael E. Liesegang had published a paper
showing that in a solidified gel containing potassium
dichromate, the local addition of a drop of silver nitrate
leads to the formation of ring-like precipitation patterns of
sliver dichromate. Subsequently, Liesegang described mod-
ifications of this experiment as ‘Emulation of life processes’
(Liesegang 1911a, b, c). Likewise, the French biologist
Stéphane Leduc had shown that the interplay between
precipitation of inorganic salts and osmotic growth produces
complex morphologies. He called his experimental work
‘synthetic biology’ (Leduc 1912; for a famous description
see Mann 1947, 22–24). While most of this early work on
colloid chemistry left no significant traces in the history of
pattern formation theory (Keller 2002, 15–49), Liesegang’s
periodic precipitation patterns continued to attract the
attention of physicochemists. A satisfactory mechanistic
account, though, required the fully developed formalism of
chemical reaction diffusion theory which would become
available only much later (Flicker and Ross 1974). To date,
the complex interplay between gel matrix, ionic properties
of the electrolytes and speed of precipitation producing not
only rings but also spirals and complex branching
patterns is not fully understood (Sultan and Sadek
1996; Karam et al. 2011). However, neither at the time
of their discovery nor in subsequent years did the
Liesegang patterns contribute much to an understanding
of biological processes. They have mostly been linked to
geochemical phenomena such as banding patterns in
minerals (Krug and Kruhl 2000). At the time of Driesch,
though, many biologists had the hope that colloid
chemistry provided a key to the secrets of life. Driesch
himself was impressed by the complex patterns and shapes
generated in the experiments of Leduc and Liesegang, but
doubted their importance for explaining embryonic devel-
opment with two convincing arguments: they lacked the

reproducible specificity of organic forms and the capacity
to self-regulate (Driesch 1921, 80–82, 134).

Driesch was also fascinated by D’Arcy W. Thompson’s
monumental On growth and form (1917), a work which
would become influential for all subsequent researchers
addressing problems of morphogenesis and pattern forma-
tion. Thompson extensively applied mathematics to prob-
lems of biological form at all levels of organisation, but
only in a descriptive and non-mechanistic way. ‘My sole
purpose is to correlate with mathematical statement and
physical law certain of the simpler outward phenomena of
organic growth and structure or form…’ (Thompson 1917,
10). In Driesch’s view, Thompson’s geometric descriptions
‘provided only the general type of an arrangement’
(Driesch 1921, 80) or ‘the general frame for the process’
(Driesch 1921, 82). It could neither explain the specific
arrangement nor the underlying generative forces. Had
Driesch seen the later developments in molecular biology
that addressed the problem of specificity and the rise of
theories of self-organisation that provided models for self-
regulation and scaling, I believe, he would not have voted
for vitalism. However, these developments were only in
their infancy in Driesch’s lifetime.

The rise of physicochemical theories of self-organisation

The history of biological pattern formation theory is
indirectly linked to the discovery of self-organisation in
chemical systems, which, in turn, is rooted in theoretical
discussions and experimental findings on oscillating chem-
ical reactions in homogeneous phase. This link, although
indirect, has three ramifications. First, the most successful
and influential early theories of biological pattern formation
were based on chemical-reaction diffusion rather than
physical (mechanical, hydrodynamic, electromagnetic)
models. In the framework of these chemical approaches,
there was no reason to believe that biomolecules within an
organism would not obey the same laws of mass action and
diffusion which apply to molecules in general. Therefore,
whatever progress occurred in chemical kinetics could be
used to compare and enrich biological theories. Second,
conceptual problems to imagine how self-organising pro-
cesses could occur on the basis of the known physical laws
were not unique to biologists like Driesch. Many chemists
in the first half of the twentieth century also believed that
spontaneous emergence of temporal or spatial order in a
homogeneous phase violated the second law of thermody-
namics. Indeed, a broad acceptance of the possibility of
self-organisation in biology was predated and prepared by
the analysis of physical conditions allowing for temporal
and spatial order to arise in chemical systems. Third, the
communication between chemistry and biology was not
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unidirectional, with chemistry providing the groundwork
for biological theories. Rather the opposite applies: much of
the work in chemistry was motivated by ideas and
experimental observations from biology.

None of the players in the unfolding story of chemical
self-organisation theories provides a better example for the
mutual influence of chemical and biological concepts than
the Austrian-American chemist Alfred Lotka (1880–1949).
In 1910, Lotka published a paper entitled Contribution to
the theory of periodic reactions in the Journal of Physical
Chemistry (Lotka 1910). In this paper, he showed that
under certain conditions, autocatalysis leads to chemical
oscillations. He still assumed an inhomogeneous system in
which a substance A is set free with a constant rate from a
condensed phase and then reacts to produce a substance B.
B influences autocatalytically its own production and
decays with a constant rate. Lotka solved the coupled
differential equations and showed that the system leads to
damped oscillations. At the end of the paper, he states ‘No
reaction is known which follows the above law, and as a
matter of fact the case here considered was suggested by the
consideration of matter lying outside the field of physical
chemistry’ (Lotka 1910). In the footnote to this sentence, he
mentions the work of Brailsford Robertson, who, motivated
by Jacques Loeb, had measured growth curves of different
organisms and had come to the conclusion: ‘…cell division
has been shown by Loeb to be the expression of an
autocatalytic synthesis of nuclear material…in all probabil-
ity, cell growth or the synthesis of cytoplasm is also an
autocatalytic reaction’ (Brailsford Robertson 1908).

While the system Lotka had described in 1910 was
producing damped oscillations, he later extended his work
to systems with sustained, undamped oscillations and, in
particular, also to homogeneous systems. In 1920, he
published Undamped oscillations derived from the law of
mass action (Lotka 1920a). In the introduction, he states
that in the earlier work he believed that the relevant kinetic
conditions could only be provided in heterogeneous
systems. ‘It is, therefore, somewhat contrary to his first
expectations that the writer now finds the conditions for
undamped oscillations may occur in the absence of any
geometrical causes in a homogeneous system’ (Lotka
1920a). His new system coupled two autocatalytic reac-
tions, one consuming the product produced by the other
reaction. Again, Lotka cannot point to a realistic example
from chemistry and ends the article with a note on biology;
‘Rhythmic phenomena are of particular interest in connec-
tion with biological systems (e.g. heart-beat)…’ (Lotka
1920a). He also announces a more general extension of his
work to biological problems. This extension, published in
PNAS in the same year, contains the equations which were
independently discovered by Volterra and today are called
Lotka–Volterra equations used to model predator–prey

relationships in population biology (Lotka 1920b). Lotka
extensively cites Spencer’s first principle; ‘Every species of
plants and animal is perpetually undergoing a rhythmic
variation in number—now from the abundance of food and
absence of enemies rising above its average, and then by a
consequent scarcity of food and abundance of enemies
being depressed below its average…’ (Lotka 1920b).
Biology at the population level or physiology seemed to
offer applications of his chemically derived equations,
while in chemistry, as he notes at the end of his article,
oscillations are at best ‘laboratory curiosities’. Later
developments showed that neither realistic chemical oscil-
lations (see below) nor predator–prey cycles could be
described by Lotka’s equations, although they remain
extremely popular in ecology (Kot 2001).

The lack of applications in chemistry and the obvious
affinity of his work to biology made Lotka more and more
interested in a physical and mathematical foundation of
biology. In particular, he became one of the first authors to
point out the limits of the known laws of thermodynamics
in explaining life processes; ‘…something more than the
first and second laws of thermodynamics is required to
predict the course of events’ (Lotka 1922). The thermody-
namics available to Lotka only dealt with reversible, i.e.
equilibrium, states. However, ‘[r]eal phenomena are irre-
versible; and in particular, trigger action, which plays so
important a role in life processes, is a typical irreversible
process…To deal with these problems, requires the intro-
duction of new principles’ (Lotka 1922). Lotka envisages
the development of a statistical mechanics for populations
of organisms in ‘which the units shall be, not simple
material particles in ordinary reversible collision of the type
familiar in the kinetic theory…the units in the new
statistical mechanics will be energy transformers subject
to irreversible collisions…’ (Lotka 1922). These are very
visionary comments; however, they seem to imply that an
extension of thermodynamics is only required at the
population level, while the highly ordered state of the
individual organism poses no particular problem in the
frame of the existing laws. In 1925, Lotka published
Elements of Physical Biology which was reprinted in 1956
under the title Elements of Mathematical Biology. In his
programme of a physical biology, he claims to capture all
aspects of organismic life. Part I: General remarks deals
with a physical theory of evolution; part II: Kinetics with
growth; part III: Statics with populations and ecological
interactions; and part IV: Dynamics with biochemistry,
physiology, behaviour and even consciousness (Lotka
1925). In the introductory chapter Regarding Definitions,
Lotka rejects attempts to define life by sharply distinguish-
ing it from inorganic phenomena. He explicitly refers to
Driesch’s statement that no man-made machine exists
which shows self-repair and self-reproduction and spec-
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ulates that future technological developments will produce
such things. Organisms are just highly structured physical
systems. The aspect of structure and geometry has,
however, been neglected in physical chemistry so far,
‘In structured systems…geometrical and mechanical
features may play the dominant role’ (Lotka 1925, 15).
‘The laws of the chemical dynamics of a structured
system…will be precisely those laws, or at least a very
important section of those laws, which govern the evolution
of a system comprising living organisms’ (Lotka 1925, 16).
However, how structure arises from less-structured states is
not at all addressed by Lotka. All concrete discussion of
structural features of cells and organisms and their
ontogeny are missing from his book. He jumped directly
from chemistry to biology at the population level with some
remarks on physiology of the adult organism. Curiously,
this jump omitted precisely those parts of biology where a
chemically motivated theory was most wanted among
biologists. Later, Lotka shifted his mathematical work
entirely to population growth and demography and, in 1934,
published Analytical Theory of Biological Populations
(Lotka 1934).

What had happened meanwhile in chemistry? In 1910,
Lotka was unaware of any oscillating reaction and in 1920
he mentioned some not well-documented laboratory curi-
osities (Lotka 1920a). In 1921, however, William Bray at
UC Berkeley published a paper which seemed to describe a
reaction of the type Lotka was looking for (Bray 1921).
Bray had worked on chemical reactions of hydrogen
peroxide. In a solution containing iodate, iodine and
hydrogen peroxide, the latter decomposes to oxygen and
water. The rate of evolution of oxygen and iodine was
found to vary periodically. Bray concludes ‘the writer
believes the present example to be the first instance of a
periodic reaction in homogeneous solution’ (Bray 1921).
With his collaborators, Bray deciphered the basic reaction
mechanisms (Bray 1921; Bray and Liebhafsky 1931).
However, his work indeed remained a curiosity and most
chemists and physicists believed that he had not really
described a homogeneous reaction, but that the oscillations
were an artefact due to dust particles or gas bubble
formation. Theoretical arguments were put forward to show
that chemical oscillations are not possible in a homoge-
neous phase. Thus, in 1969 a physicochemist could still
publish a paper stating: ‘There is no substantiated example
of oscillation in a closed homogeneous chemical system
and detailed balancing is sufficient to preclude it’ (Swartz
1969). Only in the 1970s was the Bray oscillator reinvesti-
gated and was shown to indeed represent a case of an
oscillation in a homogeneous phase (Sharma and Noyes
1975; Epstein and Pojman 1998).

