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An element-free Galerkin method (EFGM) is proposed to simulate the propagation of myocardial electrical activation without
explicit mesh constraints using a monodomain model. In our framework the geometry of myocardium is first defined by a
meshfree particle representation that is, a sufficient number of sample nodes without explicit connectivities are placed in and
inside the surface of myocardium. Fiber orientations and other material properties of myocardium are then attached to sample
nodes according to their geometrical locations, and over the meshfree particle representation spatial variation of these properties
is approximated using the shape function of EFGM. After the monodomain equations are converted to their Galerkin weak form
and solved using EFGM, the propagation of myocardial activation can be simulated over the meshfree particle representation. The
derivation of this solution technique is presented along a series of numerical experiments and a solution of monodomain model
using a FitzHugh-Nagumo (FHN) membrane model in a canine ventricular model and a human-heart model which is constructed
from digitized virtual Chinese dataset.

1. Introduction

Myocardial contraction is driven by a sequence of propa-
gating electrical activations throughout the myocardium [1].
Propagation of electrical activations inside the myocardium
is a highly complicated process mainly due to the fibrous
structure of myocardium, as shown in many experiments [2].
There have been efforts in simulating myocardial electrical
activations using computational models with known physical
parameters, including the source intensities and locations,
material properties, and boundary conditions, because these
simulations can help to understand the measurement data,
suggest new experiments, and provide insights into the basic
mechanism of electrical activity in the heart. A number of
computational models have been developed to simulate the
macroscopic electrical propagation process [3, 4], such as
cellular automata and reaction-diffusion systems. A cellular
automaton is a discrete model which usually consists of a
regular grid of cells, each in one of a finite number of states.
Every cell has the same rule for updating, based on the states
in its neighborhood. Because the simplicity of states and
superior computational speed resulted from rules, cellular

automata have been applied in simulations of myocardial
electrical activity in the heart [5, 6], but such simplistic
and rule-based approaches cannot always properly capture
the shape of transmembrane potentials. A reaction-diffusion
system is a mathematical model that describes how the
concentration of one or more substances distributed in space
changes under the influence of two processes: local reactions
in which the substances are converted into each other and
diffusion which causes the substances to spread out in space.
This concept in the reaction-diffusion system is borrowed
and applied in the simulation of myocardial electrical
activity by turning local reactions into cellular models,
that is, ionic currents, and diffusion into transmission of
transmembrane potentials, that is, anisotropic propagation
through myofibers. Though the reaction-diffusion system
can more appropriately reproduce electrical activity of
excitable myocardium [3, 4, 7] than cellular automata, solv-
ing a reaction-diffusion system is computationally expensive
with realistic modelling of cardiac tissue properties and
cellular behaviors [3]. Recently, the Eikonal model [8, 9],
which is a simplified wavefront model, has also been solved
by FEMs in order to simulate anisotropic electrical activity
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across myocardium [10]. The computational models have
been widely applied in understanding patients’ data [11–15].

In the context of modelling electrical activity in the heart,
one of challenges is to establish a numerical representation of
the complex geometry of the heart. This representation must
not only characterize geometric complexities but also be of
sufficient resolution to capture the activation wavefront and
perhaps cellular behaviours. In order to properly simulate
myocardial electrical activity by solving reaction-diffusion
systems accurately, a large number of numerical schemes
have been developed by representing the intrinsic structure
of the myocardium and the inhomogeneity/anisotropy in
different ways. By discretizing the diffusion tensor over the
problem domain, traditional FDMs can evolve electrical
activity over orthogonal and regular grids [16], but the
complex geometry of heart is always a great challenge
for FDMs. Thus, a few works have proposed the use of
irregular grids with FDMs to deal with complex geometry by
increasing the complexity of interpolation between grids [7,
17–19]. In FEMs, the integral form of the reaction-diffusion
system is discretized over a finite element representation of
the geometry. Typically low-order (linear Lagrange basis)
elements used in FEMs [20, 21] always lead to a high number
of elements in the complex geometry and a long time integra-
tion for a certain accuracy or remesh in changing geometry,
such as a beating heart. Therefore, high-order elements, such
as cubic Hermite basis elements [22] and quadratic Lagrange
basis elements, use more nodal parameters or nodes inside
one element to get better accuracy, but the size of system
matrix and the computational load are also increased largely.
Furthermore, meshing or remeshing for FEMs using high-
order elements still remains challenge.

EFGM is developed as a meshfree method in 1990s
[23] and has been successfully applied for a wide range of
mechanical applications [24, 25]. A series of publications
[26, 27] have explored the numerical capabilities of EFGM,
including parallelization and comparison with FEMs in
mechanical applications. Meshfree method has been applied
into simulation of myocardial electrical activity by authors
[28, 29]. However, the numerical performance of meshfree
method has not been well verified in the simulation of
myocardial electrical activity. Furthermore, the previous
work [28, 29] only used left ventricle segmented from
MR images with spurious fiber structure. Our aim of this
paper is to present EFGM as a computational tool to solve
reaction-diffusion systems for the simulation of myocardial
electrical activity. In this paper a new representation of
myocardial geometry and fiber structure by a cloud of nodes
without any explicit connectivity defined between them,
that is, meshfree particle representation, is first discussed.
Upon this representation, the numerical performance of
EFGM in solving the monodomain model [3, 4], a reaction-
diffusion system, is demonstrated through experiments. The
properties processed by EFGM provide quite a few advan-
tages, such as refinement can be accomplished by adding
or removing nodes in particular areas [23–25]. Moreover,
fiber orientation is interpolated with nodal parameters, not
inside the element any more. Hence, all the operations
inside the element of FEMs, such as coordinate transform

from elemental coordinate to global coordinate and the
interpolation of elemental fiber orientation, are also avoided
in this approach. Furthermore, higher order approximation
of a meshfree shape function can be achieved without
rearranging nodal positions or adding extra degrees of
freedom in nodes for example, higher consistency and
continuity can be still maintained over the whole problem
domain, even with a linear basis, in EFGM [23–25]. Though
it has been demonstrated that EFGM can also handle
material inhomogeneities and discontinuities in mechanical
applications [24, 25], we cannot cover that in this paper
because of limited space.

