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Serial and parallel convolutional 
neural network schemes for NFDM 
signals
Wen Qi Zhang1*, Terence H. Chan2 & Shahraam Afshar Vahid1

Two conceptual convolutional neural network (CNN) schemes are proposed, developed and analysed 
for directly decoding nonlinear frequency division multiplexing (NFDM) signals with hardware 
implementation taken into consideration. A serial network scheme with a small network size is 
designed for small user applications, and a parallel network scheme with high speed is designed 
for places such as data centres. The work aimed at showing the potential of using CNN for practical 
NFDM-based fibre optic communication. In the numerical demonstrations, the serial network only 
occupies 0.5 MB of memory space while the parallel network occupies 128 MB of memory but allows 
parallel computing. Both network schemes were trained with simulated data and reached more than 
99.9% accuracy.

Nonlinear Fourier Transform (NFT) has been proposed as an alternative technique for fibre optics commu-
nication to break through the Shannon linear capacity limit due to the nonlinearity of optical  fibres1–4. It has 
already been experimentally demonstrated that NFT can outperform conventional linear Fourier transform-
based  systems5–7. However, NFT-based communication methods have not yet reached the maturity level of 
conventional methods. One reason for this is the complexity of NFT calculations, where speed and accuracy 
are the two main bottlenecks for practical  applications8,9. Despite the development of fast NFT  algorithms10–13 
which has improved the speed of NFT calculation, the lack of hardware implementations of NFT due to algorithm 
complexity remains a challenge. Very recently, a conceptual hardware implementation has been proposed on an 
FPGA  platform14. However, due to the complexity of NFT algorithms, implementing and optimizing hardware 
designs require a lot of effort before any products can be built for practical use and with perform better than 
existing conventional devices.

In recent years, machine learning (ML) has demonstrated great success in many areas of science and tech-
nologies. Although the development of ML for optical communication is still in its early stages, ML has shown 
potentials for solving many  challenges15–21, including the field of NFT-based  communication22–29. At the same 
time, due to the popularity of machine learning, hardware implementation of deep neural networks has become 
an active research area with supports from mega-corporations such as Google and  Nvidia30–36. Hence, there 
is an opportunity to take advantage of the rapid development of deep learning hardware and use it for NFT 
applications.

Early work of using ML for NFT-based communication was mainly focused on post-processing, such as con-
stellation  classification25 and  equalisation23,26, instead of replacing the direct NFT calculation. An attempt of using 
a neural network to decode nonlinear QPSK modulation was carried out by Jones et al.22, but the development 
of the network was limited only to second-order soliton pulses. Recently, a convolutional neural network (CNN) 
was proposed to directly decode nonlinear frequency division multiplexing (NFDM) signals with complexity 
(16-QAM with 128 subcarriers) which was comparable to experimental  setups29. However, in this previous work, 
the network was not used efficiently, especially for signals with many subcarriers, since for every subcarrier, a 
separate network was needed. Furthermore, the previous work only demonstrated networks for a fixed signal 
power without considering fibre loss and in the case of lump amplification. While this paper was being reviewed, 
two new articles were  published27,28. Both of them were aimed at obtaining the nonlinear spectrum of a signal. 
In the first  article27, two CNN sub-structures were applied to process the real and imaginary parts of the signal 
in parallel. However, the training data used in this work only has 15 subcarriers and four possible choices for 
each subcarrier. Therefore, the scalability of this proposed network is also unknown. Furthermore, the training 
data does not include variation in signal propagation distance, absorption loss and variation in power, hence 
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the generality is hard to evaluate. In the second  work28, a network architecture similar to the one in the  work29 is 
used for both direct and inverse NFT. However, this article did not give any details on the training data. Hence, 
the generality and scalability of their network cannot be evaluated.

In this paper, we develop two network design ideas with hardware implementation kept in mind; a serial 
scheme aimed at a small network size and a parallel scheme aimed at high speed. In each scheme, a custom 
transformation layer is designed using the properties of NFT that enables the network to work with signals at 
different propagation lengths and power levels. An optical pulse propagation model is used to simulate signal 
propagation in optical fibre including the effects of fibre nonlinearity, chromatic dispersion, absorption loss, 
Raman scattering and lump amplification to closely mimic realistic experimental settings. Using the simulation, 
we generated 128-subcarrier 16-QAM signals with variable propagation length and power level for network 
training and validation.