The generally hostile attitude towards the possibility of
oscillating reactions in a homogenous phase also explains

why the most famous and best studied case of an oscillating
reaction had remained obscure for such a long time (Degn
1972; Winfree 1984). In 1950, the Russian chemist Boris
Pavlovich Belousov (1893–1970) tried to find an inorganic
version of the citrate cycle of biochemistry. He examined a
variety of redox reactions with citrate, oxidating agents and
metal ions as catalysts. A combination of citric acid,
bromate and ceric ions showed oscillations in the redox
state of the ceric ions and travelling waves in unstirred
reaction cylinders. The manuscript he submitted in 1951
was rejected with the argument that ‘the supposed discov-
ery was impossible’ (Winfree 1984). Belousov spent six
more years of work on the system and submitted a revised
manuscript which again was rejected. The editor insisted
that the paper should be shortened to a letter. At that point,
Belousov gave up publishing his work. Only one small
abstract remains published in Russian in the proceedings of
a conference on radiation biology (Belousov 1959). His
original manuscript circulated among colleagues in Moscow,
and in 1961, the biophysics student Anatol Zhabotinsky began
systematically to analyse the mechanismwhich later would be
called the Belousov–Zhabotinsky (BZ) reaction. Ten papers
were published in Russian before experiments were taken up
outside Russia and the first paper was published in English
(Degn 1967).

Meanwhile, an increasing interest in non-equilibrium
thermodynamics had emerged within physics. In 1922,
Théophile De Donder had introduced the concept of
affinity, which provided a connection between irreversible
chemical reactions and entropy production (De Donder and
van Rysselberghe 1936). In 1931, Lars Onsager had derived
his famous reciprocal relations for couple irreversible
processes near to equilibrium (Onsager 1931). In 1935,
Ilya Prigogine started to study Chemistry and Physics at
Brussels and later did his Master and Ph.D. thesis with De
Donder. In his autobiography, Prigogine (1977) recalls that
as an adolescent he was deeply impressed by Henri
Bergson’s L’ evolution creatrice and that at Brussels, the
French school of biochemistry and embryology (Brachet,
Dalcq and Florkin) influenced his thoughts. By extending
De Donder’s approach to other macroscopic irreversible
processes including transport phenomena such as diffusion
and thermal conduction, Prigogine derived in the mid-
1940s a general expression for entropy production and
proved his celebrated theorem of minimum entropy
production for non-equilibrium stationary states (Prigogine
1947). The phenomenon of thermodiffusion motivated
Prigogine to write his first biological paper. An external
temperature gradient applied to a mixture of two gases can
lead to a situation in which one of the gases accumulates at
the hot, and the other at the cold wall. In this simple case,
the exchange of energy with the environment leads to an
ordered state within the system and thus to a decrease of
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entropy. In a small paper with the microbiologist Jean-
Marie Wiame, Prigogine discusses the possibility that also
biological systems evolve towards states of minimal
entropy production corresponding to minimal metabolism
and suggests that this tendency leads to an increase in
complexity during phylogenetic evolution (Prigogine and
Wiame 1946). Although this was a fairly speculative idea, it
illustrates the strong interest in biological questions which
distinguished Prigogine from his fellow physicists who
provided major contributions to non-equilibrium thermody-
namics such as Carl Eckart, Josef Meixner and Lars
Onsager. Thus, it is not surprising that even Prigogine’s
early work on linear thermodynamic systems close to
equilibrium was immediately discussed by biologists
(Bertalanffy 1949; Spanner 1953).

Between 1947 and 1967, Prigogine and co-workers in
Brussels attempted to extend non-equilibrium thermody-
namics to situations far from equilibrium. Initially, they
focussed on hydrodynamic instabilities like the Rayleigh–
Bérnard convection, which was experimentally very well
described (Glansdorff and Prigogine 1971). In parallel, the
first papers on chemical systems were published. A crucial
question was whether the current formalism could be
applied to periodic phenomena. The first two papers
addressing this question were written using the Lotka–
Volterra mechanism as a kinetic example, with the aim to
show that oscillations do not in principle violate the laws of
thermodynamics (Prigogine and Balescu 1956; Prigogine
and Balescu 1958). Balescu recalls that speaking of
chemical oscillations ‘was highly “politically incorrect” at
that time’ (Balescu 2007, 12). In the discussion of his 1958
paper by leading specialists in the field, one of the
participants remarks ‘…I should like the authors to ask if
actual systems have been observed whose behaviour
approaches that of the model, or is there somewhere a
contradiction in the reaction scheme proposed which makes
such behaviour impossible’ (Prigogine and Balescu 1958).
However, in the following decade, the work of the Brussels
school received increasing recognition. The term dissipative
structure for states of coherent temporal or spatial order
which are maintained far from equilibrium by the dissipa-
tion of energy became a trademark (Prigogine 1969). A
consensus view emerged of how chemical oscillations,
chemical waves or stable spatial patterns in a homogeneous
system were compatible with an extended thermodynamic
formalism (Nicolis and Prigogine 1977). In brief, chemical
oscillations cannot occur as deviations around a chemical
equilibrium state like the mechanical oscillations of a
pendulum. Nor can they occur close to equilibrium in a
steady-state situation characterised by minimum entropy
production as Prigogine pointed out already in his earliest
writing on irreversible thermodynamics (Prigogine 1947).
Rather, the periodic changes in concentration require a

situation far from equilibrium, in which chemical reactions
need not be reversible and detailed balancing does not
apply. In a closed container without exchange of matter
with the surrounding environment, reactions have to be
postulated which produce substances to perpetuate the
oscillations. The oscillations continue as long as sufficient
amounts of these substances are provided and cease when
they are consumed. Thus, the situation in the homogeneous
phase is energetically similar to the example of the flame
where the flux of matter clearly transgresses distinct phases.
The flame arises and is maintained in a highly structured
environment while dissipative structures represent the
spontaneous formation of order from an unstructured
starting situation.

To develop a thermodynamic formalism which charac-
terises the system behaviour far from equilibrium, Prigo-
gine and his co-workers required chemical models for
oscillating reactions or spatial patterning. The only existing
model for chemical oscillations, the Lotka equations, turned
out to be inappropriate for describing realistic situations
(Nicolis and Portnow 1973). Chemical oscillations occur-
ring in the laboratory should be characterised by a certain
degree of structural stability, i.e. small variations in the
starting concentrations should not affect the final oscillatory
behaviour. Otherwise, it would be impossible to observe
oscillations as a coherent behaviour of e.g. 1020 molecules
in spite of naturally occurring fluctuations. However,
exactly this feature of structural stability is lacking in the
Lotka equations. They represent a conservative system
more similar to the mathematical pendulum admitting an
infinite number of different periodic solutions whose
periods and amplitudes are fixed by the initial conditions.
In search for a more realistic model for oscillations, the
Brussels school could not work with any of the experimen-
tally described cases. Neither the mechanism of the BZ
reaction nor that of the Bray oscillator had been elucidated.
The same applied for oscillations in biochemical systems
which recently had been discovered (Ghosh and Chance
1964). In the absence of a model for oscillations, the
Brussels school first investigated the Turing mechanism of
spatial patterning, which, as we will see, was entirely based
on biological reasoning (Prigogine and Nicolis 1967;
Turing 1952). However, soon they presented a theoretical
example of an oscillator which showed structural stability
(limit cycle oscillations, Prigogine and Lefever 1968). It
became subject of a large body of theoretical work and was
later dubbed the Brusselator (Tyson 1973). In comparison
to the Lotka mechanism, structurally stable limit cycle
oscillations require at least three reactions, cross catalysis
and non-linear autocatalysis; in the case of two-component
systems (like the Brusselator), the autocatalytic reaction has
to be trimolecular (Nicolis and Portnow 1973; Schnakenberg
1979). Prigogine and Lefever (1968) mention that ‘this
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reaction scheme is physically unrealistic because of the
trimolecular step’ and that it was mainly chosen for
mathematical reasons. Because of its simplicity, the
Brusselator is indeed still used as an example in mathe-
matical treatments of pattern formation theory (Cross and
Greenside 2009). As Prigogine and Lefever (1968) point
out, systems with higher number of components can be
devised easily that are based on more realistic kinetics and
show limit cycle oscillations. In particular, enzyme kinetics
offered a rich source for non-linear reaction schemes. In an
influential paper, the new ideas on dissipative structures
were applied to biological questions (Prigogine, et al.
1969). Albert Goldbeter, one of the authors of this paper,
would become a leading figure in the analysis of rhythmic
phenomena in biology (Goldbeter 1996).

Nevertheless, at the end of the 1960s there was no single
case of an experimentally validated mechanism for an
oscillating reaction (or a reaction producing spatial pat-
terns). However, the theoretical work provided a strong
motivation for experimental approaches. The Brussels
school contributed to popularising the BZ reaction as the
best experimental example of a chemical oscillator and
motivated chemists to do research on its mechanism. In the
early 1970s, R. Field and E. Körös in the laboratory of R.
Noyes at the University of Oregon undertook a systematic
investigation of the BZ reaction. When they started, the
option was still discussed that the oscillatory behaviour and
the chemical wave patterns were due to heterogeneous
effects and would not occur in a completely homogeneous
phase. Obviously, the concept of large-scale coherent
phenomena far from equilibrium was still not easy to grasp
for physical chemists. In 1972, Field, Körös and Noyes
published the first successful and largely complete kinetic
model of the BZ reaction which later was called the FKN
(Field, Körös, Noyes) mechanism (Field, et al. 1972). To
explain the oscillatory behaviour, they distinguished ten
different reactions represented by detailed kinetic equations.
From these, they later derived a model capturing the core
kinetics which included only three variables for compo-
nents and five equations (Field and Noyes 1974). This
model was extensively used for computer simulations and
largely reproduced the quantitative data from experiments.
In analogy to the Brusselator, it was dubbed the Oregona-
tor. Among biologists, the BZ reaction became very
popular through the work of Arthur Winfree who, in
particular, was interested in the mechanism of spiralwave
formation (Winfree 1972).