Governing equations of electrical activity over the
myocardium are discussed in Section 2. A numerical scheme
based on EFGM in terms of representation, shape function
and the Galerkin weak form is established in Section 3.
Numerical experiments are presented and compared in
Section 4. And finally in Section 5, we discuss the strengths
and weaknesses of the current approach and state possible
future directions.

2. Governing Equations

The bidomain model [3, 4], a popular reaction-diffusion
system, divides the myocardium into intracellular and extra-
cellular space. Both spaces can be described by the same
coordinate system and are separated by the membrane at
each location:

� · ((Di + De)�ve) = −� · (Di�vm) + Is1, (1)

� · (Di�vm) + � · (Di�ve) = Am

(
Cm

∂vm
∂t

+ Iion

)
− Is2.

(2)

vm is the transmembrane potential, ve is the extracellular
potential, Di is the conductivity in intracellular space, De is
the conductivity in extracellular space, Am is the ration of the
membrane surface area to the volume, Cm is the membrane
capacitance, Iion is sum of ionic currents, and Is1 and Is2 are
external stimulus currents. There are a lot of cellular ionic
models [3, 4] that could be used in reaction-diffusion system.
If the conductivity in extracellular domain is assumed to
be infinitely large, or the conductivities of extracellular and
intracellular domains are assumed to be equally anisotropic,
for example, Di = k·De, a bidomain model can be reduced to
a monodomain model, which turns (1) and (2) into a single
equation:

� · (D�vm) = Am

(
Cm

∂vm
∂t

+ Iion

)
− Is, (3)

with natural boundary condition (D�vm) · n = 0 if
heart is considered as an isolated continuum. Is is external
stimulus current, and D is the conductivity. The conductivity
variables, De, Di, or D, at each point in space, are represented
by a tensor containing coefficients along and across fiber
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Figure 1: Meshfree representation of Auckland heart model.

orientation in that point. Let Dlocal be a diffusion tensor of
a point in local fiber coordinate; then in 3D

Dlocal =
⎛
⎜⎝
σ f 0 0
0 σcf 0
0 0 σcf

⎞
⎟⎠, (4)

where σ f along the fiber and σc f across fiber. In some three-
dimensional simulation works, directions of sheet of fiber
and cross-sheet of fiber are treated differently [22, 30].

Hence the D of one point with α and β defining a rotation
around the z- and y-axis of the global coordinate system
according to the fiber orientation can be defined:

D = TDlocalT−1, T = RxzRxy , (5)

Rxy =
⎛
⎜⎝

cosα sinα 0
− sinα cosα 0

0 0 1

⎞
⎟⎠ Rxz =

⎛
⎜⎝

cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎞
⎟⎠.
(6)

3. Element-Free Galerkin Method

The reaction-diffusion system is a dynamic system controlled
by the diffusion term and reaction term. However, there
are too many cellular models, that is, reaction terms, which
are beyond the scope of this paper. Therefore, we choose
the monodomain model with polynomial cellular model
to verify the numerical performance of EFGM in this
paper: meshfree particle representation of geometry and
fiber structure by unstructured nodes is established first,
and then meshfree shape function is constructed from those
unstructured nodes; after obtaining Galerkin weak form
of the monodomain model using meshfree shape function
over meshfree particle representation, a regular background
mesh, served as an integration scheme, is applied to solve
Galerkin weak form of the monodomain model numerically.

3.1. Meshfree Particle Representation. In FEMs the problem
domain is always discretized by finite elements, such as
triangular meshes in 2D and tetrahedral meshes in 3D.
These elements are constructed through certain constraints,
such as connectivity and size. Then field variables, such as
potential or fiber direction, are interpolated by elemental

shape function. However in EFGM the problem domain
is represented by a cloud of unstructured nodes without
any predefined connectivity, named by meshfree particle
representation, and field variables are approximated by
meshfree shape function. In Figure 1, a meshfree represen-
tation of Auckland heart model and its fiber orientations is
shown from whole view, one slice to one section of muscle
wall. In meshfree particle representation all nodal positions
can be arbitrary, so irregular boundaries or interfaces of
inhomogeneity can be simply represented by nodes and
nodal positions can follow the changing of boundaries
or interfaces easily [23–25]. Several works also developed
different adaptive meshfree representations using level set
method [31], triangular meshing in 2D [25], or tetrahedral
meshing in 3D [25]. Moreover, refinement of EFGM could
be accomplished by adding or removing nodes into existing
representation according to the requirement of accuracy in
interested area, such as more nodes should be added into
interested area if the error is particularly large or higher
accuracy is required in this local area [24, 25].

3.2. Meshfree Shape Function. After meshfree particle rep-
resentation is established, approximation of field variables
can be computed using meshfree shape function and finite
nodal values. Construction of shape function is the kernel
of EFGM, which includes three steps: (1) determine the
size of influence domain of each Gaussian point and search
nodes (In this paper, the node only refers to the node of the
meshfree representation, Gaussian point always refers to the
quadrature point of Gaussian quadrature scheme.) which fall
inside the influence domain of Gaussian point from meshfree
particle representation, for example, xI (In this paper, xi

refers to index of coordinates, and xI refers to the index
of nodes) and I = 1, . . . ,n; (2) choose proper weighting
parameters and calculate weight function; (3) compute
entries of meshfree shape function and its derivatives in the
position of each Gaussian point using moving least square
(MLS) approximation.

