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INTRODUCTION

One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These
features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For
this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes
underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional
neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to
external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity
to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture,
which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configura-
tions can be tested. This hybrid system can be used for studying the computational properties and information coding in biological
neuronal networks with far-reaching implications for the future development of advanced neuroprostheses.

Copyright © 2007 A. Novellino et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the last few years, interaction has been studied at

Electrophysiological techniques, both in vivo and in vitro, are
traditionally used to study spontaneous neural activity and
its modifications in response to different kinds of external
stimuli (e.g., chemical, electrical, electromagnetic). One of
the main limitations of these studies is the total absence of a
sensory and motor “context.” This condition is particularly
unnatural: complex mechanisms, like learning, are the result
of a continuous interaction between the nervous system and
the environment, mediated by the body. For this reason, dur-
ing the last years, the growing interest in neuroscience for
closed-loop experiments (cf. Society for Neuroscience Meet-
ing 2004, San Diego (Calif, USA); http://apu.sfn.org) has led
to the development of several innovative bidirectional plat-
forms, under the hypothesis that the dynamical and adaptive
properties of neural systems may be better understood in the
context of the interaction between the brain and the external
environment.

different levels of investigation: at the molecular level, by
synthesizing the behavior of artificial ion channels—the
dynamic-clamp technique (Sharp et al. [2]); at the single
neuron level, by interfacing artificial and actual neurons (Le
Masson et al. [3]); at the population level, by controlling
the dynamic regime of neuronal populations (Wagenaar et
al. [4]) and its adaptive properties (Shahaf and Marom [5];
Marom and Eytan [6]); and, finally, at the whole system level,
by means of experiments in which portions of the ex vivo/in
vivo brain of an animal are connected to artificial/virtual
robots to form bioartificial/hybrid systems (Reger et al. [7];
Wessberg et al. [8]; Nicolelis [9]; Schwartz et al. [10]; Karniel
etal. [11]).

An alternative and simplified paradigm to study the in-
teraction between the brain and the external world is the
“embodied electrophysiology,” where dissociated neuronal
networks are bidirectionally coupled to artificial systems
(DeMarse et al. [12]; Bakkum et al. [13]; Martinoia et al.
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[14]), which provide a physical body to the in vitro brain and
allow it to interact with the environment (Potter [15]). This
paradigm can be used to investigate the mechanisms that the
nervous system uses to represent, store, and process sensory-
motor information, understanding how living neurons lead
to higher-level cognition and “intelligent behavior” (Bakkum
etal. [13]).

The development of in vitro bidirectional neural inter-
face offers the unique opportunity to explore the adaptive
properties of a model of the neural system and it can be of
valuable help for the future developments of in vivo neural
interfaces (Mussa-Ivaldi and Miller [16]; Nicolelis [17]). Ide-
ally, in vivo brain-machine interfaces should enable two-way
communication, that is, both stimulation and recording at
the same time. Two-way interaction would be particularly
crucial in advanced neuroprostheses. Sensory systems can-
not be fully restored by simply mapping input into the brain;
instead, neuroprosthetic devices should be fused with the re-
ciprocating neural interactivity that is responsible for ongo-
ing conscious awareness.

The aim of this paper is to describe the architecture and
the high potential of the developed neurorobotic system,
that is, a neuronal network connected to a mobile robot.
In the “methods” section, we discuss the issues underly-
ing design and computational choices. The computational
requirements for the closed-loop system are very demand-
ing, mainly due to the necessity to simultaneously process
high-frequency multichannel data, in real time. On the other
hand, the novelty of this approach involves the necessity to
explore different computational schemes (e.g., to change the
coding/decoding strategy, the number of input/output elec-
trodes, and the value of the parameters). In the “results”
section, we describe the computational performances of the
developed system and the strategies for selecting the input
and output sites, an essential step when dealing with neu-
ronal model with a no predefined architecture, such as dis-
sociated cultures (see Figures 1(a), 1(b)). Finally, the prelim-
inary experiments involving a network of cortical neurons
and a robotic body are presented and the main improve-
ments with respect to our previous results (Cozzi et al. [18])
are underlined, both in terms of computational architecture
and experimental protocol. The use of a simple reactive be-
havior (i.e., obstacle avoidance) demonstrates the feasibility
of the approach and the potential of this novel experimental
paradigm.