The paper is divided into six sections apart from the Introduction. In the second section, a quick introduction 
to nonlinear Fourier transform and nonlinear frequency division multiplexing is given. In the next section, the 
basic parameters and descriptions are given on the generation of the training and validation data. The serial and 
parallel network schemes are discussed in the following sections. Finally, a conclusion and a method section 
are given at the end.

Modulation of continuous nonlinear spectrum
Transforming a temporal signal q(t) into the nonlinear Fourier domain is achieved by solving the following 
differential  equation1

with the initial condition:

where vt is the temporal derivative of v and � is the nonlinear frequency. Two time invariant coefficients a(�) and 
b(�) can be found using the following  limits3:

The nonlinear spectrum of signal q(t) is thus defined as

where a′(�) =
∂a(�)

∂�
 . The nonlinear Fourier spectrum is continuous for � ∈ R and discrete when a(�) = 0 for 

� ∈ C
+ . The spectrum in both continuous and discrete region can be used to carry information, but in this work, 

we focus on the continuous part only.
Nonlinear frequency division multiplexing (NFDM) is a multiplexing technique borrowed from orthogonal 

frequency division multiplexing (OFDM) in convectional fibre optic communication, in which the linear spec-
trum of OFDM is replaced by a nonlinear  spectrum3 and becoming popular in recent  years6,37–41. The modu-
lation is usually applied to the continuous part of the nonlinear spectrum Q(�) directly, but modulating b(�) 
(b-modulation) has also been used as it results in pulses with well defined temporal  windows7,42–46.

The modulation can often be expressed as

where n is the number of subcarriers, cn is the complex data symbols, wn(�) is the carrier wave. Conventionally, 
sinc functions are used as wn(�)

37. Other choices of functions such as raised cosine or a flat-top window with 
cardinal sine carrier waveform have also been  proposed43. The function s(�) is the modulated spectrum. It is 
often scaled to match the desired signal power. For Q-modulation case, Q(�) = s(�) . An inverse NFT can be 
performed to obtain the temporal signal q(t)37. In the case of b-modulation, b(�) = s(�) , and an additional step 
is needed to generate a(�) from b(�) before the inverse NFT step can be  taken42.

Inspired by the  work43, we used the following carrier wave functions for this work.
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where T0 denotes the width to the 4th zero of the sinc function [note: here sinc(t) = sin(π t)/(π t) ], τ is a free 
parameter that adjusts the width of the Gaussian, which also related to the sharpness of the flat-top waveform 
in the frequency domain, and β adjusts the separation between subcarriers.

In the nonlinear frequency domain, the corresponding wn(�) can be obtained by replacing the angular fre-
quency in wn(ω) with 2� (or −2� depending on the choice of the sign in the Fourier transform), where wn(ω) is 
the linear Fourier transform of wn(t);

From Eq. (8), one can see the nonlinear frequency separation between subcarriers is 4πβ/T0 , whilst 4π/T0 is 
approximately the bandwidth of each subcarrier. For the rest of the work, τ = 1 and β = 1 are used.

Generation of training data
The preparation of the training data is crucial to the performance of a neural network. Ideally, the training data 
should be generated experimentally such that the network can be tuned to the specific experimental setup. 
However, for demonstration purposes, we generate the training data through numerical simulation while the 
simulation conditions are tuned to match those of the experiments closely. Assuming a signal generator with 
a sampling rate of 96 GS/s with total electronic 3-dB bandwidth of 28 GHz. A time window of 21.33 ns is used 
for each burst of the signal. The laser source has a line-width of 100 Hz at the central wavelength of 1550 nm. 
Standard single-mode fibres are used with the propagation loss of 0.2 dB/km, group velocity dispersion of 
− 21.7 ps2/km ( β3 = 18.6 ps3/km) and nonlinearity of 1.1 W−1 km−1 . A maximum of 10 optical fibre spans with 
50 km per span are used in the simulation with point amplification at the end of each span. For each burst of 
signal, a random number of spans between 1 and 10 is chosen. Lump amplification is applied in the simulation 
and a path-average model is used to counteract the effects of fibre loss and lump  amplification47. A quadrature 
amplitude modulation is used (16-QAM) for encoding subcarriers with direct mapping of numbers 0–15 to the 
symbols. The numbers are then used as labels for the network training algorithm.