Taken together in the early 1970s, both theoretical and
experimental approaches had provided a thorough under-
standing of the spontaneous formation of order in homo-
geneous chemical systems. The Brussels school played a
major role in clarifying the compatibility of these phenom-
ena with the laws of thermodynamics and in defining the

general prerequisites for self-organised patterning. The
attempt to derive functions for entropy production which
characterise temporal or spatial pattern formation far from
equilibrium was later criticised (Landauer 1975) and does
not play any role in modern treatments of this subject
(Cross and Hohenberg 1993; Cross and Greenside 2009). It
also should be noted that parallel to the Brussels school,
which focused on chemistry, several groups studied the
formation of ordered states in purely physical non-
equilibrium systems. Hermann Haken developed his theory
of synergetics based on his earlier work on laser theory
(Haken 1977). The most impressive link between theory
and experiments was probably achieved in studies of
hydrodynamic phenomena (Swift and Hohenberg 1977;
Cross and Hohenberg 1993). Ironically, Prigogine’s hope for
a deeper understanding and extension of non-equilibrium
thermodynamics was not fulfilled by studying collective
phenomena of self-organisation at the mesoscopic or macro-
scopic level, but rather through theories and experiments
addressing single molecule behaviour at the nanoscale
(Jarzynski 2011). Biology is providing prime examples also
for these new approaches (Collin et al. 2005).

Early theories of biological pattern formation

Despite the obvious interest of the Brussel’s school in
biology, its main goal was an extension of thermodynamics
for which biology merely provided some of the nicest
examples and applications. Most of the papers of the
Brussels school addressed physicists and were not directly
inspired by biological questions. However, in the meantime
two papers had appeared, which were entirely motivated by
problems of biological pattern formation. In 1952, Alan
Turing had published The chemical basis of morphogenesis
which, as already pointed out, was important for Prigo-
gine’s early work on dissipative structures (Prigogine and
Nicolis 1967). However, Turing was not concerned with
problems of chemistry or thermodynamics. Rather, he
immediately addressed particular biological questions.
Why was he interested in this topic at all? Before working
on mathematical biology, Turing had made major contri-
butions to mathematical logic, cryptology, computer sci-
ence and artificial intelligence (Hodges 1992). None of
these projects, with the exception of the last one, had links
to the life sciences. However, Turing had kept a vivid
interest in biology throughout his life (Saunders 1993). As a
young boy, an American children’s book Natural wonders
every child should know (Brewster 1912) had stimulated his
interest in science. This book is devoted entirely to living
nature and contains detailed information about animal and
plant development, reproducing many figures from original
publications. These include accounts of chicken and frog
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embryology, descriptions of starfish and planarian regener-
ation and examples of twinning and homeotic transforma-
tions, directly taken form Bateson’s influential Materials
for the study of variation (1894). In the 1930s, Turing had
read D’Arcy Thompson’s On growth and form and was
particularly fascinated with the fact that leaf-arrangements
(phyllotaxis) frequently follow the Fibonacci series. After
the war, he decided to work on the construction of an
electronic computer. He called this project ‘building a
brain’. In 1948, he wrote his first article on problems of
artificial intelligence, which contains remarks on the
relation between genes and brain structure (reprinted in
Copeland 2004, 410–432). In the same year, he moved to
Manchester where he played an important role in building
one of the first computers able to perform massive
calculations. He continued his philosophical reflections on
the relation between human mind and computer (Turing
1950) and became involved in discussions with Michael
Polanyi, a physicochemist turned philosopher who held a
chair in social studies at Manchester. Polanyi criticised
reductionist approaches not only regarding the human
mind, but also for biology in general. For example, he
claimed that morphogenesis cannot fully be explained on
mathematical grounds (Roth 2011b). This might have
provided additional incentives for Turing to formulate a
mathematical theory of morphogenesis.

However, his main motivation certainly was the aware-
ness that the relation between genetic information and
morphology represented one of the central unsolved
problems in biology. He clearly states that ‘the purpose of
this paper is to discuss a possible mechanism by which the
genes of a zygote may determine the anatomical structure
of the resulting organisms’ (Turing 1952, 37). The genes
are presumed to act purely as catalysts and ‘influence the
anatomical form of the organism by determining the rates
of those reactions which they catalyse’ (Turing 1952, 38).
In describing the zygote, the early embryo or any
developing tissue Turing initially takes chemical and
mechanical properties of the cell into account. He omits
only electrical properties and the internal structure of the
cell because of insurmountable problems with complexity.
However, also the ‘interdependence of the chemical and
mechanical data adds enormously to the difficulty’ so that
the paper then focuses on cases where ‘the mechanical
aspect can be ignored and the chemical aspect is the most
significant’ (ibid). This also provides a closer link to the
primary action of the genes which he thought to be
chemical. Turing then assumes the existence of ‘chemical
substances, called morphogens, reacting together and
diffusing through a tissue’. These are initially uniformly
distributed, but by virtue of their interactions, become
distributed in spatial patterns. In a second step, these
unequally distributed morphogens activate reactions in the

tissue which produce the real shape. The word ‘morphogen’
was chosen by Turing ‘to convey the idea of a form
producer’ (ibid). He compares his morphogens with
Waddington’s evocators, substances which induce the
formation of a particular organ, and suggests that it is
legitimate to separate the processes which lead to a
particular ‘distribution of the evocator in space and time’
from the ‘reactions set in train by it’. Here, Turing presages
an idea, which later would become very important through
the work of Lewis Wolpert, the separability of pattern
formation and cell differentiation/morphogenesis.

With his paper, Turing wanted to reach a broad
spectrum of readers including, in particular, biologists.
Therefore, he uses sections 2 and 3 to provide the
background of some mathematics and chemistry and in
section 4 he presents his main idea: ‘the break down of
symmetry and homogeneity’ in a system of interacting
and diffusing chemicals, at a very elementary level. He
chooses only two cells and two chemicals X and Y. The
production of X depends on X itself (autocatalysis),
while the production of Y depends on X (cross-catalysis).
In addition, X moves slower than Y to the neighbouring
cell, i.e. the diffusion rate of X is smaller than that of Y.
The numerical values of the reaction constants and
diffusion rates are chosen such that everybody can do
the calculations by hand. Turing shows then that this
system has an unstable homogenous equilibrium. It will
accentuate any small differences in X and Y which may
occur between the two cells just on the basis of random
fluctuations. The final state will always be a stable
difference of X and Y concentrations between the two
cells, i.e. a stable pattern in space.

Turing’s deep concern about problems of real biology is
apparent from his digression into left-right asymmetry
(section 5) before he enters into a serious mathematical
analysis of his reaction-diffusion model. The occurrence of
left–right asymmetric organisms can be explained as the
result of an early event of symmetry breaking. However,
left-handed and right-hand organisms should occur with
equal frequencies since the laws of physics and chemistry
underlying his reaction-diffusion theory do not possess an
intrinsic preference for left- or right-handedness. Turing
admits that the prevalence of only one type of handedness
in a given species poses a serious problem for his model.
He sees, however, one possible solution; the early symme-
try breaking processes might be influenced by the handed-
ness of organic molecules present in the embryo. Within
modern developmental biology left–right asymmetry in-
deed remained enigmatic for a long time. Only recently has
it become clear that for vertebrates, the symmetry-breaking
step depends, as Turing suggested, on the chirality of a
macromolecular complex (the cilium) which influences a
reaction-diffusion mechanism (Tabin 2006).
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The main body of Turing’s paper is an in-depth
mathematical analysis of generalised reaction-diffusion
equations for two components acting in a ring of cells. To
make the problem analytically tractable, Turing focuses on
the emergence of the instability, which allows him to
assume linearity for the reaction rates. He shows that
depending on diffusion and reaction constants the system
shows six different behaviours. (1) A stationary case, in
which all cells tend to acquire the same temporally stable
concentration. This is the most boring case. However,
considering stochasticity effects, Turing shows that even
this situation might be interesting for biology since it can
produce dappled patterns in two dimensions and thus might
account for phenomena like surface coloration. (2) Syn-
chronous oscillation of all cells. Chemical oscillations are
thus a subcategory within Turing’s theory. He was
obviously not aware of Lotka’s or Volterra’s work and
claims that he also does not know any experimental
example. The BZ reaction was yet unknown outside Russia
and the Bary oscillator was a real laboratory curiosity. (3)
Two types of spatiotemporal patterns including travelling
waves, which Turing thought require at least a three-
component system. He did not analyse these cases in depth.
Travelling chemical waves, too, would become of interest
only after they had been experimentally observed in a BZ
reaction. This lead to the rediscovery of mathematical
papers which indeed had treated the problem of spatiotem-
poral patterning even before Turing, albeit in the context of
population genetics. Fisher had provided the partial solution
of an equation describing the spreading of a beneficial gene
within a population (Fisher 1937). The full solution was
given in a paper by Kolmogoroff, Petrovsky and Piscounoff
(1937). Exactly the same formalism can be applied to the
diffusion wave produced by an autocatalytic substance (an
early suggestion along this line had already been published
in 1906 by R. Luther). However, Turing was not aware of
this early work. (4) Two types of stationary spatial patterns.
These were the most interesting cases for Turing, especially
the case which allows stationary waves with a different
wave-length depending on the difference in diffusion and
reaction rates of the two components. It is ironic that both
for oscillations and travelling waves, excellent chemical
examples became accessible for experimental studies in the
1960s while it took almost 40 years until a stable spatial
wave pattern was observed in a chemical system and named
after Turing (Castets et al. 1990). In recent times,
systematic strategies have been developed to produce
beautiful Turing patterns in purely chemical systems
(Horvath, et al. 2009).

In his paper, Turing spends most of his analysis and
discussion on the stationary waves forming in a ring of
cells. In particular, he uses the Manchester computer, which
was partially built with his help, to perform numerical

calculations on a realistic, fully non-linear example. He
chooses a ring of 20 cells with realistic single cell
diameters. The diffusion rates are derived from permeabil-
ity studies of biological membranes and the reaction
scheme is justified with concrete chemical considerations.
Stochasticity effects are introduced for both the transport
and the reaction kinetics. The computer simulations show
how a homogenous starting situation evolves via a
transitory pattern into a stable series of concentration peaks.
Turing’s analysis represents the world premier for the
application of a digital computer to a reaction-diffusion
system. He ends his paper with the visionary note that the
use of digital computers will be indispensible for analysing
non-linear reaction-diffusion systems.

As biological examples for pattern formation on a ring-
like structure, Turing considers certain leaf arrangements
(Woodruff) and tentacle formation in hydra. He also
provides a linear stability analysis for a reaction-diffusion
system confined to the surface of a sphere because he is
interested in how symmetry-breaking takes place during
gastrulation. Further, he announces a future paper on
phyllotaxis. The work on this paper occupied the last
2 years of his life and remained unfinished when he died in
1954 (now published in Saunders 1992; Swinton 2004).

With his paper, Turing had clearly entered an
uncharted terrain both in mathematics (at least with
regard to numerical analysis) and biology. This becomes
clear from his small list of references which comprises
only six papers of which five were written by biologists.
(1) C.M. Child’s Patterns and problems of development
(Child 1941). In this work, Child had introduced the
concept of gradients controlling development. However,
he mainly assumed metabolic gradients (e.g. oxygen
consumption). (2) A book on the permeability of biological
membranes (Davson and Danielli 1943). (3) Michaelis and
Menten’s paper on enzyme kinetics (Michaelis and Menten
1913). (4) D’Arcy Thompson’s On growth and form. (5) C.
H. Waddington’s Organizers and genes which provided
Turing with a state of the art developmental genetics
background (Waddington 1940).

