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Abstract
Background: Microtubules are the major cytoskeletal component in eukaryotes
which are essential for a large spectrum of cellular activities. Monitoring the
behavior of microtubules is helpful for a better understanding of the regulatory
mechanism governing microtubule architecture and microtubule-based activities.
Here, we characterized the binding capability of a modified heptapeptide from
tau to both tubulin and microtubules and sought to develop it as a fluorescent
peptide for monitoring microtubules.
Methods: To deliver the fluorescent peptide into the cells, a cell-penetrating pep-
tide was conjugated to the modified heptapeptide from tau and synthesized. The
affinity of the modified heptapeptide was determined by microscale thermo-
phoresis. The microtubule labeling ability was determined by adding the peptide
into the polymerized microtubule solutions or cultured HeLa cells.;
Results: Affinity determination revealed that the tau-derived peptide specifically
bound to tubulin. In addition, the peptide was able to label polymerized microtu-
bules in solution, although no obvious microtubule filaments were observed
clearly in living cells, probably due to the inadequate affinity.
Conclusions: These results suggest that using a peptide-based strategy for imag-
ing microtubules might be plausible and attempts to improve its affinity is
warranted in the future.

Introduction

Microtubules, composed of α- and β-tubulin heterodimers,
are the major cytoskeletal component in eukaryotes.1 Alone or
together with actin and intermediate filaments, they partici-
pate in a diversity of cellular activities, including cell shape
maintenance, cell motility, mitotic division, cell junction, and
cell differentiation.2–6 To fulfill these activities, microtubules
reorganize their architecture dynamically to adapt to the cellu-
lar requirement. Although the principal mechanism governing
microtubule-based architecture and activity has been dissected
through fusing fluorescence protein tags into tubulin or end-
binding (EB) proteins, such fusion proteins suffer from intrin-
sic limitations.7 For example, the transfection efficiency is
extremely low in primary cells; the physiological microtubule
function is perturbed by the large size of fluorescence protein
tags. Therefore, development of a straightforward, small size
molecule to trace microtubule behavior is necessary to better

understand the subtle behaviors of microtubules and their reg-
ulatory mechanism.
The property of microtubules is regulated by a number

of microtubule-binding proteins,8–13 of which tau is well-
characterized because of its abundance, particularly in
brain tissues.14–16 The N-terminus of tau is a projection
domain, followed by a proline-rich region and a C-
terminal microtubule-assembly domain.17 The
microtubule-assembly domain, which contains four imper-
fect sequence repeats, is responsible for the binding of tau
to microtubules. Indeed, the microtubule-assembly domain
fused with GFP is able to trace microtubules in cells;18, 19

however, it has some adverse effects on microtubule
dynamics due to the large size of the fusion protein. To
avoid this issue, here we sought to develop a fluorescent
tau-derived peptide with small size and delivered it into
cells via a cell-penetrating peptide strategy.
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Methods

Materials

Adenosine triphosphate, guanosine 50-triphosphate (GTP)
sodium salt hydrate, and benzonase were purchased from
Sigma-Aldrich. Paclitaxel was purchased from Cell Signaling
Technology. The tumor overexpressed gene (TOG) column
was prepared as previously described.20 Capillary tubes were
purchased from Nano Temper. GSTrap column was pur-
chased from GE Healthcare. Tetramethylrhodamine was pur-
chased from Thermo Fisher.

Peptide synthesis

Tau-derived and scrambled control peptides were synthe-
sized with the solid-phase methodology using the standard
Fmoc chemistry by GenScript (Nanjing, China). N-terminal
fluorescein-labeling was performed as previously described.21

The synthesized peptides were purified by high performance
liquid chromatography using a C-18 reversed phase column
and then analyzed by mass spectrometry.

Affinity determination

All microscale thermophoresis measurements were per-
formed using Monolith NTTM hydrophobic capillaries
and a Monolith NT.115 instrument (NanoTemper)
according to the manufacturer’s instructions. The peptide
was prepared with varying concentrations for pretest to
ensure final proper concentration. The fluorescence inten-
sity value should be more than 200. A series of dilution of
the tubulin dimers was then added into the capillaries. The
affinity of the peptide to tubulin dimers was examined
using the Monolith NT.115 instrument.