2. MATERIALS AND METHODS

2.1. Robot body, playground arena and obstacle
avoidance task

Modeling of adaptive behavior by developing adaptive au-
tonomous agents is an approach widely investigated in the
fields of artificial intelligence and autonomous control (Maes
[19]; Brooks [20]), and a particular model of adaptive behav-
ior is represented by an agent who is motivated in trying to
survive in a defined environment, without any external (i.e.,
human) help.
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FIGURE 1: The main actors of the neurorobotic set-up. (a) A com-
mercial MEA by Multichannel Systems (Reutlingen, Germany) with
60 electrodes. (b) Cortical neurons grow and develop a 2D network
over the MEA, in proximity of a recording microelectrode. (c) The
Kephera robot wandering in its arena, filled with cylindrical wooden
obstacles.

The agent may generate its actions exclusively from the
available sensory information, or may use some kind of pre-
vious “experience.” The former type of agent is generally re-
ferred as “reactive.” One of the most studied implementa-
tions of this model is the “exploring” vehicle paradigm. In
1984, Braitenberg [21] proposed a simple architecture, that
is, a vehicle with direct links between sensors and motors (the
greater the sensors values are, the faster the motors run), that
seems to mimic an intelligent behavior in a real context. The
easiest example of the Braitenberg’s vehicles is a two-wheeled
robot with two light sensors that, according to the connec-
tion between sensors and motor-wheels, can produce differ-
ent and interesting behaviors (fear, aggressiveness). Here we
will show a neurorobotic Braitenberg “explorer” vehicle as an
example of application of the closed-loop platform for em-
bodied electrophysiology.

The artificial body consists of a small mobile robot
(Khepera II, K-team, http://www.k-team.com), equipped
with two wheels and eight infrared (IR) proximity sensors
that provide information about the distance of the robot
from obstacles. In our experiments, the robot (7 cm diam-
eter) moves inside a circular arena (80 cm diameter), con-
taining wooden cylindrical obstacles (7 cm diameter). The
Khepera robot and its playground are shown in Figure 1(c).
In order to partially compensate the high nonlinearity of the
proximity sensors and the influence of the ambient light, the
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FiGure 2: Computational architecture of the closed-loop system. The signals coming from the infrared sensors (IR) of the robot are translated
into patterns of stimuli that are delivered to the neural preparation through a set of selected stimulating electrodes. Then the activity recorded
by two groups of electrodes is evaluated in terms of firing rate (i.e., mean number of detected spikes/s) and used as driving speed for each of

the robot’s wheel.

internal perimeter of the playground and the border of the
obstacles were covered with an IR reflective tape.

2.2. Computational architecture of
the neural interface

To establish a bidirectional communication between the neu-
ronal preparation and a mobile robot, the electrophysiolog-
ical signals need to be translated into motor commands for
the robot (decoding of neural activity), and at the same time
the sensory signal from the robot need to be translated into a
pattern of electrical stimulation (coding of sensory informa-
tion). Figure 2 presents the general computational architec-
ture of the proposed closed-loop system that can be summa-
rized in the following three main parts (i.e., from left to right
in Figure 2).

(1) Coding (from the robot to the neural preparation):
while the robot freely moves into the playground, its IR
sensors see whether or not an obstacle is in the prox-
imity and where it is (left or right side). The IR sig-
nals u(t) are weighted according to the sensory recep-
tive field law and the two resulting stimulation signals
s(t), relative to the right and left “eye” of the robot, are
then coded into a feedback stimulation x(t).

(2) Processing of electrophysiological signals: the sponta-
neous or evoked electrophysiological activity y(t) is
sampled (y(t)) and processed, in order to give an es-
timation of the instantaneous firing rate 7, (t).

(3) Decoding (from the neural preparation to the robot):
the processed electrophysiological signal 7,,(¢) is trans-
lated into motor commands w(t) for the robot, accord-
ing to the specified decoding strategy.

To make our computational architecture as open as possible,
we developed a library of coding/decoding schemes (Cozzi et
al. [18]; Cozzi et al. [22]), and identified the most effective
ones in achieving a desired behavioral task.