One month after The chemical basis of morphogenesis
had appeared in print, Waddington sent a letter to Turing
containing some prophetic remarks. Waddington character-
ises the work as ‘extremely interesting and suggestive’
(Waddington 1952). However, he mentions two problems.
First, he believes that there are no homogenous starting
situations in biology, ‘The newly fertilized egg is, I think,
never homogenous in this way, but always possesses some
element of pattern of its own…’ (ibid). Second, Waddington
mentions an experiment with hydra to illustrate the problem
of size regulation. He thinks that a chemical wave theory will
be unable to explain scaling. Waddington suggests that
Turing’s mechanism will be most relevant for patterns
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forming ‘in apparently uniform areas such as the wings of
butterflies, the shells of molluscs, the skin of tigers, …’
(ibid). He ends his letter by describing the question in
embryology which he finds most pressing to be ‘tackled
from a mathematical point of view’ (ibid): the occurrence
of ‘a finite number of definitely distinct tissues and
organs…’ (ibid). How is it avoided that intermediate
states emerge? How does the selection between discrete
states take place? Waddington alludes here to a type of
genetic network theory, a theory which does not explain
patterning in physical space, but within the state space of
a network of interacting genes. From the remarks in his
letter, it is apparent that he had started to work on such a
theory. In 1954, he published a paper where he proposed
a system of two autocatalytic gene products that consume
the same substrates and thus enter into a competition
resulting in distinct stable states. He also considers a
direct interaction of the autocatalytic gene products and
compares the resulting system with ‘two populations of
animals which compete with one another for a limited
food supply’ (Waddington 1954). Lotka’s work is cited for
the mathematical treatment of this situation. In the
following years, Brain Goodwin did his Ph.D. thesis in
Waddington’s laboratory and extended the theory to
systems with many components and stochastic fluctuations.
He called his ideas epigenetic thermodynamics (for a brief
summary see Waddington 1962, 45–50).

Despite his criticism, Waddington was one of the few
biologists who did take notice of Turing’s work. He
summarised Turing’s results in his writings (e.g. Waddington
1956, 422; Waddington 1962, 125–130) and thereby made it
known to other scientists. Another exception was John
Maynard Smith, who used Turing’s idea of chemical waves
to explain modal variations in populations (i.e. the occur-
rence of fixed integers of anatomical structures like the five
fingers of the hand, Maynard Smith 1960). In 1968, he wrote
a small book on Mathematical Ideas in Biology which ends
with a beautifully written, lucid account of Turing’s ideas.
Nevertheless, in the first 10 years after its publication,
Turing’s paper was cited fewer than two times per year
(Nanjundiah 2003) and it remained largely unknown
throughout the 1960s, even to developmental biologists. In
part, this was due to a shift of research focus in modern
biology. The discovery of the DNA structure in 1953
immediately led to a number of central questions such as
deciphering the genetic code, understanding translation, etc.
and thus opened up completely new research areas which
were evidently crucial for an understanding of life. Physicists
and chemists preferred to enter the new field of molecular
biology rather than working on theoretical and mathematical
modelling of biological phenomena which were not under-
stood at the cellular or molecular level. In addition, there was
a high demand for scientists with a physics and mathematics

background in the early days of molecular biology both
with regard to their experimental (e.g. for X-ray crystal-
lography) and their conceptual (e.g. for deciphering the
genetic code) skills.

There were also intrinsic reasons, however, for why
Turing’s work played only a marginal role even among the
few developmental biologists who continued their work in
the shadow of the molecular revolution. In his letter to
Turing, Waddington had already pointed out what later
would be viewed as the most significant deficit of Turing’s
work: the fact that it did not explain self-regulation (see
also Waddington 1956, 422f). A general belief was formed
that reaction-diffusion mechanisms are unable to account
for such phenomena. Wolpert’s introduction of the concept
of positional information had spurred a renewed interest in
self-regulation and scaling (Wolpert 1969). A typical
feature of patterns produced by a positional information
mechanism was size invariance. Wolpert used the French
flag analogy to illustrate this point: the relative sizes of the
blue, white and red areas of a French flag remain the same
irrespective of the absolute size of a particular flag. He
found Turing’s chemical waves ‘not very satisfactory’ even
to explain the pattern of bristles on the insect cuticle, and
much less so to account for positional information in
general (Wolpert 1969). Rather, he was attracted by the
highly complex theory of Goodwin and Cohen (1969), who
stated: ‘Turing-type periodic waves remain a possibility, but
the problem of regulation for such a model is severe’. Their
own proposal was based on very specific, but largely
unsupported biological assumptions. They derived posi-
tional information from the phase difference between
coupled cellular oscillators. Nevertheless, their phase-shift
model was more popular among theoretically inclined
biologists than Turing’s ideas, largely because it offered a
solution to the mysterious problem of scaling.

In the mid-1960s, an outline of the basic molecular
mechanisms of life (replication, transcription, translation)
had been attained and some of the pioneers of the molecular
revolution were looking for new challenges. More complex
biological phenomena such as multicellular development
and neurobiology attracted their attention. Alfred Gierer
was one of these pioneers. He had received a Ph.D. in
theoretical physics with work on proton transfer across
hydrogen bonds and the theory of liquids. Pauling’s book
The nature of the chemical bond and the work on the α-
helix had motivated Gierer to enter biology. In 1954, he
started to work in Tübingen at the Max-Planck-Institute of
Virus Research on the RNA of the Tobacco Mosaic Virus
and in the following years demonstrated that not only
DNA, but also RNA can be a carrier of genetic information.
After some work on protein synthesis in the early 1960s,
his group shifted to developmental biology, focusing on
hydra as a model system which, in particular, allowed them
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to study regeneration and self-regulation. In 1971, Hans
Meinhardt, who had also received a Ph.D. in physics,
joined the group. Influenced by ideas from cybernetics,
they formulated their theory of local self-activation and
lateral inhibition. From work in the neighbouring institute
of Biological Cybernetics, they were aware that during
contrast enhancement in the visual system, a local activa-
tion by the stimulus is linked to an inhibitory effect in the
surroundings (Kirschfeld and Reichardt 1964). The external
stimuli provide a pattern, which is enhanced through lateral
inhibition. Inhibitory processes had also been invoked in
developmental biology (Spiegelman 1945; Rose 1952).
Also here, like in the sensory system, they could account
for the spatial refinement of an inhomogeneous starting
situation. However, in experiments with hydra, the Gierer
group had observed axis formation emerging from a
uniform aggregate of cells lacking an apparent prepattern.
How could one explain such a situation? Inspiration came
again from the context of cybernetics. In an account of the
intellectual roots of their theory, Meinhardt and Gierer
(2000) cite the work of Maruyama (1963), who was
stressing the importance of positive feedback in nature
and society. He pointed out that classical cybernetics was
primarily concerned with deviation-counteracting feedback
networks, like thermostats. However, many processes in the
universe from the weathering of rocks, the fixation of single
mutations in a population, to the growth of cities and
economic inequality represent deviation-amplifying sys-
tems. They are governed by positive instead of negative
feedback. Maruyama envisages a ‘second cybernetics’ in
which deviation-amplifying processes are of central impor-
tance. Positive feedback provides the ingredient which
causes a self-organising process to start. By combining a
local deviation-amplifying process with lateral inhibition,
Gierer and Meinhardt could explain how structure forma-
tion was possible starting from a homogeneous state.
Lateral inhibition was realised either through substrate
depletion by the local activation process or by the
production of an inhibitor. Key aspects of the kinetics were
non-linear autocatalysis of the activator and, as in Turing’s
model, differences in the diffusion rates of the components.
The short-range action of the activator resulted from a
small diffusion constant, the long-range effect of
substrate depletion or inhibitor action resulting from a
large diffusion constant. When they submitted their first
paper (Gierer and Meinhardt 1972), they had not read
Turing’s work. A referee of the paper pointed out its
existence (Meinhardt 2006).

It is important to note the differences between Turing’s
approach and that of Gierer and Meinhardt. Firstly, the
demonstration that chemical kinetics is sufficient to
produce a spatial pattern from uniformity was not their
main goal. They rather formulated two principles which in

conjunction are sufficient for self-organised patterning. The
molecular or cellular realisation was left open. ‘The
formalism of the theory is consistent with many…inter-
pretations… Thus, production of components may be due
to synthesis or release; removal to degradation or leakage;
spreading to diffusion, convection, mechanisms involving
transport along intracellular or intercellular fibres, and/or
transducing effects across membranes. It is not adequate to
limit considerations to molecular diffusion. What matters is
that activation and inhibition effects spread from the place
of origin in an attenuated manner’ (Gierer 1981). Thus, the
frequent characterisation of the Gierer–Meinhardt model as
a chemical-reaction-diffusion theory is not entirely correct.
Molecular kinetics and normal diffusion just provided the
simplest case for writing down the equations.

Secondly, and most importantly, Gierer and Meinhardt
showed that their theory could account for self-regulation
and scaling even if they used only straightforward
molecular kinetics. A simple restriction of the amount of
activator which can be produced locally, e.g. by introducing
a saturation term, leads to size regulation. Thus, the
criticism that reaction-diffusion equations can only produce
static chemical waves was not justified. The most important
dynamic phenomenon in developmental biology was
perfectly in the range of the theory. Had Driesch seen the
dynamic aspect of Meinhardt’s simulation, which by now
could be followed easily at the computer, I suggest, he
would have given up his vitalistic views.

Third, in contrast to Turing, Gierer and Meinhardt had a
concrete experimental system in mind, the regeneration
behaviour of hydra (Gierer, et al. 1972). Therefore, they
introduced a number of features that were specifically
derived from their experimental results, such as source
densities which are influenced by the activator–inhibitor
system, but change with different time scales. Their
reference list contains 21 papers, almost half of them (10)
dealing with hydra.

In the subsequent years, it was Hans Meinhardt in
particular who extended the models and applied them to
almost every dynamical problem in developmental biology.
This resulted in his monograph Models of biological
pattern formation (Meinhardt 1982), in which a bewilder-
ing multitude of complex phenomena from developmental
biology were treated with clear analytical concepts. The
work was much more than a stereotypic application of the
idea of local activation and lateral inhibition. Meinhardt
tried to work out the developmental logic underlying
experimental findings and tested the validity of his ideas
by computer simulations. Three examples might suffice to
exemplify this point. First, in 1976, French and Bryant had
formulated the polar coordinate model for appendage
patterning (French, et al. 1976). This model worked with
circumferential positional values, a shortest intercalation
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and a complete circle rule. It could explain a number of
complex regeneration experiments, but made assumptions
which were hard to connect to known molecular mecha-
nisms and simple morphogen models. Meinhardt realised
that an organiser region defined by the crossing of an
anterior–posterior and a dorsoventral compartment would
provide the same explanatory power as the polar coordinate
model and, in addition, could be linked to the recent
discovery of compartments as clonally restricted groups of
cells in Drosophila (Meinhardt 1983). Such insights were
not dependent on particular local activation-lateral inhibi-
tion equations, but rather were derived from the attempt to
find a minimal realistic model which could explain
complex phenomena. The basic correctness of Meinhardt’s
ideas were acknowledged 12 years later after the molecular
mechanisms of the predicted compartment interactions had
been discovered (Vincent and Lawrence 1994).