Tubulin purification

Tubulin from HeLa cells was purified using a TOG-based
affinity column.20 Briefly, cells were resuspended in an
equal volume of BRB80 buffer containing 3 μL of
benzonase and 1 mM DTT. Cells were lysed on ice and
centrifuged at 40 000 rpm for 30 minutes at 4�C. The
supernatant was filtered through a 0.45 μm Milliex-HV
polyvinylidene fluoride membrane, and then loaded into a
TOG column preequilibrated with BRB80 buffer. The
tubulin was eluted with BRB80 buffer, and the crude
extract was further purified through the cycle of polymeri-
zation and depolymerization as previously described.22

Microtubule assembly

Rhodamine-labeled tubulin (5%) was mixed into tubulin
purified from HeLa cells in the PEMG buffer (100 mM
PIPES, 1 mM EGTA, 1 mM MgSO4, 1 mM GTP, pH 6.8).
Next, the mixture was placed on ice for five minutes and
then incubated at 37�C for 30 minutes. The polymerized
reaction was terminated by adding 400 μL of PEMG buffer.
The mixture was then centrifuged at 80 000 g for 10 minutes.
The pellet was resuspended with 300 μL of the PEMG buffer
supplemented with 20 μM paclitaxel and then added into a
slide chamber for imaging under a fluorescence microscope.

Living cell assay

HeLa cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum and
maintained at 37�C in a humidified 5% CO2 environment.
The peptide was added into the Hela cells, and incubated
for 30 minutes. The nuclei were stained with Hoechst
33258 (Beyotime). Cells were imaged with a fluorescence
microscope (Leica, Germany).

Results

Design of a tau-derived heptapeptide for
monitoring microtubules

Numerous studies have reported that the four repeat
regions of tau are responsible for tau-microtubule
interaction.23–25 In addition to the repeat region, Goode
et al. identified that a small sequence 215KKVAVVR221

within the proline-rich region was also critical for efficient
microtubule binding.26 In addition, Cao and Mao27 identi-
fied that VxxVxxP motif might be a potential microtubule-

Figure 1 Tau-derived peptide. (a) Schematic of tau domain. The pep-
tide KKVAVVR located within the proline-rich domain. The repeat
domains contain four imperfect sequence repeats (R1–R4). (b) The
component of fluorescent tau-derived peptide which contains a fluores-
cein isothiocyanate (FITC) dye, a cell-penetrating peptide (rR)3R2, a
spacer (GGG), and a microtubule recognition unit (KKVAVVR). Ahx,
e-aminocaproic acid; r denotes D-arginine, and R denotes L-arginine.
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binding region and further confirmed that the peptide
KKVAVVRTPP was able to bind microtubules.27 Based on
these findings, here we sought to develop a fluorescent
peptide using this microtubule-binding motif (Fig 1a). To
deliver the peptide into cells, we added an oligoarginine
(rR)3R2 (r: D-Arg, R: L-Arg), a widely-used cell-penetrating
peptide,21 and three glycine residues as a spacer (Fig 1b).
To improve the stability of fluorescein isothiocyanate
(FITC), an aminohexanoic (Ahx) acid was introduced as a
protective group (Fig 1b). In addition, the control peptide,
which did not contain a cell-penetrating peptide (CPP),
was also synthesized.