3.2.1. Influence Domain. The influence domain is used to
determine an influence area/supporting area of one point,
usually Gaussian point, inside the meshfree particle represe-
ntation. The shape of influence domain can be any arbitrary
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(a) Rectangular shape (b) Circular shape

Figure 2: Examples of influence domains in 2D. (a) rectangular shape and (b) circular shape.

closed shape in space, while circle or rectangle in two
dimensions and sphere or cube in three dimensions are
commonly used [24, 25]. Examples of circle and rectangle
influence domains are shown in Figure 2. The size of
influence domain should reflect the density of nodes (i.e.,
the size of influence domain in coarse area should be large
and the size of influence domain in dense area should be
small), and besides, influence domain of one point has to be
overlapped with influence domains of neighbouring points
to guarantee a smooth approximation of field variables
and their derivatives (C1 continuity). The size of influence
domain of node xI , dmI , is calculated as

dmI = dmaxcI , (7)

where dmax is a scaling parameter which might vary between
different applications and could be determined by numerical
experiments [23, 25]. The distance cI is determined by
searching enough neighbouring nodes for the matrix A in
(22), which is discussed in the following subsection, to be
invertible, which is also a good strategy to reflect the density
of nodes. But influence domain of a point near to any
discontinuity should be cut by the discontinuity, including
boundary, if this influence domain crosses the discontinuity
during the construction of meshfree shape function [24, 25,
32], because the nodes in one side of discontinuity could not
affect the nodes or area in the other side of discontinuity.
Though cardiac tissue is discontinuous and fiber orientations
will not change smoothly at a certain scale any more [3],
the heart still could be modelled as a continuum for the
propagation of electrical activity, which will not damage
our purpose to demonstrate the numerical performance of
EFGM.

3.2.2. Weight Function. The weight function, a function of
distance ‖x − xI‖, which obtains a compact support from

the influence domain, needs to be positive to guarantee all
meshfree shape functions unique, smooth and continuous
throughout the entire problem domain to fulfill the com-
patibility requirement so that the nodes further from x will
have smaller weights [23–25]. Cubic weight function and
quartic weight function are popularly used and they can be
replaced by each other in EFGM without rearrangement of
nodal positions. Cubic weight function is

w
(‖x − xI‖

dmI

)

≡ w(rI) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
3
− 4r2

I + 4r3
I for rI ≤ 1

2
,

4
3
− 4rI + 4r2

I −
4
3
r3
I for

1
2
< rI ≤ 1,

0 for rI > 1,

(8)

where rI = ‖x − xI‖/dmI . And the spatial derivative of cubic
weight function in location x is:

dw(rI)
dxi

= dw(rI)
drI

drI
dxi

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−8rI + 12r2
I

)drI
dxi

for rI ≤ 1
2

,

(−4 + 8rI − 4r2
I

)drI
dxi

for
1
2
< rI ≤ 1,

0 for rI > 1.

(9)

Quartic weight function is

w
(‖x− xI‖

dmI

)
≡ w(rI) =

{
1− 6r2

I + 8r3
I − 3r4

I for rI ≤ 1,

0 for rI > 1,
(10)
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where rI = ‖x−xI‖/dmI . And the spatial derivative of quartic
weight function in location x is

dw(rI)
dxi

= dw(rI)
drI

drI
dxi

⎧⎪⎨
⎪⎩
(
−12rI + 24r2

I − 12r3
I

)drI
dxi

for rI ≤ 1,

0 for rI > 1.
(11)

3.2.3. MLS Approximation. Let uh(x) be the approximation
of state variable ux at point x. In the MLS approximation:

uh(x) =
m∑
i=1

pi(x)ei(x) ≡ PTe, (12)

where pi(x) are the polynomial basis functions, m the
number of terms in the basis functions, and ei(x) the
unknown coefficients which will be determined later. The
basis functions usually consist of monomials of the lowest
orders to ensure minimum completeness, and common ones
are linear basis:

pT = {1, x} in 1D, pT = {
1, x, y

}
in 2D,

pT = {
1, x, y, z

}
in 3D,

(13)

and the quadratic basis:

pT = {
1, x, x2} in 1D,

pT = {
1, x, y, x2, xy, y2} in 2D,

pT = {
1, x, y, z, x2, y2, z2, xy, xz, yz

}
in 3D.

(14)

In EFGM, PT in (12) can be replaced by any other polynomial
basis PT without the rearrangement of nodal positions [24,
25]. The consistency of the MLS approximation depends on
the complete order of polynomial basis PT . If the complete
order of polynomial basis, PT , is m, the meshfree shape
function will possess Cm consistency [24, 25].

Given a set of n nodal values u(x1),u(x2), . . . ,u(xn) of the
field variable u at a set of nodes {xI} = x1, x2, . . . , xn. The
coefficients ai(x) are obtained by minimizing the difference
between the local approximation uh(x) and the actual nodal
parameter u(xI) in location x:

J =
n∑

I=1

w(rI)
[
uh(x)− u(xI)

]2

=
n∑

I=1

w(rI)

⎡
⎣ m∑
i=1

pi(xI)ei(x)− u(xI)

⎤
⎦

2

,

(15)

where w(rI) is the weighting function with compact sup-
port within the influence domain, which is defined in
Section 3.2.2 Equation (15) can be rewritten into matrix
form:

J = (Pe− u)TW(Pe− u), (16)

where

u = [u1,u2, . . . ,un]T ,

P =

⎡
⎢⎢⎢⎢⎣

p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

⎤
⎥⎥⎥⎥⎦,

W =

⎡
⎢⎢⎢⎢⎣

w(r1) 0 · · · 0
0 w(r2) · · · 0
...