The second example concerns stripe formation. Meinhardt
and Gierer had recognised that certain types of patterns were
difficult to simulate with a lateral inhibition mechanism
(Meinhardt and Gierer 1980). In particular, this applied to
stripe formation, an important prerequisite to understand
segmentation. To produce stable stripes they introduced the
idea of lateral activation of mutually exclusive states. Two
cell states each producing an autocatalytic substance ex-
change signals which mutually promote their autocatalysis.
Thus, they can only exist next to each other. However, they
also stay separated since each cell state locally inhibits the
other state. This model made stripe formation possible and
thus, Meinhardt used it to simulate segmentation. Much later
and without reference to the early work, this mechanism was
rediscovered as the core kinetics of the Drosophila segment
polarity network (von Dassow et al. 2000). It is of particular
interest that the new simulations did not start with a specific
kinetic model, but used model equations entirely based on
experimental data and the assumption of robustness to
identify relevant parameter sets. Thus, remarkably, an
unbiased, data-driven approach discovered an intricate
mechanism, which had been suggested entirely on theoretical
grounds.

The third example refers to colour patterns on the surface
of sea shells (Meinhardt and Klinger 1987). Here, it is not
so much the particular logic of a mechanism which made
the simulations attractive, but the sheer similarity, indeed
frequently the complete accordance, of highly complex
patterns with the computer-generated images (Meinhardt
2009). It seemed that an agreement between natural pattern
and simulation, capturing so many details, could not be
accidental. One was forced to assume that the theory has
captured at least some correct aspects of the underlying
patterning mechanisms. Recently, the same shell patterns
have been simulated using a neurosecretory model sup-
ported by experimental findings on the anatomy of the

mollusc mantle, the shell-making machinery (Boettiger et
al. 2009). The neural circuitries used in this model combine
local activation and lateral inhibition and thus demonstrate
the equivalence between different molecular and cellular
realisations of the Gierer–Meinhardt model. However, they
also provide a clue about how difficult it is to predict the
actual nature of the mechanisms underlying a patterning
process even if the simulations recover the output pattern
with astonishing accuracy.

The rise of Drosophila developmental genetics

In the early 1970s, when Meinhardt and Gierer formulated
their model on the basis of, and in close contact with, the
experiments on hydra conducted in Gierer’s department, the
theory seemed to be close to the biological phenomena. The
members of the research group felt that it was only a matter
of time until they had isolated the autocatalytic activator(s)
and the broadly diffusible long-range inhibitor(s). The first
candidates had been already purified (Schaller and Gierer
1973; Schaller 1973). A splendid validation of the
theoretical work seemed imminent. However, this turned
out to be much more difficult than expected. Even today,
the regulatory behaviour of hydra is not fully understood at
the molecular level, and the postulated diffusible activators
and inhibitors have not been identified (Bode 2009). It
transpired that biochemical methods were much less
powerful for the dissection of developmental pathways
than expected.

In the atmosphere of early enthusiasm about pattern
formation theory and its molecular validation, Christiane
Nüsslein-Volhard obtained her Ph.D. on bacteriophage
transcription, not with Gierer, but in the neighbouring
department of Gerhard Schramm (under the supervision of
Heinz Schaller). In a contribution to a symposium in
honour of the Gierer’s 80th birthday, Nüsslein-Volhard
recalls that she was fascinated by the work on hydra and
that the theoretical work on morphogen gradients influ-
enced her thoughts and her choice to pursue embryonic
pattern formation as a postdoc (Nüsslein-Volhard, personal
communication). Nüsslein-Volhard, however, chose a ge-
netically accessible system, Drosophila melanogaster. She
joined Walter Gehring’s group in Basel, and in a short time
characterised two maternal-effect mutants which were
involved in setting up morphogen gradients in the early
Drosophila embryo, bicaudal and dorsal (Nüsslein-Volhard
1979a; Nüsslein-Volhard 1979b). In the discussion of her
first Drosophila paper, the description of the bicaudal
mutant, the influence of the Tübingen theory group can
clearly be felt. She favours the Gierer–Meinhardt model
compared to other explanations for the bicaudal phenotypic
series: ‘Although this model probably does not account for
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all experimental data, we feel that this or a similar gradient
model maybe more adequate to explain the various bic
phenotypes. Its main attraction is the ease with which
mirror-image duplications of varying size and reversal of
polarity are produced by lowering the concentration of a
single component’ (Nüsslein-Volhard 1977). After a short
postdoc with Klaus Sander in Freiburg, Nüsslein-Volhard
took, together with Eric Wieschaus, a junior group leader
position at the EMBL in Heidelberg where they conducted
their Nobel prize-winning screen for zygotic embryonic
lethal mutations (Nüsslein-Volhard and Wieschaus 1980).
In the long run, this work would completely change the
basis for any theory of pattern formation. For the first time,
complete, or almost complete genetic networks for partic-
ular patterning problems such as segmentation or neuroblast
selection would become available and would provide test
cases for modelling approaches. After returning to Tübingen,
Nüsslein-Volhard also scientifically returned to the maternal
morphogen gradients she had discovered as a postdoc in
Gehring’s and Sander’s laboratories. The experience gained
with the zygotic whole genome screens made it possible to
conduct large-scale screens for maternal-effect mutations.
Such screens were performed by Trudi Schupbach and Eric
Wieschaus in Princeton (Schupbach and Wieschaus 1989,
1991) and by Ruth Lehmann, Kathryn Anderson, Gerd
Jürgens and Nüsslein-Volhard in Tübingen. The analysis of
mutant phenotypes together with transplantation experi-
ments soon revealed that the AP morphogen gradients in
the Drosophila egg emanate from localised determinants at
the anterior and posterior egg poles. Later, these were
shown to be localised mRNAs. At the level of the early
embryo, gradient formation did not require self-organised
patterning on which the egg asymmetries would only have
a weakly orienting influence. Rather, embryogenesis al-
ready started with an amazingly high degree of spatial
information present in the egg cell (St Johnston and
Nüsslein-Volhard 1992). For a while, the dorsoventral
(DV) axis seemed to be different. Apparently, DV axis
formation did not require localised components within the
egg, and thus appeared to be an example for a self-
organised patterning system. However, the exciting obser-
vations of ectopic axis formation and axis inversions along
the DV axis finally could be explained by local signals
emanating from cues in the eggshell (Anderson et al. 1985;
Stein et al. 1991; Roth 1993). The transition from eggshell
cues, though, to the embryonic DV pattern occurs in a
dynamic way which apparently has some self-organising
properties (Meinhardt 2004; Moussian and Roth 2005;
Roth and Schupbach 1994). However, the eggshell cues
themselves provide fairly accurate information which can
be traced back to a mRNA localised within the developing
oocyte (Neuman-Silberberg and Schupbach 1993). Thus,
for those instances where we had expected that the theory

would be most helpful, a completely different picture had
emerged. As Waddington had already indicated in his
response to Turing’s paper, intracellular patterning was
much more important than anticipated. It became necessary
to study how the egg was constructed during oogenesis in
order to understand axis formation. One might object that
Drosophila and insects in general are unusual because they
produce eggs that display bilateral symmetry presaging the
two body axes before fertilisation. However, it seems that
the lesson learned from Drosophila reflects a more general
problem of the early theories of pattern formation. These
theories systematically underestimated the potential and
importance of intracellular patterning to provide spatial
information for the multicellular level or to influence and
constrain mechanisms of multicellular patterning. The
description of intracellular patterning requires, however, at
least in part, approaches different from the mechanisms
employed in the original Gierer–Meinhardt model. Since
every eukaryotic cell already represents a highly structured
three-dimensional object, the spatial information contained
in the cell can be used to initiate symmetry-breaking events.
Thus, in Drosophila, DV asymmetry arises through asym-
metric movement of the oocyte nucleus (Roth and Lynch
2009) or in amphibians, bilateral symmetry depends on
rotation of the oocyte cell cortex with regard to the rest of
the cell (Larabell et al. 1996; Marrari et al. 2004). These
phenomena and other aspects of cell polarisation require
dynamic changes of cytoskeletal elements. At this level,
theory again becomes relevant. A deeper understanding of
cytoskeletal dynamics requires biophysical modelling
approaches (Howard 2001). The same applies for other
aspects of intracellular patterning which increasingly
become subject of mathematical modelling (Karsenti
2008). Meinhardt himself has contributed to some of this
work addressing dynamic aspects of cell division in
bacteria (Hale et al. 2001; Meinhardt and de Boer 2001)
and of the chemotactic behaviour of eukaryotic cells
(Meinhardt 1999, 2000).

Modern theories of biological pattern formation

While the inadequate representation of intracellular pattern-
ing addresses the reference level of the theory, the more
general problem of early pattern formation theories was the
lack of molecular detail. Since none of the developmental
processes which the theories described was understood at
the molecular level, the theories could not work with
realistic molecular assumptions. Activators and inhibitors
remained abstract entities. As pointed out, this did not
prevent the early theoreticians from gaining major insights
which were validated by later research. However, these
insights addressed a more generic level representing both
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their strength—they could be applied to many cases, and
their weakness—they could not capture any specific
molecular process. With detailed molecular data, in partic-
ular from Drosophila, becoming available in the mid-
1990s, a new generation of theoretical approaches became
possible. Modelling was no longer restricted to general
mechanism, such as local activation and lateral inhibition,
but could incorporate genetic interaction data or even real
measurements of concentrations of respective components.
Now finally, one could hope, the real molecular processes
could be simulated in the computer. This should lead to
realistic models providing a deep understanding of multi-
component systems. The step from the linear stability
analysis to which Turing was largely restricted to the
simulation of non-linear systems by Gierer and Meinhardt
was linked to increased computer power. Likewise, the
new simulations again were only possible by another large
leap in simulation capacity. In particular, now it was
possible to perform systematic explorations of parameter
spaces or to apply complex algorithms of non-linear
fitting (simulated annealing). The idea of robustness
started to play an important role. By systematic variation
of the parameters of given model equations, one could
identify those conditions which provided the most robust
mechanism.

In the following, three examples from recent work on
Drosophila pattern formation will be discussed which
reveal the power and limitations of the new approaches.
Each of them demonstrates the need for mathematical
modelling. They will be presented in a sequence of
increasing closeness to quantitative experimental data: the
first example deals with models for the formation of a BMP
morphogen gradient in the embryo, the second with the
gene circuit approach to explain the segmentation process,
and the third with models for the formation of the Bicoid
morphogen gradient.