Library of coding schemes

Coding means the representation of external sensory input
patterns in terms of electrical stimulation and hence of neu-
ron’s activity. In this perspective, the implemented neural

code has been of two main typologies, both of them based
on the rate coding concept.

(1) Proportional coding.
The rate of stimulation r(¢) is proportional to the sen-
sory feedback s(t). The maximum rate of stimulation,
rmax - is only attained when the robot hits an obsta-
cle. It was suggested that this value has to be as large
as possible for accurate coding of the temporal struc-
ture of sensory signal (Wagenaar et al. [1], DeMarse et
al. [12]), but at the same time it has to be low in order
not to damage the culture (Shahaf and Marom [5]),
therefore, the maximum of the stimulation rate ry(t)
was up to 2 Hz.
(2) Binary coding.

A binary coding scheme generates trigger signals for
the electrical stimulator only when the sensory feed-
back s(t) overcomes a threshold, approximately re-
flecting the presence of an obstacle at 5cm distance.
The stimulation rate () is therefore either 0 or 1 Hz.
The maximum frequency of stimulation was chosen
according to what reported in literature (Shahaf and
Marom [5]).

Preprocessing of electrophysiological signal

Spike detection. The electrophysiological signals () acquired
from MEA electrodes must be preprocessed in order to re-
move the stimulus artifact and to isolate spikes from noise.

The spike detection algorithm uses a differential peak-to-
peak threshold to follow the variability of the signal (Grat-
tarola et al. [23]). A time window, sized to contain at most
one single spike (4 ms), is shifted along the signal, sampled at
the frequency of 10 kHz. Within the window when the differ-
ence between the maximum and the minimum exceeds the
threshold, a spike is found and its time stamp is saved. In
this way, the resulting spike train signal is sampled at 250 Hz.
The threshold is proportional to the noise standard devi-
ation (SD) and is calculated separately for each individual
channel (typically as 7 x SD) before the beginning of the
actual experiment (i.e., the spontaneous activity recording,
see Section 3.3).

Blanking of stimulus artifact. Stimulus artifacts are de-
tected when the recorded signal exceeds a second, higher



Computational Intelligence and Neuroscience

threshold. The artifact is then suppressed by cancelling the
first sample in the spike train occurring immediately after
it, corresponding to a signal blanking of 4 milliseconds after
stimulus delivery. This quite conservative procedure could
have been improved, but we found it effective for our appli-
cations.

Decoding schemes

Although several linear and nonlinear algorithms for trans-
lating neuronal activity into motor commands for external
actuators have been proposed (Chapin et al. [24]; Wessberg
et al. [8]; Carmena et al. [25]; Wessberg and Nicolelis [26]),
here the decoding schemes are simply based on rate-coding
(Fetz [27]), that has proven to be efficient in brain-machine-
interfaces (Lebedev and Nicolelis [28]).

Firing rate estimation. The neural activity is represented
by the instantaneous firing rate 7, (¢) on each recording chan-
nel and it is estimated from the spike trains y(¢) through a
low-pass filter. Two different filters have been implemented
(a first-order and a second-order filter).

Decoding. The recording sites are divided into two
groups, respectively used for controlling the left and right
wheel, each of them formed by N electrodes. The motor
commands w(t), that is, the angular speeds of the wheels,
are obtained by implementing the following winner-takes-all
(WTA) mechanism:

N
wL(f) = (wo - ;Ci . [?i(t)]R) if wp = wg,
—Wp iwa < WR,
(1)
N
wr(t) = (a)() — ; C- [;'\,(t)]L) if wg > wy,
—wp if wg < wg,

where w;, is a constant angular speed (up to 2rad/s), wg is
the maximum angular speed (i.e., 5rad/s); 7i(¢) is the in-
stantaneous firing rate of the recording site i, C; is a nor-
malization coefficient. L and R indicate signals pertaining re-
spectively to the left and the right wheel. In absence of neu-
ronal activity, the robot goes straight with a constant angu-
lar speed of 5rad/s that corresponds to a linear velocity of
16 cm/s. The coefficients C; can be computed according to
different criteria: they represent an estimate of the strength
of the connection between the corresponding input and out-
put site (computed by means of a linear regression), as re-
ported in (Cozzi et al. [18]), or they simply represent the in-
verse of the estimation of the maximum value that can be
reached by the instantaneous firing rate on each group (left
versus right) of electrodes. The first method is usually applied
when decoding the activity of each unit in large population
of neurons (Georgopoulos et al. [29]). For the experiments
reported here, we adopted the second: the used algorithm
already selects input-output pathways characterized by the
maximal strength of the functional connection and we only
need to equalize them, in other words, when the robot is far
from obstacles the spontaneous activity should not cause the