...
. . .

...
0 0 · · · w(rn)

⎤
⎥⎥⎥⎥⎦.

(17)

At point x, coefficients E(x) are chosen by minimizing the
weighted residual, which are realized through ∂J/∂e = 0:

∂J

∂e
= AE− Bu = 0 (18)

therefore,

e = A−1Bu, (19)

where

A = PT(xI)W(rI)P(xI), B = PT(xI)W(rI). (20)

Substituting (19) into (12), the approximation uh(x)
becomes

uh(x) =
n∑

I=1

φI(x)uI = φ(x)u, (21)

where the meshfree shape function φ(x) is defined by

φ(x) = P(x)TA−1B, (22)

with m the order of the polynomial in P(x). Note that m,
the number of terms of the polynomial basis, is usually
set to be much smaller than n, the number of nodes used
for constructing the meshfree shape function. The spatial
derivative of meshfree shape function in x is obtained by:

φ(x),xi =
(

PT(x)A−1B
)

,xi
= PT

,xi(x)ATB + PT(x)AT
,xiB

+ PT(x)ATB,xi ,
(23)

where

B,xi =
dW(rI)
dxi

P(xI), (24)

and A−1
,xi is computed by

A−1
,xi = −A−1A,xiA

−1, A,x = PT(xI)
dW(rI)
dxi

P(xI),

(25)

where dW(rI)/dxi is defined in Section 3.2.2 Then the
approximation of first derivative of field variable u can be
obtained in x:

uh(x),xi =
N∑
i=1

φ(x),xiuI , (26)

and is continuous in the whole problem domain.
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3.3. Construction of Galerkin Weak Form. In Galerkin weak
form differential equations are transformed into integral
form by using the weighted residual strategies so that they are
satisfied over a domain in an integral sense rather than every
point. Consider the integral form of (3), which also can be
easily applied to bidomain (1), we have

∫
Ω

[
∇ · (D∇vm)− Am

(
Cm

∂vm
∂t

+ Iion

)]
νdΩ = 0, (27)

where ν is the trial function. The exact solution of (3) should
always satisfy integral in (27). Substituting f = −AmIion and
evaluating integral in (27) using Green’s formulae

∫
Ω
AmCm

∂vm
∂t

νdΩ +
∫
Ω
∇vm ·D∇νdΩ−D

∮
S
ν
∂vm
∂n

dS

=
∫
Ω
f νdΩ,

(28)

where S is the boundary of Ω and n is a vector normal
to boundary. Equation (28) can automatically fulfill zero
natural boundary condition, ∂vm/∂n = 0, by eliminating
D
∮
Sν(∂vm/∂n)dS at boundary S, but an accurate numerical

integral scheme should be applied to the rest parts of (28) so
that zero natural boundary condition can be enforced cor-
rectly in numerical sense. In Galerkin weak form procedure,
trial function could be replaced by the shape function, ΦT , of
EFGM here:
∫
Ω
AmCm

∂vm
∂t

ΦTdΩ +
∫
Ω
∇vmD∇ΦTdΩ =

∫
Ω
fΦTdΩ.

(29)

To solve (29) we need to discrete them. Let vI be the
vector of nodal values of transmembrane potentials vm, and
let fI be the vector of nodal values of f = −AmIion at node set
xI . Then vm ≈ ΦvI and f ≈ ΦfI and a continuous form of
(29) can be discretized:

AmCm
∂vI
∂t

∫
Ω
ΦΦTdΩ + DvI

∫
Ω
∇Φ∇ΦTdΩ

= fI

∫
Ω
ΦΦTdΩ.

(30)

Rewrite equations previously mentioned with matrices:

AmCm
∂vI
∂t

+ M−1KvI = fI ,

Mi, j =
∫
Ω
φT
i φjdΩ, Ki, j =

∫
Ω

BT
i DB jdΩ

Bi =
⎡
⎢⎣
φi,x
φi,y
φi,z

⎤
⎥⎦,

(31)

with D the diffusion tensor transformed from fiber coor-
dinate (5), φi,x, φi,y , and φi,z the derivatives of the shape
function with respect to x, y, and z, φi the matrix of shape
functions, and Bi the differential matrix at the ith node.

3.4. Integration Schemes. The shape function of EFGM
does not fulfill the property of strict interpolation, that is,
φi(xj) /= δi j , which implies that essential boundary condition
cannot be imposed directly, so penalty method and Lagrange
multiplier are proposed to enforce essential boundary con-
dition in EFGM [32, 33]. However, zero natural boundary
condition can be enforced in Galerkin weak form (Equation
(28)) by placing sufficient nodes along the boundaries and
then applying a correct integration scheme.