We desire to have the network perform equally at different input power levels in the range of −20 to 0 dBm, 
hence we need a way to randomly generate the training data with power evenly distributed within this range 
to avoid bias of the final network towards certain input power. To achieve this, we have developed and used an 
approximated energy calibration model, which is discussed in the next section. The noise background in the 
training data is chosen to be −40 dBm per amplification.

An approximated model for energy calibration. The energy of a burst can be evaluated using its non-
linear spectrum Q(�) as

where A is a real scaling factor through which different burst energy can be set. The energy E does not scale 
linearly with A. Depending on the choice of the carrier wave and the number of subcarriers, the same A results 
in different energy levels. This is particularly difficult for generating training data since a uniform distribution 
of power on the log scale is needed (−20 to 0 dBm in this work). Here we present a fitting model that gives an 
approximated mapping between A and the average burst energy.

Firstly, we discretize the integral in Eq. (9) as

where i changes from 1 to the number of discrete points across the nonlinear spectrum. Rearranged the equa-
tion, we have
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where n is the number of samples in � and � = n�� is the window size in the nonlinear spectrum. Now, we 
define a new parameter A′ such that

And we choose a few points E′ within the energy range [Emin,Emax] to calculate A′ using Eq. (17). Once, we get 
A′ , we replace A in Eq. (9) with A′ and calculate the actual averaged pulse energy Eavg using randomly generated 
Q(�) . Depending on the choice of carrier wave function, QAM format, number of subcarriers, etc., Eavg differs 
from E′ Figure 1 shows an example.

Finally, a least square fit is applied to ln Eavg and ln E′,

where ln Eavg and ln E′ are column vectors, J is an all-ones column vector and pinv is the matrix pseudo-inverse 
function. And finally the calibrated Acal is calculated as

The serial CNN scheme
In the original  work29, to decode each subcarrier, a transformation is needed to be performed on the received 
signal to remove the propagation induced temporal shift and phase change. Then, each subcarrier is decoded 
using its corresponding network. This process is inefficient since the differences between the nonlinear spectra 
of subcarriers are rather small, except for the ones on the edges of the nonlinear spectrum. There are overlaps 
between the networks from previous work and in principle, all of them can be combined into one. Furthermore, 
during our study, we realised that the evolution of the linear spectrum of subcarrier k is mostly affected by its 
neighbouring subcarriers. Therefore, the input to the network can be reduced significantly by applying a gate 
function to the input pulse in the linear frequency domain, hence greatly reduce the parameter space of the 
network.

Figure 2 illustrates the idea. An example pulse in the linear frequency domain is aligned with 128 subcarrier 
waves wn(�) , where the nonlinear frequency is half of the linear frequency ( 2� = ω ). For any arbitrary subcar-
rier (between two black vertical lines), one adjacent subcarrier on each side (between two red lines) is used as 
the input to the network.
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Figure 1.  Power calibration model. Left: linear fitting of the model. Right: 200 randomly generated pulses using 
the energy calibration model.
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With these ideas in mind, we design a serial network scheme that works with all subcarriers. A network is 
trained for only 1 subcarrier (subcarrier n = 0 ). To decode any other subcarriers using this network, a segment of 
the pulse spectrum q(ω) around a subcarrier (between the two red lines) is taken out and shifted using Eq. (19);

where �k is the central nonlinear frequency of subcarrier k, tk = 4�kz . This equation shifts the central frequency 
of subcarrier k to subcarrier 0 and removes the phase change due to propagation from the nonlinear  spectrum29. 
Note that a negative sign is used in the Fourier transforms when getting q̃(ω) from q(t). The shift of Eq. (19) is 
built into the network as a transform layer.

All the subcarrier segments are collected in a queue and feed into the network. Figure 3 illustrates the idea. 
For the first and last subcarrier, zero paddings are applied. The output of the network is also a queue in the same 
order as the input. For each subcarrier input, the network outputs the decoded data corresponding to the map-
ping of the symbol cn . In this work, it is number 0–15.

The schematic of the CNN is shown in Fig. 4. In the figure, only three convolutional layers are shown. How-
ever, depending on the input signal, e.g. the carrier wave function and the width of the spectrum segment, the 
network depth can be adjusted to maximize the network accuracy.