robot turning preferentially clockwise or counterclockwise.
Assuming that neurons on the left and right sides are mostly
excitatory, the minus sign in the control law allows us to im-
plement inhibitory contralateral connections between inputs
and outputs.

The WTA strategy has proven to be a more appropriate
decoding scheme than those already presented in our
previous work (Cozzi et al. [18]). In fact, even though the
WTA mechanism may result in movements that are less
smooth, the lowest values chosen for the angular speed (i.e.,
2 or 5rad/s instead of 10rad/s) facilitate the robot rotation
without affecting the general behavior and, as a consequence,
the robot can reverse direction in much less space, actually
realizing what the “brain” is ordering to its “body.” This
strategy is also suggested by the nonlinearity of the IR sensors
(for further details see the “Khepera II-IR sensors report,”
http://ftp.k-team.com/khepera/documentation/Kh2IRAN.
pdf) of the robot that are capable to reliably detect an
obstacle only when the robot is closer than about 5 cm from
an obstacle.

2.3. Neural preparation and control architecture
Neural preparation and electrophysiological set-up

Dissociated neurons in culture randomly rearrange in a bidi-
mensional structure and, once they have established synaptic
connections, they show spontaneous neural activity (starting
from about 7 days in vitro DIVs) that can be modulated by
means of electrical stimulation (Maeda et al. [30]; Jimbo et
al. [31]; Marom and Shahaf [32]). We used dissociated cul-
tures of cortical neurons, extracted from rat embryos (E18).
Using standard methods previously described (Martinoia et
al. [33]; Chiappalone et al. [34]), cells were plated on micro-
electrode arrays (MEAs) (Figures 1(a), 1(b)) with 60 TiN/SiN
electrodes (diameter 30 um, interdistance 200 ym) arranged
on an 8 x 8 square grid. Experiments were performed in the
range 18-42 DIVs, when the neuronal network reaches its
“mature” state, consisting of synchronized clustered activity
with minute-to-minute fluctuations in the probability of fir-
ing (Marom and Shahaf [32]).

The experimental set-up is based on the MEA60 system
supplied by Multi Channel Systems (MCS, Reutlingen, Ger-
many). The system is constituted by the following elements:
a neuronal preparation cultured over an MEA, a mounting
support with a 60-channel amplifier (gain 1200x), a home
made 8-channel stimulus generator, to deliver both current
and voltage desired stimulating signals, an inverted opti-
cal microscope, connected to a CCD camera (Hamamatsu,
Japan), to visually monitor the cells during the experiment,
an antivibration table and a Faraday cage.

Raw data are also monitored and recorded by us-
ing the commercial software MCRack (Multi ChannelSys-
tems, Reutlingen, Germany) (sampling frequency was set
to 10 kHz/channel). To confirm real-time behaviour, neural
data were also processed offline by using ad-hoc developed
software tools (Vato et al. [35]; Chiappalone et al. [34]).
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Control architecture

The control architecture presented in our previous work
(Cozzi et al. [18]) has partially changed and some feature has
been added. In particular, we have moved from xPC-Target
(http://www.mathworks.com/products/xpctarget) that was
not able to handle and log the very large amount of data com-
ing from neuronal network, to the QNX 6.1 (QNX software
systems), a POSIX-compatible operating system specific for
hard real-time applications.