In EFGM, a regular background mesh, which consists of
nonoverlapping regular cells and covers the whole problem
domain, is a very popular choice to perform the integration
of computing M and K matrix in (29) because of its sim-
plicity. The regular cells of background mesh are commonly
squares in two dimension, and cubes in three dimensions.
The proper density of background mesh needs to be designed
to approximate solutions of desired accuracy. In each cell,
Gauss quadrature scheme is used. The number of quadrature
points, integration points, seems to depend on the number of
nodes in the cell. An empirical guideline of quadrature points
suggests [25]

nq = √nn + 2 in 2D, nq = 3
√
nn + 1 in 3D, (32)

where nn is the number of nodes in the cell and nq is the
number of quadrature points in one cell. Our experience
with Gauss quadrature in EFGM suggests that a lower order
quadrature (smaller nq) with finer background mesh may
be preferable to a higher order quadrature (larger nq) with
coarser background mesh. The background cells are usually
independent of the arrangement of sample nodes and large
enough to hold the whole problem domain, but in regular
domain with regular nodes, it can be coincided with problem
domain and depend on nodal positions. In the background
mesh, there may exist the cell that does not entirely belong
to the problem domain; that is, only a portion of this cell
would contribute to (29). This contribution could be realized
by counting the quadrature weights of those quadrature
points in this cell, which are inside problem domain, and
ignoring other quadrature points of this cell, which are
outside problem domain (Figure 3). Therefore, a scheme
that automatically detects the quadrature points of each
cell which lie inside of the problem domain is employed.
Hence the integral of (29) over irregular problem domain
is solved numerically in those quadrature points inside
problem domain. In [26], an irregular background mesh is
proposed to achieve higher accuracy, but the improvement
is not obvious and it may increase the time of assembling
system matrices. Finally we can give out the flow of EFGM:

(1) set up sample nodes,

(2) set up background mesh and quadrature points in all
cells,

(3) loop over all the quadrature points,

(a) if this quadrature point is outside the problem
domain, go to 3e,

(b) determine nodes whose influence domains
cover this quadrature point by searching
enough neighboring nodes,
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Figure 3: Dashed square cells consist of a background mesh, which
covers the whole problem domain—the area confined by solid lines.
In each cell, Gauss quadrature will be applied. Here only two cells
are marked to illustrate this process. Those Gauss points, indicated
by × marker, which are inside problem domain will be counted
during integration, but the other Gauss points, indicated by +
marker, which are out of problem domain, will not be counted.

(c) calculate quadrature weight, weight function
and shape function in this quadrature point,

(d) assemble M and K matrices in (29),

(e) end if,

(4) End loop.

4. Experiment

Numerical experiments are implemented by Matlab, and the
simulation of electrical propagation in Auckland heart model
is implemented by C++ and Matlab external C++ math
library in a Dell precision T3400 workstation with a quad
cores 2.4 GHz CPU and 4G DDR2 memory. Let Πexact

i be
the analytical solution and let Πnumerical

i be the numerical
solution in node i, respectively. To a set of nodes, from 1 to
N , root mean square (RMS) error is.

RMS =

√√√√√ 1
N

N∑
i=1

(
Πexact

i −Πnumerical
i

)2
. (33)

The behaviour of reaction-diffusion equation is controlled
by the diffusion term and reaction term simultaneously.
The reaction term could have huge varieties in electrical
propagation applications [3, 4], and it is impossible to
evaluate EFGM’s performance over all the forms of reaction
term in this paper; however it would be valuable to compare
EFGM to FEM in approximating diffusion process. So a two-
dimensional heat conduction problem without reaction term
is first tested by FEM and EFGM:

∂2C

∂x2
+
∂2C

∂y2
= 1

σ

∂C

∂t
, (34)

where C temperature, σ diffusion tensor, and t time. The
analytic solution of (34) in infinite media is [34]

Ct = C0

4πσt
exp

(
− x2

4σt

)
, (35)

where C0 is initial source in x = 0 at t = 0. The numerical
simulations are initialized by the analytic solution at t =
1, which can be calculated from (35) with C0 = 1, and
then numerical solutions are obtained in t = 2 in 20 × 20
area in order to approximate the effect of infinite media
through a small time duration and a large enough area.
Though EFGM does not always require regular nodes, it is
convenient to determine the convergence rate by reducing
spacing between regular nodes. The convergence behaviour
of EFGM using different dmax and weight functions is also
evaluated. Euler forward method is applied from t = 1
to t = 2 for time integration. To find a stable RMS error
in each spatial discretization, more than 105 time steps of
Euler method are used in our implementation. Because of
regular problem domain, 20 × 20 area, the nodes of EFGM
are chosen from grid points from 20 × 20 grids to 80 × 80
grids; that is, the spacing h is from 1 to 0.25. These grids
are also used as background mesh for EFGM, respectively;
for example, for 20 × 20 grids, there are 21 × 21 nodes for
EFGM and 20 × 20 cells in the background mesh, and for
80× 80 grids, there are 81× 81 nodes for EFGM and 80× 80
cells in the background mesh. In all the cells of background
mesh, 4 × 4 Gaussian quadrature scheme is applied. The
same background meshes are used as meshes of linear FEM,
and the convergence curve of linear FEM is obtained using
the same Gaussian quadrature scheme for fair comparison.
The convergence curves of EFGM are displayed in Figure 4
along with the convergence curve of linear FEM. When
dmax = 1.1, both curves of cubic weight function and quartic
weight function in EFGM show almost identical convergence
behaviour as linear FEM. Without changing linear basis and
nodal positions in EFGM, the convergence rates of EFGM
become better in both weight functions when dmax increases
from 1.1 to 3.0, and these curves are far below the curve of
linear FEM. However, the convergence behaviours of EFGM
do not become better when dmax has even bigger value. When
dmax = 4.0, the slopes of convergence curves (Figure 4)
are larger, but RMS errors increase sharply in coarse nodes.
A great value of dmax, that is, oversized influence domain,
will produce oversmoothing effect as one huge element or
too coarse mesh in FEM, which is the reason that RMS
errors of EFGM increase largely in coarse nodes with too
bigger value of dmax. Hence the suggested range of dmax is
between 1 and 3 [24, 25]. As shown by all the convergence
curves in Figure 4, EFGM shows much better behaviour than
linear FEM. Higher-order Gaussian quadrature scheme of
each cell of background mesh will help EFGM gain better
accuracy, but lower-order Gaussian quadrature scheme in
the cells of finer background meshes also works quite well.
Another experiment, with 2×2 Gaussian quadrature scheme
in each cell of background mesh and total number of cells
being 4 times as large as before, is compared to previous
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Figure 4: All the experiments, including FEM, use linear polynomial basis, and their convergence rates are indicated by slope. All the nodes
are regularly placed and so h is the spacing between nodes. 4 × 4 Gaussian quadrature scheme in each cell of background mesh is used for
numerical integration.