Modified heptapeptide binds tubulin
in vitro

We then tested the affinity of the peptide with tubulin
dimers by microscale thermophoresis assay.28, 29 As shown
in Fig 2, the peptide bound tubulin dimers in a dose-
dependent manner, suggesting the specificity of peptide to
tubulin. In addition, the disassociation constant (Kd) of
the peptide with tubulin was 4.68 � 0.08 μM, indicative of
a relatively low affinity. It is noteworthy that the low affin-
ity of the peptide to tubulin may reduce the unwanted per-
turbations of microtubule dynamics and physiological
function, as demonstrated by Lifeact, a versatile actin
marker, which shows a low affinity to F-actin but specifi-
cally labels actin without affecting cellular processes.30

Modified heptapeptide is able to label
microtubules in solution but is unable to
trace microtubules in living cells

Next, we examined whether the peptide could label poly-
merized microtubules in vitro. We purified assembly-
competent tubulin from HeLa cells through cycles of
polymerization and depolymerization (Fig 3a). Here, we

used rhodamine-labeled tubulin for counter-imaging of
microtubules. Strikingly, the peptide was able to success-
fully label the microtubules in solution (Fig 3b). in vitro
reconstitution of microtubule assemblies has been widely-
used for dissecting microtubule behaviors.31

Last, we examined whether the peptide could effi-
ciently enter into living cells and trace microtubules. We
found that the peptide was delivered successfully into
HeLa cells by cell-penetrating peptide (rR)3R2, while the
control peptide, which did not contain cell-penetrating
peptide, could not enter into cells (Fig 4). However, no
clear microtubule filaments were observed, probably due
to the low affinity of the peptide to microtubules. It is
therefore warranted to optimize the amino residues to
improve the affinity of the peptide to microtubules for
living cell imaging.

Figure 2 Affinity determination of the peptide to tubulin. 1 μM of the
peptide and a series dilution of tubulin were added into the capillary
tube, and the fluorescence intensity was then determined by a Mono-
lith NT.115 instrument.

Figure 3 The peptide was able to label the microtubules in solution. (a)
The tubulin was purified from HeLa cells through cycle process, and the
purity was determined by SDS-PAGE. (b) Rhodamine-labeled tubulin was
added into a slide chamber to first induce polymerization, and then 1 μM
of the tau-derived peptide or control peptide was added into the poly-
merized microtubule. After five minutes incubation, the microtubule was
imaged under a fluorescence microscope. Scale bar: 5 μm.
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Discussion

Several reagents and methods have been developed for mon-
itoring microtubules. 4’,6-diamidino-2-phenylindole (DAPI)
was originally used for examining the kinetics of microtu-
bule assembly in vitro.32 In addition, a fluorescent GTP ana-
log was developed for analyzing microtubule dynamics with
nanometer precision.33 Despite their success in monitoring
microtubules in vitro, these reagents were unable to trace
microtubules in living cells due to the lack of specificity and
the complexity of cellular contents. Microtubule-targeting
agents, such as taxol or colchicine, were able to label micro-
tubules in living cells due to their specificity to microtubules;
however, the microtubule-targeting agent-based molecules
are detrimental to microtubule dynamics, making it
unsuitable for monitoring microtubule behaviors in living
cells.34–37 In this study, we sought to adopt a peptide-based
strategy to develop fluorescent molecules that monitor
microtubule behavior in living cells.
Mounting evidence shows that the repeat regions are

critical for the interactions of tau with microtubules. Inaba
et al. thus developed a fluorescent peptide based on the
repeat region to monitor microtubules in living cells.38

Although the imaging quality and delivery efficacy are
struggling, it proves that the strategy of using peptides to
recognize microtubule is plausible. In this study, we tested
another tau-derived peptide for its ability to monitor
microtubules. Our data revealed that this modified hepta-
peptide from tau was able to bind both tubulins and
microtubules.

In the reconstitution system, fluorophore-labeled tubulin
is often used with the intension of examination under fluo-
rescent microscopy.39, 40 However, the conjugation of
fluorophores to tubulin is tedious with great loss (the yield
is no more than 10%), making it difficult to use cultured
cells or mouse brain for sample preparation. The modified
heptapeptide from tau binds microtubules specifically and
noncovalently, providing an alternative tool for convenient
microtubule labeling without the need of fluorophore con-
jugation, which may facilitate the investigation of microtu-
bules from the limited source samples. Despite the
unsatisfactory image of microtubules in living cells, our
data indicate that using the peptide-based strategy for
imaging subcellular structures in living cell is plausible.
Attempts to identify novel peptides with higher affinity is
warranted in the future.
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