The present architecture involves three PCs. PC1 (P4,
2.8 GHz, 512 MB RAM), that is, the one that runs QNX, is
equipped with an A/D board PCI-6071E (National Instru-
ments, Texas, USA) and it is responsible for (a) electrophys-
iological signals acquisition, (b) online spike detection and
artifact blanking, (¢) decoding of the spike trains, (d) han-
dling the serial communication with the robot and PC3, (e)
coding of robot’s proximity sensors signals, (f) production
of the pattern of stimuli that trigger the electrical stimulator,
and (g) experimental data logging (spikes, sensors activity,
wheel speeds, stimuli, robot trajectory). These tasks are pro-
cessed by different threads at different sampling rates, in par-
ticular tasks (a)-(b) are at 10 Khz, tasks (c)—(e)-(f)-(g) are at
250 Hz, and task (d) is at 10 Hz.

A second computer, PC2 (P4, 2.8 GHz, 512 MB RAM,
Win2000), connected to PC1 through an Ethernet link, is the
experimental front-end. We used Simulink/Real-Time Work-
shop (the MathWorks) and the RT-Lab package (Opal-RT) as
development environments. This package generates two pro-
cesses that are executed in real-time on the target node, that
is, PC1. This system allows simultaneous acquisition of neu-
ral signals from up to 32 recording sites.

PC3 (P4 2.8 GHz 512 MB RAM, QNX 6.1) is in charge
of real-time tracking of the robot movement and it is con-
nected through a serial cable to the main computational node
of the architecture (PC1). A CCD camera (DSE TCC5 with
1/3 CCD SONY SuperHAD) is placed 1.5 m above the central
position of the arena. This physical arrangement of the cam-
era allows a good resolution while minimizing distortion at
the boundaries of the arena. A frame-grabber (Arvoo Picasso
PCI-25Q) acquires samples at 5 Hz from the camera with a
resolution of 640 X 480 pixels. One pixel on the CCD sensor
corresponds to ~ 2mm, so that the arena is contained in a
400 x 400 subwindow at the center of the image. The detec-
tion phase is performed in a small square portion (50 x 50
pixels) of the global field of the CCD camera (the detection
in such small area is low demanding in computing perfor-
mance and thus the process can be performed in real-time).
This square area represents the predicted robot location. A
red round marker placed onto the top of the robot and the
detection of its position is based on a local evaluation of the
intensity of the RGB values of every pixel belonging to the
detection window.

2.4. Data analysis
Processing of electrophysiological signals

Poststimulus Time Histogram. To investigate the neural ac-
tivity evoked by stimulation, we computed the poststimulus

time histogram (i.e., PSTH), which represents the impulse
response of each site of the neural preparation to electrical
stimulation. The PSTHs were calculated by taking 400 ms
time windows from the recordings that follow each stimu-
lus. We then counted the number of spikes occurring in a 2—
4 msec bin and divided this measure by the number of stimuli
(Rieke et al. [36]). For our cultures, typical PSTHs show an
“early” (less than 50 msec) and a “late” (50-250 milliseconds)
component (Shahaf and Marom [5]; Marom and Shahaf
[32]; Cozzi et al. [22]).

Stimulus-Triggered Speed. The stimulus-triggered speed
(STS) is constructed by averaging the speed waveform due
to each stimulus. The robot has two independent wheels,
whose speeds are proportional to the neuronal activity of two
“brain” regions (i.e., the two set of electrodes selected as mo-
tor areas within the network). These regions receive sensory
feedback by two independent stimulating sites. It is possible
to construct two STSs for each input-output, that is, sensory-
motor pathways, for a total of 4 curves (i.e., the variations of
the speed of the left and the right wheels in response to the
left stimulus are the first two curves and constitute the first
STS, and the variation of the speed of the left and the right
wheels in response to the right stimulus constitute the sec-
ond STS with the latter two curves), and it is also possible
to study the performance of the robot behavior by studying
the side-selectivity of the relationship between stimuli and
speeds.

Indicators of robot performance

The behavior of the neurorobotic system can be evaluated by
means of the stimulus-triggered speed (STS), that is, the aver-
age motor commands elicited by a single electrical stimulus:

STS(7) = (w(r — 1)) (2)

where t; is the time instant of delivery of the ith stimulus and
7 is the time coordinate.

In order to have a more general evaluation of the robot
performance during each trail (5"), we also used the follow-
ing three parameters:

(1) number of hits,
(ii) trajectory length,
(iii) space covered. The percentage of the arena area covered
by the robot path:

NP - ¢f?