The network used in this work contains 4 convolutional layers. The input to the network is a 32-rows long by 
2-columns wide array with each column corresponding to the real and imaginary parts of the 32 sample points 
of the input segment. Equation (19) is implemented into the network as a transform layer. All the convolutional 
layers have 64 kernels with a size of 3× 3 for the first layers and 3× 1 for the rest of the layers.

The network is trained using the Adam  optimizer48 with L2 regularization. 10,000 simulated pulses were 
generated within which 99% is used for training and 1% is used for validation. Since each pulse is sliced into 128 
segments, the size of validation dataset is 12,800 samples. The decay rate of gradient and squared gradient mov-
ing averages of the Adam optimizer are set to be 0.9 and 0.99, respectively. The L2 regularization factor is set to 
0.00002. Cross-entropy is used in the training algorithm as the loss  function49. As shown in Fig. 5, the network 
converges rather quickly. The accuracy of the network, defined as the percentage of correctly predicted symbols 
in the total number of symbols, reaches 90% in less than a single epoch and reaches over 99% before epoch 5. The 

(19)q̃k(ω, z) = q̃(ω − 2�k , z)e
jtk(ω−�k),

Figure 2.  An example signal is shown in the linear frequency domain compared with subcarriers waves in the 
nonlinear frequency domain (top two figures). Two red vertical lines indicate the gated pulse that is used for 
decoding. The two black vertical lines indicate the subcarrier to be decoded by the network. Bottom two figures 
are the zoomed in view of the top figures, respectively, for clarity.
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Figure 3.  Illustration of the serial network decoding scheme. Segments of the spectrum corresponding to every 
subcarrier are queued up and passed through the network in serial. The spectra between the red solid, blue 
dashed and green dash-dotted lines are the segments of adjacent subcarriers in a queue.

Figure 4.  The conceptual schematic of the serial network. Trans transform layer, Conv convolutional layer, 
ReLU rectified linear unit activation layer, Maxpool max-pooling layer, FC fully connected layer, Softmax 
softmax layer. The number of convolution, activation and pooling layers can be added or removed depending on 
the input signal.

Figure 5.  The accuracy and loss as functions of epochs for the serial network scheme. Learning rate changes 
take place at epoch 11 and 21.
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learning rate for the first 10 epochs is set to 0.002 and then reduced to 0.0002 for the next 10 epochs as the con-
vergence has slowed down significantly at epoch 10. A clear jump in the loss plot reflects the reduction of learning 
rate. The accuracy approaches 99.9% after the reduction. The learning rate was further reduced to 0.00002 for 
the third 10-epoch period but no further accuracy improvement was observed. From the loss value, we notice 
the step-wise drops at epoch 10 and 20 are corresponding to the change of learning rate. The loss and accuracy 
saturate after 21 epochs while the training loss is slightly lower than validation loss which indicates the network 
may have reached its capability limit for further improvements with the available training data. As an indication, 
we show the signal features that have been learnt by each convolutional layer in the Supplementary Material.

Looking at the network’s prediction accuracy for different pulse power and individual subcarriers as shown in 
Fig. 6, we notice that the accuracy remains relatively constant for all ranges of pulse power. This can be the result 
of the fact that the range of power are covered by the training data so that the network is tuned to balance the loss 
values for different powers. For individual subcarriers, the accuracy is lower on the two edges of the spectrum 
(subcarrier 2–5 and 117–128), where in the middle, the accuracy is the same and at a high level. Interestingly, 
subcarrier 1 is on the very edge of the spectrum but still has high accuracy which indicates slight bias in the 
network toward the first subcarrier. The cause of this phenomenon needs further investigation.

This network scheme optimizes the size of the parameter space. It allows hardware implementation of the 
network on relatively small chips (the example network only occupies 0.5 MB of memory). Although every 
subcarrier has to be decoded sequentially, a pipe-lined hardware design is suitable for this network to minimize 
the speed penalty.

The parallel CNN scheme
The serial scheme is aimed at small network size, which allows the use of cheap hardware for network imple-
mentation with a small speed penalty making it suitable for small end users. But for big end-users, such as data 
centres, high performance is the major concern instead of hardware costs. Hence, here we purpose a parallel 
network scheme where all subcarriers can be decoded at once.