(1) In Drosophila, the transcription factor Dorsal is
responsible for establishing the entire dorsoventral axis
(Moussian and Roth 2005). Dorsal forms a nuclear
concentration gradient with peak levels along the ventral
midline of the early embryo. Dorsal activates and represses
target genes in a concentration-dependent manner and
thereby specifies different gene expression domains along
the DVaxis. Interestingly, the Dorsal gradient is confined to
the ventral half of the embryonic circumference, but
nevertheless is also required for patterning the dorsal half.
In particular, the Dorsal gradient indirectly establishes high
levels of BMP signalling in a narrow, precisely defined
stripe along the Dorsal midline (O’Connor et al. 2006).
How is such a precisely controlled long-range influence
possible? Mutant analysis showed that, paradoxically, a
BMP inhibitor expressed ventrally under the control of
Dorsal is required for establishing BMP peak levels at the

dorsal midline. This observation remained a conundrum
until the suggestion was made that BMP–inhibitor com-
plexes forming in ventral regions diffuse dorsally and
thereby transport BMP to the dorsal side (Ashe and Levine
1999; Ferguson and Anderson 1991, 1992). Here, the
inhibitor is cleaved and BMP is released. Since the protease
cleaving the inhibitor is not confined to the dorsal midline,
it was still hard to understand how this mechanism accounts
for spatial precision. A general mathematical treatment of
the reaction-diffusion system encompassing BMP, the
inhibitor and the protease revealed that rather simple
interactions are sufficient to reproduce the experimentally
observed patterning capability (Eldar et al. 2002; Meinhardt
and Roth 2002). The authors started with general model
equations for the three-component reaction-diffusion sys-
tem and calculated the steady-state BMP activation profile
for thousands of randomly chosen parameter sets. The
parameters included rate constants for production, decay
and diffusion of the individual proteins and complexes.
Parameter sets, which produced steady-state solutions
mirroring the experimentally observed BMP activation
pattern, were tested for robustness using the following
rationale: Genetic experiments show that reducing the gene
dosage of some network components by a factor of two
does not significantly change the final BMP activation
pattern. Thus, realistic parameter sets should also lead to
solutions which are robust, given twofold changes in
network components. Parameter sets fulfilling this condi-
tion were identified and suggested that free BMP does not
significantly diffuse and the free inhibitor is not a good
target for proteolysis. Thus, BMP should be predominantly
transported in a complex with the inhibitor, and this
complex should be the main target of proteolysis. This
assumption led to simplified equations which could be
treated analytically, providing precise mathematical argu-
ments for the proposed mechanism. The entire approach
seemed to be highly convincing (Meinhardt and Roth
2002). The derivation of an analytical expression capturing
the mechanism of robustness could be almost regarded as a
proof of the correctness of the proposed interactions.

However, several complications arose that revealed the
intricateness and unpredictability of biological systems.
First, one component of the network, the BMP ligand Dpp
was known for a long time to be dosage-sensitive. Indeed,
dpp is the only developmental gene in Drosophila which is
haplolethal, meaning that a twofold reduction of its dose
leads to lethality (Irish and Gelbart 1987). Irrespective of
the particular implications for the proposed mechanism, this
observation raises the general question of how valid
robustness is as a universal criterion for identifying
appropriate modelling parameters. In the case of dpp, one
could argue that its employment in different patterning
contexts leads to an evolutionary optimisation problem
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which has no ideal robust solution. However, the mere fact
that such exceptions exist brings into question the blind
reliance on robustness for selecting appropriate parameter
sets. It seems that assumptions about robustness have to be
analysed in each particular case.

Second, biochemical studies and additional modelling
approaches revealed different interaction networks, which
could also produce sharp BMP signalling peaks. An
interesting assumption was that Sog acts as a competitive
inhibitor of BMP binding to its receptor and that receptor-
bound BMP is degraded (Mizutani et al. 2005). Thus, Sog
protects BMP from receptor-mediated degradation and
thereby enhances its range of action. Another paper showed
that the main signalling molecule is a heterodimer of two
BMPs and that it is the heterodimer which is bound by the
inhibitor, while mathematical modelling had suggested
alternative interactions (Shimmi et al. 2005).

While the former two papers demonstrated that the
interactions of even a small number of secreted proteins and
their receptors can lead to several alternative models which
can account for observed phenotypes, another publication
opened up completely new aspects of the system. Eldar et
al. (2002) could still state: ‘No apparent transcriptional
feedback, which might account for the robustness of dorsal
patterning, has been identified so far’. However, 3 years
later, precisely such a feedback loop was identified (Wang
and Ferguson 2005). A transcription factor was shown both
to be a target of, and to promote, dorsal BMP signalling.
Apparently, this feedback loop promotes future BMP
binding to its receptor as a function of previous signalling
strength. This finding led to a completely new series of
modelling approaches (Umulis et al. 2006). In addition,
new precise measurements of BMP signalling in whole
embryos provided the basis for organism-scale modelling
using realistic geometries (Umulis et al. 2010). Unfortu-
nately, until now the molecular basis of the positive
feedback has remained elusive. The most recent publication
introduces eight different models for possible positive
feedback mechanisms encompassing a variety of cell
biological and biochemical details as well as newly
observed interactions with extracellular matrix molecules.
The most important outcome of the paper is that positive
feedback mechanisms are indeed producing the best fit to
the data and that, among these mechanisms, a positive
feedback involving a surface-bound BMP binding protein is
slightly superior to other mechanisms. However, the
modelling approaches veered away from elegant analytical
results to numerical solutions of high dimensional systems
of more than ten coupled partial differential equations and
17 parameters. Despite whole embryo 3D representations of
BMP signalling in wild-type and mutant embryos at
different developmental stages, and even comparisons of
different Drosophila species, the discriminatory power of

modelling results appears to be weak with regard to the
mechanistic alternatives. Even the most ardent aficionado
of pattern formation theory might come to the conclusion
that we have moved further away from understanding the
system. The complexity of the embryo appears to evade full
mathematical treatment.

(2) Segmentation in Drosophila is probably the para-
digm for a complex hierarchical patterning process which
generates fine-grained spatial information starting from
broadly distributed morphogen gradients (Akam 1987).
Within 2 h of embryonic development corresponding to the
blastoderm stage, maternal gradients activate a cascade of
transcription factors with increasingly refined expression
domains. First, the gap genes are activated in broad
domains and in turn control the pair-rule genes which
represent the first level of periodic gene expression in the
embryo, albeit with double-segment periodicity. Segmental
periodicity is only reached at the next tier, the expression of
the segment polarity genes, which receive their regulatory
input largely from the pair-rule genes. At the end of the
blastoderm stage, the patterning process has reached its
highest possible resolution: single-cell wide stripes of
segmental polarity gene expression defining the position
of segment and compartment boundaries. The gap and pair-
rule genes code for transcription factors which can diffuse
between nuclei since patterning occurs before the cell
membranes are formed. Thus, the system is basically an
interaction network of factors which mutually regulate their
expression. Besides nuclear divisions, no morphogenetic
events take place, allowing a description of the process with
one spatial coordinate representing the AP axis (or rather
the position of the nuclei along the AP axis).

Inspired by models for neural networks (Hopfield 1984),
a data-driven modelling approach for gene regulatory
networks was devised called the connectionist gene circuit
method and was specifically applied to the Drosophila
segmentation cascade (Mjolsness et al. 1991; Reinitz and
Sharp 1995). Usually, theoretical modelling is based on
proposed interactions of the relevant components inferred
from genetic and molecular experiments. The gene circuit
method uses the opposite strategy and therefore was also
characterised as a ‘reverse-engineering’ approach (Perkins
et al. 2006). Only minimal a priori assumptions are made
about potential regulatory interactions. A system of general
model equations is formulated which describes the concen-
tration change of each transcription factor in a particular
nucleus as a function of gene expression, diffusion and
decay. The expression of a particular transcription factor
depends on regulatory inputs from other transcription
factors. To capture these inputs, an interconnectivity matrix
T is introduced, in which the regulatory effect of gene a on
gene b is represented by the matrix element Tab. Depending
on whether this element is positive or negative, gene a
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activates or represses gene b, respectively. The quantity of
Tab defines the strength of the interaction; if it is zero, the
two genes do not interact. The main point of the approach is
that no a priori assumptions are made about the numerical
values for the elements of the matrix or the diffusion and
decay rate of the transcription factors. Instead, prior to
modelling, a set of quantitative expression data is
collected. In this particular case, antibodies were produced
against most segmentation genes, allowing the measure-
ment of the protein distribution in the entire embryo at
different time points. The resulting highly accurate
quantitative descriptions of the spatiotemporal expression
changes were used to determine the numerical values of
the matrix elements and the diffusion and decay rates of
the transcription factors by procedures of non-linear
fitting. Thus, the network topology was recovered from
experimental data, rather than being implemented prior to
the actual modelling work.

Initially, this approach encountered doubts and scepti-
cism from molecular biologists studying the transcriptional
regulation of individual segmentation genes. The analysis
of cis-regulatory elements should uncover those interac-
tions which actually occur in the embryo. Why would one
need a more global indirect approach? However, even early
gene circuit modelling using still limited experimental data
sets for fitting led to some highly non-trivial predictions.
For example, a paper on the formation of pair-rule gene
expression stripes predicted that stripe formation requires
very low diffusion rates of the pair-rule gene products
(Reinitz and Sharp 1995). This prediction later gained
experimental support by the demonstration that the mRNA
of pair-rule genes is tightly localised to the cell cortex
above the nuclei. Translation of the localised mRNA at the
cortical positions is likely to hinder the spreading of the
protein to neighbouring nuclei, accounting for low diffusion
rates. More importantly, later modelling of the gap gene
network using improved data sets for fitting and more
sophisticated optimisation programmes led to results not
predicted by any experimental work and in addition,
provided a deeper understanding of one of the central
questions in developmental biology: how spatial precision
emerges despite noisy starting conditions.

A careful analysis of the gap gene expression pattern
showed that the gap gene domains undergo a coordinated
anterior shift after their initial establishment under the
control of maternal gradients (Jaeger et al. 2004b). This had
not been noticed by experimentalists and implies that the
readout of morphogen gradients, at least in this particular
case, is not a static but rather a dynamic process. The
positions of target gene domains are not ultimately fixed by
particular morphogen concentrations. Rather, interactions
among the target genes define the final coordinates of target
gene expression. The data-fitting algorithms revealed the

regulatory parameters responsible for the domain shifts and
allowed an interpretation of the underlying mechanism
(Jaeger et al. 2004a). The elaborate picture of the gap gene
network which emerged from these studies was later
expanded and used to address the problem of canalisation.