results in Figure 4. The convergence behaviours of lower-
order Gaussian quadrature scheme in finer mesh (indicated
by 2 × 2 in one cell in Figure 5) are better than higher-order
Gaussian quadrature scheme in coarse mesh (indicated by
4× 4 in one cell in Figure 5).

An analytic result of reaction-diffusion system of cardiac
electrical activity seldom exists that allows the performance
of numerical methods to be verified. However, an analytic
solution of conduction velocity in a one-dimensional fiber
is available when a cubic polynomial ionic current model
is used as a reaction term of the monodomain model [35].
The conduction velocity is determined by each location’s
activation time, which is defined by the time at which
the maximum upstroke velocity occurs [3]. The cubic
polynomial ionic current model is given by

Iion = g

[
vm

(
1− vm

vth

)(
1− vm

vp

)]
, (36)

and the analytic conduction velocity γ is given by

γ =
√√√√ gσ

AmC2
m

(
S2

S + 1

)
,

S = vp
2vth

− 1,

(37)

where g is the membrane conductance. vth and vp represent
the threshold potential and the plateau potential, respec-
tively. All the potential variables in cubic polynomial ionic
current model are expressed as deviations from the resting
potential. The parameters used in cubic current model are

listed in Table 1. Again, the same setting of nodes is used in
FDM, linear FEM, and EFGM (cubic weight function and
quartic weight function), and time integration is solved by
Euler forward method again. After activation times of all
nodes are available, RMS error of conduction velocity can
be calculated. In Figure 6, the relation between RMS errors
of different numerical methods and spatial discretization is
displayed. The convergence behaviours of EFGM are still
better than conventional methods, FDM and FEM, after a
cubic polynomial reaction term is included. In Table 2, that
the computational costs to reach a similar level of error for
conduction velocities of different σ values are shown. From
Table 2, it can be seen that EFGM could achieve similar level
of error using considerably less time. The computational
costs presented in Table 2 have been split into “assemble” (the
time taken to assemble the global system of equations) and
“propagation” (the time taken to solve the global system of
equations) times.

To explore the further ability of EFGM in simulation
of cardiac electrical activity, one published monodomain
model, a modified FHN model [7], is solved by EFGM. This
FHN model [7] is

∂vm
∂t

= f (vm, Iion) +∇ · (D∇vm),

∂Iion

∂t
= b(vm − dIion),

f (vm, Iion) = c1vm(vm − a)(1− vm)− c2vmIion,

(38)

with natural boundary condition (D∇vm) · n = 0. Values of
parameters are taken from [7], which are listed in Table 3.
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Figure 5: Convergence behaviours of EFGM using different background mesh. h is the spacing between nodes. RMS is the error measure.
It shows that 2 × 2 Gaussian quadrature scheme in each cell of fine background mesh works a little better than 4 × 4 Gaussian quadrature
scheme in each cell of coarse background mesh.
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Figure 6: Results of conduction velocity using FDM, FEM, and EFGM. h is the spacing between nodes and RMS is the error measure. It
shows that EFGM still has better convergence rate after the reaction term is included than FEM and FDM. 2×2 Gaussian quadrature scheme
in each cell of one finer background mesh is applied.

Table 1: Parameters of cubic current model.

Parameter vrest vth vp g Cm Am

Value −85.0mV −75.0mV 15.0mV 0.004mSmm−2 0.01μF mm−2 200μF mm−1
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Table 2: Comparison of computational costs.

RMS h (mm) Assemble (sec) Propagation (sec)

σ = 0.5

FDM 3.30e − 04 0.05 n/a 258.31

FEM 2.31e − 04 0.05 0.20 248.26

EFGM(cubic,dmax = 1.5) 4.56e − 04 0.2 0.11 39.50

EFGM(cubic,dmax = 2.0) 2.60e − 04 0.8 0.05 41.33

EFGM(quartic,dmax = 1.5) 3.40e − 04 0.2 0.07 38.83

EFGM(quartic,dmax = 2.0) 1.49e − 04 0.8 0.04 40.60

σ = 0.25

FDM 6.06e − 04 0.05 n/a 580.11

FEM 4.60e − 04 0.05 0.21 591.42

EFGM(cubic,dmax = 1.5) 8.12e − 04 0.2 0.10 48.23

EFGM(cubic,dmax = 2.0) 5.80e − 04 0.8 0.04 50.90

EFGM(quartic,dmax = 1.5) 5.20e − 04 0.2 0.08 47.81

EFGM(quartic,dmax = 2.0) 3.00e − 04 0.8 0.02 50.90
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Figure 7: The convergence of the velocity of propagation wave with increasing density of regular sample nodes. (a) 2 × 2 × 2 quadrature
points in each background cell; (b) 3 × 3 × 3 quadrature points in each background cell.