In the serial scheme, every subcarrier is taken out of the linear spectrum of the signal with its neighbouring 
subcarriers before being sent into the network. To decode all subcarriers, the spectral data of each subcarrier is 
used multiple times in the subsequent decoding process, which can be saved if all the subcarriers can be decoded 
simultaneously. However, the transformation Eq. (19) is necessary to compensate for the phase change due to 
propagation. In this section, a new transformation is introduced that allows the design of a multi-output network 
for simultaneous decoding of all subcarriers.

From Eq. (19) one can see the propagation phase compensation is done through the exponential term. The 
shift of q̃ in ω is used to align all the subcarriers. If all the subcarriers are going to be decoded at once, the fre-
quency shift is not necessary. Furthermore, 2�k is the central frequency of subcarrier k. To decode all subcarriers 
at once, one needs to compensate for the phase change for all frequencies. Therefore, we rewrite transformation 
in the following way. Firstly, we remove the frequency shift

Figure 6.  The accuracy for different pulse power and individual subcarrier.
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Next, we replace �k with � to compensate for the phase change for all frequencies.

where 2� = −ω (the negative sign depends on the sign in the linear Fourier transform) and q̃c is q̃ after compen-
sation. In principle we can apply the continuous frequency compensation to the serial scheme as well, however, 
the exponential calculation is computationally expensive and is not necessary for the serial case.

Now, the propagation phase is removed from the pulse, we come up with the following network scheme for 
multi-subcarrier simultaneous decoding. Figure 7 shows the design concept of the network. In comparison to the 
serial scheme, multiple fully connected layers are added in parallel to the last activation layer (ReLU) followed 
by softmax layers. A custom training process is used for this new scheme. The cross-entropy function is applied 
to all “softmax” outputs and the averaged cross-entropy is used as the loss value for calculating gradients for the 
next iteration. In the figure, only three convolutional layers are shown, but as the number of subcarriers increases, 
additional convolutional layers can be added if necessary as well as increase the number of filters in each layer.

The training of the parallel network requires more train data than the serial scheme. For the example shown 
here, a total of 200,000 sample pulses were generated, 90% of which was used for training and 10% for validation. 
The convergence of the network is similar to the serial scheme. The training and validation accuracy and loss 
can be found in Fig. 8. The accuracy reaches 95% within the first epoch and reaches 99% before epoch 5. The 
initial learning rate for the first 10 epochs is 0.002. With this learning rate, we notice big accuracy fluctuations 
toward later epochs. The fluctuation is reduced immediately after reducing the learning rate to 0.0002 and the 
accuracy reaches 99.9% within the following epoch. A small gap between training and validation is observed. 
Further reducing the learning rate to 0.00002 results in a further reduction in training loss but the validation 
loss remains the same, a slight indication of over-fitting. We speculate a larger training data can help overcome 
the over-fitting and further improve the accuracy and loss of the network.

The accuracy for different power ranges and individual subcarriers are shown in Fig. 9. The behaviours are 
rather similar to the serial network. The accuracy for different power ranges are rather close while the accuracy 
for the subcarriers on the edges of the spectrum is slightly lower than the majority.

The trained network of the parallel scheme occupies 128 MB of memory while the serial network occupies 
merely 0.5 MB. It is possible to improve the performance of the network by considering adding more hidden 
layers to the network or increasing the layer size. At the same time, it is also worth considering new network 
design concepts such as  ResNet50,  InceptionNet51 and  SENet52 to get better overall performance with smaller 
network sizes. As the complexity of the network increases, one may also look into more advanced training 
methods, such as activated gradients  method53, to improve the training performance for the network. In the 
networks presented here, all the convolutional layers contain 844N operations in total including 468N multi-
plications and 376N additions, where N is the input size. The operations in ReLU activation and max-pooling 
layers are negligible (about 2N operations). A fully connected layer has 32N operations with 16N multiplications 
and 16N additions. In the serial network, N = 64, but the computation is repeated M times in sequence with a 
total of 878× N ×M operations. In the parallel network, N = 4096 and only one-pass computation is required. 
There are M fully connected layers in the multi-output stage resulting in a total of (846+ 32×M)× N opera-
tions, which is about 2.8 times more operations than the serial scheme but the computation can be performed 
in parallel to save overall execution time.

(20)q̃ck(ω, z) = q̃k(ω + 2�k , z)

(21)= q̃(ω + 2�k − 2�k , z)e
jtk(ω+2�k−�k)

(22)= q̃(ω, z)ejtk(ω+�k).