The term canalisation was introduced by Waddington
who pointed out ‘…that developmental reactions, as they
occur in organisms submitted to natural selection are in
general canalised. That is to say, they are adjusted so as to
bring about one definite end-result regardless of minor
variations in conditions during the course of the reaction’
(Waddington 1942). The segmentation cascade of Drosoph-
ila allows one to detect canalisation at the molecular level
and to analyse its mechanism. The crucial maternal
morphogen responsible for activating the gap genes is the
gradient of the transcription factor Bicoid. Careful measure-
ments were used to detect the embryo-to-embryo variability
of the Bicoid gradient and of the early and the late gap
domains. A comparison of the results revealed a progres-
sive reduction of the variation with developmental time.
The shape of the Bicoid gradient as well as the early
expression domains of the gap genes were noisier than the
late gap domains. By applying the gene circuit modelling
approach, the specific regulatory interactions could be
identified which are responsible for the noise reduction
(Manu et al. 2009a). A combination of strong and weak
mutual inhibition was shown to be crucial. The mathemat-
ical analysis of a precise dynamical model which contained
the experimentally derived parameters revealed that the gap
gene network possesses certain attractors to which the
system trajectories converge, irrespective of small varia-
tions in the starting conditions (Manu et al. 2009b). Thus,
in this particular case, a mathematical explanation of the
stability, i.e. reproducibility of an actual developmental
process was achieved. The fact that modelling in this case
was an a posteriori analysis of interactions occurring in the
embryo is a distinctive feature of this work. The stability of
steady state solutions in the face of variable starting
conditions had always been a strong motive in pattern
formation theory. Turing already being aware of this fact,
states in the context of introducing the idea of symmetry
breaking: ‘The variety of such new equilibria will normally
not be so great as the variety of irregularities giving rise to
them’ (Turing 1952). Gierer and Meinhardt also considered
the stability of the outcome of pattern formation processes
in spite of system perturbations as one of the most essential
aspects of their theory (Gierer 1981; Meinhardt 1982).
However, the papers on the gap gene network represent
probably the first case in which quantitative data, including
an assessment of the actual noisiness of the system have
been used as the basis for modelling.

Despite these seminal achievements and the obvious
closeness to biological reality, the gene circuit approach
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remains at the phenomenological level in one basic respect.
The elements of the interconnectivity matrix are open to a
number of molecular interpretations and they are also not
free from a priori assumptions which might not fully reflect
the complexity of the transcriptional process. For example,
the model does not allow that a transcription factor
activates and represses at low or high concentrations,
respectively. Exactly this situation has been discussed for
one of the key gap genes, hunchback, with regard to its
regulation of Krüppel (Papatsenko and Levine 2008). The
fact that the authors can produce a self-consistent model for
the gap gene network without assuming more complex
interactions may have three explanations. (1) These more
complex interactions might in fact not exist and the
experimental evidence provided by molecular biologists is
based on artefacts. (2) The interactions exist, but are not
relevant for the dynamics. (3) The derived network, in spite
of recovering the quantitative dynamics of the system, is
only a partial approximation of the reality and might even
wrongly suggest interactions which have no molecular
counterpart in the embryo.

A crucial question will be how the model fares when
applied to the next level of the segmentation process: the
emergence of the pair-rule gene expression pattern. At this
level, several fundamental questions still need to be
addressed, in particular the precise phase shift between
partially overlapping pair-rule stripe patterns. This phase
shift is crucial for initiating segment formation (Klingler
and Gergen 1993; Warrior and Levine 1990), but we are
almost completely ignorant with regard to the underlying
molecular mechanisms. Here, the gene circuit model might
indicate where to look at the molecular level, and thus
could have a crucial heuristic role for the working
molecular biologist. On the other hand, there is some
indication that besides protein–DNA interactions, protein–
protein interactions between the pair-rule gene transcription
factors also contribute to the patterning process (Fitzpatrick
et al. 1992). Such interactions have not been included in the
gene circuit model equation to date, and it is doubtful
whether they can be fully represented. Any mechanism
which necessitates the elements of the interconnectivity
matrix to become functions of space and time will probably
render the optimisation problem unsolvable. Thus, it is
possible that the gene circuit model in its current form has a
very limited applicability. There might be few other
instances in all developmental biology, which suit this
approach as much as the first step in the Drosophila
segmentation cascade, the gap gene network.

(3) The last example deals with a question which for a
long time was assumed to be trivial and did not require
particular modelling efforts: the formation of a simple
morphogen gradient from a localised source. Crick (1970)
had already provided a special solution to this problem. The

particular case in question is the aforementioned gradient of
the transcription factor Bicoid, which provides the input for
the gap gene pattern (Porcher and Dostatni 2010; Grimm et
al. 2010). Bicoid mRNA is localised to the anterior pole of
the egg where it is translated generating a local source of
Bicoid protein which diffuses to more posterior regions of
the embryo (Driever and Nüsslein-Volhard 1988a, b). Even
intuitively, one can imagine how local production and
diffusion are able to produce a long-range concentration
gradient. This intuitive concept can be captured in a simple
equation describing the spatiotemporal change of Bicoid
concentration as a function of synthesis, decay and
diffusion (SDD model). For SDD models, steady-state
distributions can be calculated in which synthesis, diffusion
and decay are balanced such that the resulting concentration
profiles do not change in time (Gregor et al. 2005). A
localised source and spatially uniform decay give rise to an
exponential steady-state profile characterised by a length
scale which only depends on the diffusion and decay rates.
Measurements of the Bicoid gradient indeed showed an
exponentially decaying concentration profile which was
sufficiently stable for assuming a steady state (Driever and
Nüsslein-Volhard 1988b; Gregor et al. 2005). Furthermore,
measurements of the diffusion of fluorescent dextran
molecules which had a molecular mass comparable to that
of Bicoid were in agreement with the SDD model for
gradient formation (Gregor et al. 2005).

However, one phenomenon suggested a more complex
scenario. Closely related fly species show almost identical
early segmentation gene expression. However, their egg
size may vary over more than a factor of five in length
(Gregor, et al. 2005). The scaling of the segmentation gene
expression pattern can be traced back to the scaling of the
Bicoid gradient, i.e. the gradients from different flies have
the same relative concentration profiles irrespective of the
egg size. Thus, in a large egg, the gradient has a
proportionally larger length scale which might result either
from an increased diffusion or a decreased decay rate of
Bicoid protein. However, the Bicoid proteins of different
fly species have a very similar structure and thus should
have similar diffusion and decay rates implying similar
length scales. This assumption was strongly corroborated
by generating Drosophila melanogaster embryos express-
ing a Bicoid protein derived from a fly species with large
eggs (Gregor et al. 2008). The heterologous Bicoid protein
formed a gradient indistinguishable from the endogenous
one. Thus, scaling seems to be a feature of the embryonic
system rather than of the respective Bicoid protein. To
explain this fact, a cellular property had to be found which
also showed scaling behaviour. An obvious candidate was
the number of nuclei, which is conserved in different fly
species. Flies with large eggs have a lower nuclear density,
and those with small eggs a higher one. As a transcription
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factor, Bicoid acts within the nuclei. Thus, for its biological
function the nuclear, as opposed to the cytoplasmic,
concentrations are of crucial importance. If the degradation
of Bicoid mainly occurs in the nuclei, then the scaling of
the gradient could be explained because the length scale of
the Bicoid gradient would depend on the nuclear density.

These ideas led to an increased interest in the precise
measurement of Bicoid’s diffusion, decay and nuclear
shuttling rates in living embryos. The production of
transgenic flies expressing fully functional GFP-tagged
Bicoid protein partially allowed such measurements and
produced two surprising results (Gregor et al. 2007). Firstly,
during development, the nuclear concentration of Bicoid at
a given position remains constant within a 10% margin,
despite increasing nuclear densities (the number of nuclei
increases 16-fold). This observation is in direct conflict
with the explanation for scaling of the gradient in different
flies because scaling requires that the gradient changes
concomitantly with changing nuclear densities. In
addition, nuclear stability by itself is not easy to explain
given a steady state model of the gradient. Gregor et al.
(2007) concluded: ‘…, rather than passively sampling a
large excess of molecules in the cytoplasm, the nuclei
must perturb the gradient significantly’. Several models
were developed to address this question. One of them
assumes that the gradient is not in a steady state, but that
the total amount of Bicoid protein increases, and this
increase balances the increase in nuclear volume so that
the local nuclear concentrations remain constant (Coppey
et al. 2007).

The second surprising finding concerned the measured
diffusion constant of Bicoid, which was an order of
magnitude too low to account for the length scale of the
gradient (Gregor et al. 2007). Even assuming non-
stationary models the measured rate of Bicoid diffusion
cannot explain the shape of the gradient (Grimm et al.
2010). To tackle this problem, mathematical models were
developed that paid more attention to the actual cellular
complexity of the early Drosophila embryo. A coarse-
grained model for the syncytial blastoderm was derived
which combined cytoplasmic diffusion and nucleocytoplas-
mic shuttling of Bicoid (Sample and Shvartsman 2010;
Kavousanakis et al. 2010). The model uses a homogenisa-
tion approach that is applied in physics and engineering for
the description of heterogeneous materials. If materials are
structured at two clearly distinct length scales, the structure
at the larger length scale might result from the repetition of
a small-scale unit with internal structural complexity (the
reference cell). In the case of the syncytial blastoderm, the
reference cell was assumed to be a nucleus with its
surrounding cytoplasm. The homogenisation approach
allowed the definition of an effective (large scale) diffusiv-
ity for Bicoid as a function of the geometry of the nucleus

together with the surrounding cytoplasmic island, the
diffusivity in the cytoplasm and nucleocytoplasmic shut-
tling (Kavousanakis et al. 2010). However, these highly
sophisticated approaches still did not lead to an explanation
for gradient formation despite Bicoid’s low diffusivity, or to
an understanding of nuclear stability and scaling. In
particular, the last point remained disconcerting since the
explanations invoked for each phenomenon required
conflicting assumptions.

Additional experimentation was required. In a recent
paper, altered Bicoid proteins were analysed that had an
impaired ability for nuclear transport or were lacking
nuclear transport altogether (Grimm and Wieschaus 2010).
Surprisingly, these Bicoid versions produced gradients
indistinguishable from that of the wild-type protein. This
is a striking observation since wild-type Bicoid concen-
trations show huge local fluctuations depending on the
nuclear cycle. Thus, one would assume intuitively that
these local changes have an effect on the overall gradient.
These new findings also rule out explanations for scaling
that invoke nuclear density. According to a recent sugges-
tion, scaling might result from the positive correlation
between the amount of bicoid mRNA and egg size (Cheung
et al. 2011). Finally, the new findings re-open the whole
discussion on the mechanisms of gradient formation. No
doubt, we are currently unable to provide a mechanistic
explanation of one of the simplest patterning problems in
biology, the formation of the exponentially decaying
gradient of a single protein species emanating from a local
source. This problem seems to be much simpler than that of
self-organised patterning which motivated Turing or Gierer
and Meinhardt; it is also much simpler than BMP gradient
formation or the gap gene network, the two situations
exemplified above. However, it touches on one key feature
of development: the capability to produce the same pattern
at different length scales. It was precisely this feature, in
some of its extreme realisations, that Driesch believed
could not be explained by physics and chemistry and for
which he developed his harmonious equipotential system
reflecting a type of lawfulness only found in organisms.