(a) (b) (c) (d) (e) (f)

Figure 8: (a) 3 × 3 × 3 grid points (solid) and 23 quadrature points (stars) in each background cell; (b) 3 × 3 × 3 grid points (solid) and 33

quadrature points (stars) in each background cell; (c) meshfree representation of cube with irregular sample nodes (1106 nodes); (d) all the
fiber directions are (0.57735, 0.57735, −0.57735); (e) all the fiber directions are (0.57735, −0.57735, 0.57735); (f) half is (0.57735, 0.57735,
−0.57735) and half is (0.57735, 0.57735, −0.57735). Red points in the front side are stimulated at the beginning.
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(a) 47 ms

(b) 95 ms

(c) 176 ms

(d) 236 ms

Figure 9: Propagation wave at 47 ms, 95 ms, 176 ms, and 236 ms with regular sample nodes (10 × 10 × 10 nodes). Fiber orientation from
column 1 to column 5: (0.57735, 0.57735,−0.57735); (0.57735,−0.57735, 0.57735); half is (0.57735, 0.57735,−0.57735) and half is (0.57735,
0.57735, −0.57735); isotropic; isotropic. Except 33 quadrature points in each background cell are applied in column 5, 23 quadrature points
in each background cell are applied in other columns. In each column total 103 background cells are used for integration of Galerkin weak
form. Diffuse parameter: column 1, 2, and 3 : d f = 4, dcf = 1, column 4 and 5: d f = dcf = 1. Red color represents active state and blue color
represents quiescent state.

State variable vm is the excitation variable which corresponds
to the transmembrane voltage, Iion is the recovery current
variable, n is the normal of the boundary, f (vm, Iion) is the
excitation term, a, b, c1, c2, and d are parameters that define
the shape of action potential. These parameters are constant
over time but not necessary in space. The changes of state
variables are determined by the excitation term f (vm, Iion)
and diffusion term∇ · (D∇vm), and D is defined in (5).

In order to find out a proper density of sample nodes
in EFGM for a stable propagation wave of the FHN model
in heart, two series of isotropic plane waves of electrical
propagation with increasing regular sample nodes in a cube,
whose size is 60 mm × 60 mm × 60 mm, are solved by
setting an initial potential, 0.5, to one side of cube, and
then the conduction velocity is calculated by activation
time. A fourth-order Runge-Kutta method, which can select
time step automatically, is applied for time integration. Two
series of the isotropic electrical propagation with regular
sample nodes, which change from 3 × 3 × 3 grid nodes to
16 × 16 × 16 grid nodes, and correspondingly the regular
background mesh, whose background cells change from
2 × 2 × 2 to 15 × 15 × 15, are simulated, but one uses 23

quadrature points in each background cell and the other uses
33 quadrature points in each background cell. Convergence

curves of conduction velocity are plotted in Figure 7, and a
stable speed of propagation wave is achieved in both curves
after sample nodes are equal to or greater than 10× 10× 10.

In Figure 9 propagations with different fiber orientations
using 10 × 10 × 10 regular sample nodes are displayed in
different time instants. A fourth-order Runge-Kutta method,
which can select time step automatically, is still used for
time integration. The fiber orientations from column 1 to
column 3 are illustrated from Figure 8(d) to Figure 8(f). In
these first three columns d f is set to 1, and dcf is set to 4. In
column 4 and column 5 isotropic propagations, but different
quadrature points, are displayed. In Figure 10 propagations
with 1106 irregular sample nodes are displayed in different
time instants. In Figure 8(c) the positions of these irregular
sample nodes are shown. In Figure 10 fiber orientations in
the first three columns are the same as the fiber orientations
in the first three columns in Figure 9 accordingly. Two
isotropic propagations with different quadrature points are
also tested in irregular sample nodes, which are displayed
in column 4 and column 5 of Figure 10. From Figures 9
and 10, almost identical propagations can be seen between
corresponding two columns, which demonstrate that the
performance of EFGM in solving FHN model will not be
damaged by using irregular nodes.



12 Computational and Mathematical Methods in Medicine

(a) 47 ms

(b) 95 ms

(c) 176 ms

(d) 236 ms

Figure 10: Propagation wave at 47 ms, 95 ms, 176 ms, and 236 ms with irregular sample nodes (1106 nodes). Fiber orientation from column 1
to column 5: (0.57735, 0.57735,−0.57735); (0.57735,−0.57735, 0.57735); half is (0.57735, 0.57735,−0.57735) and half is (0.57735, 0.57735,
−0.57735); isotropic; isotropic. Except 33 quadrature points in each background cell are applied in column 5, 23 quadrature points in each
background cell are applied in other columns. In each column total 103 background cells are used for integration of Galerkin weak form.
Diffuse parameter: column 1, 2 and 3: d f = 4, dcf =1, column 4 and 5: d f = dcf = 1. Red color represents active state and blue color represents
quiescent state.

Table 3: Parameters of FHN model.