(23)q̃c(ω, z) = q̃(ω, z)ej4�z(ω+�)

(24)= q̃(ω, z)e−j2ωz(ω−0.5ω)

(25)= q̃(ω, z)e−jω2z ,

Figure 7.  The conceptual schematic of the parallel network.
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Conclusion
In this paper, we proposed two conceptual CNN schemes for decoding NFDM signals. A serial scheme that 
scarifies speed for small network size and a parallel scheme optimizes speed over size. The serial scheme only 
occupies 0.5 MB of memory space suitable for implementation on small computer chips for small users while 
the parallel scheme occupies 128 MB of memory which requires more expansive hardware for usages in places 

Figure 8.  The accuracy and loss as functions of epochs for the parallel network scheme. An initial learning rate 
of 0.002 is used for epochs from 1 to 10 and increased to 0.0002 for epoch 11 and 0.00002 for epoch 12.

Figure 9.  The accuracy for different pulse power and individual subcarrier.
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such as data centres. Both network schemes have been demonstrated by training with simulated data and been 
able to reach more than 99.9% accuracy.

This work only demonstrates conceptual designs based on simulation of pulse propagation in optical fibres. 
To implement the proposed CNN scheme for practical experimentation, additional adjustments and modifica-
tions may be required. In practice, for instance, an unknown initial phase may present in the signal, which can 
slowly drift over time. This initial phase can be seen as a rotation of the constellation of symbol cn . In this work, 
the simulated training data have zero initial phases. However, this phase information is contained inside each 
signal burst and thus can potentially be identified using a CNN as well. For future work, network design shall 
take the initial phase into account either through a separate network or adding layers to the current designs to 
make the network more suitable for practical use. Demonstrations of the proposed schemes using experimentally 
collected data will also be considered in the next stage of development.

Methods
The CNN models in this work are developed using Matlab’s Deep Learning Toolbox (version R2020a), but the 
same results can be reproduced using other deep learning frameworks such as TensorFlow and PyTorch. In each 
network, the input layer is a N-row long by 2-column wide array, where each column corresponds to the real and 
imaginary parts of the signal. Number N is the number of sampling points across a subcarrier segment of pulse 
spectrum in the serial scheme or the full spectrum of the pulse in the parallel scheme. The first convolution layer 
has a kernel size of 3 × 3, a stride step size of 1, a padding size of 1 and no dilation. The rest of the convolution 
layers are the same except a kernel size is reduced to 3 × 1. The first max-pooling layer has a pool size of 2 × 2, a 
stride step size of 2 and no padding. For the rest of the max-pooling layers, the pool size is reduced to 2 × 1. Each 
fully connected layer has an output size of 16 corresponding to the 16-QAM used in this work, which is mapped 
to values from 0 to 15 directly and used as labels for each input. Adam optimizer was used for training the net-
work. The decay rate of gradient and squared gradient moving averages are set to be 0.9 and 0.99, respectively. 
L2 regularization is applied with a factor of 0.00002. The initial learning rate is set to 0.002 and then reduced 
manually each time by a factor of 10 during the training process. More details can be found in corresponding 
sections where the network training results are discussed.

The key information of training data generation is given in the data generation section, in which, the pulse 
propagation over a standard single-mode optical fibre is simulated by solving the following general nonlinear 
Schrödinger equation using a split-step Fourier  method54,

in which R(t) = (1− fR)δ(t)+ fRhR(t) , hR(t) =
τ 21 + τ 22

τ1τ
2
2

exp(−
t

τ2
) sin(

t

τ1
) , fR = 0.18 , τ0 = 0.82 fs, τ1 = 12.2 

fs, τ2 = 32 fs. The fibre loss coefficient α = 0.0461 km−1 , dispersion β2 = −21.7 ps2/km, β3 = 18.6 ps3/km and 
nonlinearity γ = 1.1 W−1 km−1 . In the split-step method, 2048 sampling points are used in the time window 
with a sampling rate of 96 GS/s. The propagation step size is set to 10 m per step. After each span of propagation, 
the pulses are amplified to compensate the loss during the propagation through a scaling factor exp( α2 L) , where 
L = 50 km is the span length. A white Gaussian noise of − 40 dBm is added every time the signal is amplified.
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