As we do not want to take refuge in vitalistic tenets, the
question arises of where we could obtain additional
physicochemical explanations to explain Bicoid gradient
formation. The problem here is not the lack of potential
candidates, but rather the multitude of options. (1) Bicoid
translation might not exclusively occur at the anterior pole
and Bicoid’s rate of translation might not be constant over
time as assumed in most models (Surdej and Jacobs-Lorena
1998; He et al. 2011). Indeed, bicoid mRNA is not tightly
localised to the anterior cortex, but forms a steep gradient
(Spirov et al. 2009; St Johnston et al. 1989; Weil et al.
2008; Little et al. 2011). Thus, Bicoid might emerge from a
graded source. This might certainly help to explain the
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discrepancy between low diffusivity and large length scale.
(2) Bicoid movement might be more complex, including
both space- and time-dependent changes in the diffusion
constant as well as convective streaming. Diffusivity of
Bicoid has so far been measured only at the surface of the
syncytial blastoderm in embryos. It could be larger in
earlier stages or in the inner part of the embryo as opposed
to the cortex. Recent measurements of Bicoid diffusion
using different biophysical methods have questioned
previous data (Abu-Arish et al. 2010). In addition, a certain
amount of cytoplasmic streaming occurs in the embryo
which has been used to explain the length scale of the
gradient (Hecht et al. 2009). (3) Bicoid is a target of post-
translational modifications which may occur in a spatially
controlled way. For example, the phosphorylation of Bicoid
by the receptor tyrosine kinase Torso occurs only in a
restricted anterior zone (Janody et al. 2000; Ronchi et al.
1993). Recently, a ubiquitinylation of Bicoid was demon-
strated, which targets the protein for degradation (Liu and
Ma 2011). Thus, many different protein forms of Bicoid
might exist in the embryo, each with particular diffusion
and decay rates or even with particular spatial distributions.

Taken together, organismic complexity impinges on
multiple levels even for the simple process of forming a
protein gradient. The most difficult problem for theory lies
in the fact that no a priori physicochemical argument exists
that allows us to decide which aspects are relevant and
which can be neglected. Thus, for some time, bicoid
mRNA distribution was not considered to be important
for gradient formation since the mRNA is clearly more
locally restricted than the protein. Given the suggested low
diffusivity of Bicoid protein, the potential contribution of
mRNA spreading becomes more important. Conversely,
nucleocytoplasmic shuttling of Bicoid appeared to be of
pivotal importance for understanding gradient stability and
scaling, leading to very impressive theoretical approaches
(Gregor et al. 2007). However, recent experimental evi-
dence undermines the importance of this process (Grimm
and Wieschaus 2010).

Evolutionary processes can affect and fine-tune each
level of a developmental process. From the physical point
of view, no simple process exists in an organism since not a
single protein or RNA molecule can be treated separately
from the organismic context. This is impressively shown by
the example of Bicoid proteins from large eggs that form
normal gradients within smaller eggs (Gregor et al. 2008).
Since evolution can operate at each level (e.g. changing the
localisation or stability of an mRNA, adding a modification
to a protein, changing the size or the physical property of a
compartment), multiple ways exist in which the organism
can overcome physicochemical constraints. Bicoid shows
us even more impressively than the other examples, how
the organism evades the attempts of the theoretician.

Conclusions: Kant revisited

The history of pattern formation theory presented here
reveals the necessity of mathematical modelling already for
simple chemical and even more so for biological systems.
The oscillatory behaviour Lotka found by solving the
differential equations is not evident if one just looks at the
reaction scheme. It becomes plausible by using ‘graphical’
interpretations such as predator–prey relationships. Howev-
er, understanding the important difference between conser-
vative and dissipative systems, reflected in the difference
between structurally unstable and structurally stable limit
cycle oscillations, requires relatively abstract mathematical
arguments. Nevertheless, this point is absolutely crucial; all
interesting chemical and biological pattern-forming systems
have the property of structural stability. The demonstration
by Turing at the beginning of his paper that differences in
diffusion rates can lead to unequal distributions of
components starting from homogeneity is rather counter-
intuitive. Is not diffusion a process that diminishes
concentration differences? Finally, the rich pattern-forming
capabilities of systems combining non-linear autocatalysis,
inhibition and differential diffusion rates (Gierer–Meinhardt
model) could have never been demonstrated without
computer simulations. The need for mathematical model-
ling is even more apparent in modern data-driven
approaches. Already data acquisition requires sophisticated
algorithms. A large part of the efforts of the Reinitz group
was devoted to the question of how to reliably retrieve
expression data from microscopic images (Janssens et al.
2005; Myasnikova et al. 2009; Surkova et al. 2008). Non-
linear fitting or screening parameter spaces require elabo-
rate programming. But even in rather simple cases such as
Bicoid gradient formation, a model is needed to decide
whether the measured diffusion constant is appropriate for a
postulated mechanism or whether a substantial deviation
from the expectation indicates the existence of unknown
processes. One can easily predict that with our increased
ability to acquire highly accurate measurements of molec-
ular properties in living systems, the need for model
building will increase. Pattern formation theory seem thus
to be a prime example for Kant’s statement that ‘…there is
present only so much real science, as there is mathematics’
(Kant 1900ff Vol 4, 470).

However, in the face of organismic complexity, the
work of the theoretician can appear to be a Sisyphean
ordeal. In the examples we have described, successful and
internally consistent modelling approaches were called
into question by re-interpretations of underlying mecha-
nisms or by new data sets, which contradicted previous
assumptions. In the case of the gene circuit approach, a
huge modelling effort was undertaken over more than a
decade to produce one of the most impressive results in
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all theoretical biology: a precise description of how
canalisation takes place. However, the actual structure of
the model might have only limited applicability beyond a
particular stage of Drosophila development and despite its
proclaimed closeness to experimental data cannot be
easily linked to concrete transcriptional mechanisms. In
the case of the Bicoid gradient, it even seems that after
repeated rounds of modelling and experimentation, the
theory currently has lost its object since it is not clear
where the property responsible for scaling is to be found.

In the light of these observations, the question arises
whether the relation between a mathematical model and its
object is fundamentally different in biology than in other
areas of science. An answer to this question requires careful
consideration. Are not disagreements between theoretical
modelling and experimental results anyway the normal
situation with which theoreticians in all fields of science are
confronted? Famous examples are attempts to simulate the
processes in the earth’s atmosphere from global climate
changes to the local weather forecast. However, here we
know very well that some of the underlying equations
inherently lead to unpredictability (deterministic chaos).
The impossibility of long-term predictions is mathematically
understood. In other instances, this point is less clear. An
impressive example is represented by the long-standing
attempts to derive the properties of liquid water from
computer simulations. The forces between two water
molecules (the pair potential) include repulsion, electrostatic
dipole interactions and hydrogen bonding. There is a
surprising variety of how to formulate a pair potential
based on these three contributions. Additionally, there are
higher order interactions between more than two water
molecules. In a comparison of simulations based on 45
different water models, Guillot summarises: ‘The fact that
no model potential is able to reproduce in every detail
the properties of real water despite 30 years of active
research leaves a taste of incompletion.’ (Guillot 2002).
From a biologist’s point of view, these simulations,
however, are pretty impressive. All of them recover basic
properties of water and provide accurate predictions for at
least some of the measured physical constants of water. The
process of approximation to the real object seems to be
much smoother than in the case of biology. Indeed, Guillot
can precisely localise the weaknesses in the assumption of
many models and suggest very specific improvements.
With slightly relaxed demands on the quantitative accuracy,
another expert in the field concludes ‘…, contrary to
numerous statements in the literature, I am convinced that
the behaviour of water… is reasonably well understood…’
(Ben-Naim 2009).

Biological pattern formation theory is a relatively young
field of research. Although its object of reference is
infinitely more complex than liquid water, we cannot

exclude that future modelling efforts will lead to a similar
degree of approximative understanding. Beyond mere
material complexity, however, organisms possess features
not found in the inorganic world, which are likely to
complicate every mathematical approach. Proteins and
mRNAs, the types of molecules which are and will be the
main target of modelling are not only huge macromolecules
compared to water but they also exhibit features funda-
mentally different from any molecule of the inorganic
world. Their sequence-based structure depends on an
evolutionary process which combines adaptive (determina-
tive) and non-adaptive (drift-like or stochastic) events.
Evolution can target singular features (individual positions
within the sequence) of these molecules. Therefore, their
physical properties are to a large degree at the disposal of
events buried deeply in the evolutionary past. For these
events, it is not even clear whether they all have a
straightforward physical grounding. As long as we are
dealing with adaptive processes, physical causes have to be
postulated which guide adaptive events. For example, the
particular modes of early development in insects might
have served as a patterning environment to which proteins
(and their respective mRNAs) had to adapt if they were to
be useful as morphogens in providing positional informa-
tion to the embryo. For a particular morphogen, an
evolutionary process can be imagined that leads to the
fitting of the morphogen’s molecular characteristics to the
physical environment of the embryo. This process ought to
be highly complex since its goal is the fit between the
physical properties of a complex molecule to a highly
structured cellular environment. Nevertheless, the adaptive,
‘goal-directed’ events driving this process should in
principal be physically describable. However, in particular
for multicellular organisms, drift-like processes might
have a significant contribution to evolutionary change
(Lynch 2007). The reducing theory for such processes is
probability theory (McShea and Brandon 2010). Conse-
quently, some of the molecular properties of proteins and
RNAs might not have a physical cause linked to the
biophysics of the particular process they are involved in,
but rather result from collective statistical phenomena at
the population level.

Thus, pattern formation theories working with function-
ally and physically motivated mechanisms are, already at
the level of the single molecule, likely to face unexpected
complications. However, patterning processes usually re-
quire coupled reactions of many components and frequently
encompass several hierarchical levels (e.g. diffusion in the
cytoplasm, transcription, morphogenesis). Accordingly,
evolution has almost infinite possibilities to complicate
and fine-tune patterning mechanisms and thus can over-
come or undermine almost every physicochemical con-
straint postulated by a particular theory.

274 Dev Genes Evol (2011) 221:255–279



The picture of the organism emerging from these
reflections has astonishing similarity to Kant’s views
outlined at the beginning of this essay. Although Kant
speculated about evolution in his late writings, he had no
mechanistic explanations for how the functional adaptations
observed in the organic world could arise (Roth 2011a).
Nevertheless, he assumed that the apparent goal-directedness
or purposiveness of organisms is not in contradiction with the
general laws of nature. Organisms just represent unique
constellations of matter. From the perspective of general laws,
their structure is extremely improbable, yet highly reproduc-
ible. They are, according to Kant, examples of the lawfulness
of the contingent (Roth 2011b). This implies that we have no
alternative for studying organisms to the mechanistic
approach, despite its insufficiency for a full understanding
of their contingent features. Thus, Kant clearly realised that
his ideal of mechanistic understanding implying mathematics
is faced with significant, indeed seemingly insurmountable
problems when applied to living nature.
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