Parameter a b c1 c2 d σ f σcf

Value 0.13 0.013 0.26 0.1 1.0 4.0 1.0

Finally we select 3164 sample nodes from Auckland heart
model and use 33 quadrature points in each background
cell as suggested by the experiment mentioned previously
(Figure 7). In Auckland heart model, σ f is set to 4 and
σc f is set to 1 as we did in the cube. Purkinje network is
manually chosen on endocardium because of unavailable
Purkinje network locations. From Figure 11 ((with permis-
sion): http://www.bem.fi/book/) which is generated from
Durrer’s [36] measurements from isolated human hearts,
it can be seen that propagation of electrical activity starts
from several locations on the endocardium, that is, Purkinje
network extremities. Hence, a small set of nodes (around 6
nodes) around corresponding locations on the endocardium
of Auckland heart model are initialized with a starting
potential, 0.5 in our simulation, and the result solved by
EFGM is displayed in Figure 11 in different time instants.
It is reported that isolation of the heart would lead to an
increase in conduction velocity [36]. Actually durations of
QRS waveforms in healthy individuals vary from 80 ms to

100 ms since durations of QRS waveforms are determined
by depolarization processes in the healthy hearts. That is the
reason that the duration of propagation in Durrer’s data is
shorter than the duration of propagation in our simulation.
The activation process in our simulation is qualitatively close
to the published measurements as we can see in Figure 11.
Once cycle of simulate of electrical propagation in Auckland
heart model includes generating sample nodes, assembling
of matrices and time integration. The time integration is
done by the Runge-Kutta method using automatic time step.
It takes 21 minutes to simulate the whole cycle of electrical
propagation in Auckland hear model.

In the end, we also simulate the propagation in the
human left ventricle extracted from digitized virtual Chinese
dataset [37]. In this simulation, we only demonstrate the
ability of EFMG in simulating in different cardiac geometry
because of the lack of ground truth. The results are displayed
in Figure 12.
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Figure 11: Comparison between Durrer’s measurements and our simulation results. (a) 5 ms (left) and 10 ms (right), (b) 15 ms (left) and
30 ms (right), (c) 25 ms (left) and 40 ms (right), (d) 50 ms (left) and 70 ms (right), (e) 65 ms (left) and 90 ms (right).
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Figure 12: Simulation of electrical propagation in a human left ventricle (a) and its color map (b).

5. Discussion

In this paper, a numerical method without mesh constraint,
EFGM, is adopted to solve reaction-diffusion equation
for simulating cardiac electrical activity. This work was
motivated by the successes of EFGM in mechanical mod-
ellings [24], but in our implementation, more aspects of
EFGM, including the effects of influence domain (dmax),
weight function, and integration scheme, in solving reaction-
diffusion equations are evaluated.

One of main attractions of EFGM is the meshfree
particle presentation, which provides not only a convenient
representation, particles without predefined connectivity,
of cardiac geometry and fiber orientation, but also high
interpolation accuracy for dynamical process. Our tests show
that convergence behaviour of EFGM will be mainly affected
by the size of influence domain. In a certain range, that
is, from 1 to 3 for dmax, the slope of convergence curve
will increase along with the value of dmax. However, too
small size of influence domain will cause singularity in
system matrices, and too large size of influence domain will
also introduce large error in coarse nodes and increase the
assembling cost hugely in dense nodes. We also found that
EFGM performance could be minimally affected by nodal
positions in simulation of propagation if the nodal density
does not change largely. Different weight functions also
affect the accuracy of EFGM, but the performance of cubic
weight function and quadratic weight function is closed,
which could be selected upon user’s opinion. The numerical
integration of EFGM is only evaluated on a popular regular
background mesh in this paper though some works proposed
irregular background meshes [24, 26], because the perfor-
mance of EFGM on regular background mesh is already good
enough. Especially in 3D, a lower-order Gaussian quadrature
scheme in one cell of regular and fine background mesh
not only saves time in assembling system matrices but also
achieves rational accuracy in the irregular problem domain.
Hence we would recommend regular background mesh

because of easy implementation and acceptable accuracy.
There has been the discussion about the construction of
FEMs shape function is faster than the construction of EFGM
shape function in the same spatial discretization [24], but
we found that EFGM can reach a certain level of error with
less computational cost than FEMs and FDMs because of
higher order accuracy of EFGM shape function. Moreover,
EFGM does not need to rearrange nodal positions if weight
functions or polynomial bases are changed.

To fully utilize the ability of EFGM is not an easy process
because wrong parameters will affect the performance of
EFGM a lot, especially in 3D simulation. However, the com-
putational cost of EFGM could be appropriately depressed
by proper adjustments. First a finer background mesh with
lower order quadrature, such as 2 × 2 × 2 Gauss points or
even one Gauss point in one background cell, is preferable
to a coarser background mesh with higher order quadrature
because of cheaper computation and acceptable accuracy.
Second the size of influence domain should be selected as
small as possible according to local nodal density, since
the time to compute shape functions and their derivatives
is proportional to the number of sample nodes inside
the influence domain of each Gaussian integration point.
The time to assemble mass matrix and stiff matrix will
also increase and the spareness of those matrix will be
destroyed as result of large size of influence domain. From
the point of view of accuracy, there is a minimum size
of influence domain to compute the shape functions and
their derivatives. In our implementation we choose a big
size of influence domain first and adjust the background
mesh. Then we fix the background mesh and adjust the
size of influence domain. After several rounds of such
adjustment, we can find suitable size of influence domain
and corresponding background mesh to obtain reasonable
accuracy with acceptable computational cost.

EFGM offers great potentials in simulation of cardiac
behaviour, especially electrical activity because of its mesh-
less property. This kind of numerical discretization is defined
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simply by placing unstructured nodes in interested area,
which not only offers great convenience in implementation
of adaptivity but also possibly decreases the complexity to
customize the patient-specific model a lot as reasonable
propagation of electrical activity in Auckland heart model
could be computed in a standard desktop computer. How-
ever, further experiments with more physiological meanings,
such as sustained reentry or sophisticated cellular models,
in EFGM will be demanded in the future. Furthermore, a
heart model with realistic geometry and components, such
as with atria, ventricles, Purkinje systems, and authentic fiber
structure, should be considered for better understanding of
electrical activity of the whole heart.
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