SC =
Aarena -

- 100%, (3)
nAobstacle

where NP is the number of pixels covered by the robot,
cf? is the area of one pixel, n is the number of obstacles
in the playground, Aarena and Agpbstacle are, respectively,
the areas of the playground and of each obstacle.

The software tools for of-line signal processing aimed at the
analysis of the behavior of the neurorobotic system were de-
veloped using Matlab 6.5 (the MathWorks).
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3. RESULTS

3.1. Computing performance

The feedback loop computation time reached by our final
neurorobotic architecture is under 1 millisecond; therefore,
the real-time performance in the closed-loop system is com-
patible with the response time (4 ms) of our neuronal model.
This value includes the time needed for (I) the electrophysi-
ological signals acquisition, (II) the spike detection and the
artifact suppression, (III) decoding of neural activity, (IV)
computing of the speeds of the robot’s wheels, and (V) cod-
ing of sensory feedback. The relative computational loads
for each block are displayed in Figure 3(a): the most time-
consuming parts are those running at 10 kHz, for technical
reasons, and the blocks including sampling rate transitions,
such as the interface with the robot, with the CCD cam-
era system and with the stimulator. In these experiments,
we used a robot with a standard RS232 interface that sup-
ports a baud rate of 9600 bit/s. We expect that by includ-
ing a more recent protocol (e.g., USB2 or Firewire), the
block would be less time consuming and would assure better
performance. Spike detection and artifact blanking are also
time-consuming due to the high dimension of the signals be-
ing processed. The performances were evaluated by means of
Simulink Profiler, reported schematically in Figure 3(b).

3.2. Identification of input-output sites

In order to obtain a reactive behavior, we need the network to
respond soon after the feedback stimulation, that is, we need
input-output pathways characterized by a relatively early (up

to 50 ms) and sustained response meaning a “high strength”
in the functional connectivity (Shahaf and Marom [5]). If the
network reacts to the sensory feedback and the evoked elec-
trophysiological response is characterized by a relatively long
activation phase (up to 200-300 ms), the robot would not be
able to react to the presence of an obstacle in 100 ms (i.e.,
the delay among successive serial communications between
the system and the robot). This is one of the reasons why we
need to accurately select the input-output pathways, beside
the fact that only low-frequency stimulation can be delivered
for not fatiguing the culture (Shahaf and Marom [5]; Eytan
et al. [37]). We need the stimulus-evoked response to be fast,
prolonged, reliable, and therefore effective for the entire du-
ration of the experiments (i.e., all day long).

As already said, the general aim is to have a robot
that follows a specific task on the basis of the sponta-
neous/stimulated electrophysiological activity shown by the
neuronal culture. To this end, it is a fundamental pre-
requisite to characterize the collective activity of the net-
work that will be connected to the robot (i.e., analysis of
both spontaneous and stimulus evoked neuronal activity).
This characterization phase is necessary since the unstruc-
tured nature of the culture does not allow us to a priori define
the sensory and motor areas that will be connected with the
sensory and motor areas of the robot, as it happens with por-
tion of tissue with a well-defined sensorimotor architecture
(Reger et al. [7]; Karniel et al. [11]).

Thus, the goal of the characterization phase is to select
those channels of the MEA to be used as sensory inputs (i.e.,
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connected to the robot’s sensors) and motor outputs (i.e.,
connected to the robot’s wheels) of the biological network.

To test the response to stimulation from different sites
in different areas of the neuronal network, trains of 50 elec-
trical stimuli are delivered (1.5V peak to peak-extracellular
stimulation, 500 us, and duty cycle 50%). This procedure is
repeated from at least 5 arbitrarily chosen electrodes (Wage-
naar et al. [38]).

The poststimulus time histogram-(PSTH) (i.e., the aver-
age number of spikes obtained in response to a stimulus, at
different latencies) is then used for quantifying the strength
of connections between a specific stimulating sites and all the
other recording sites. It is the impulse response (in terms of
instantaneous firing rate) to a single test stimulus.

The algorithm for the selection of the output (motor)
and input (sensory) sites supplies the I/O pairs correspond-
ing to maximum selectivity and it is based on network effec-
tive functional interconnectivity. The ideal case is described
in the following: given two (or more) stimulating channels
(e.g., S1 and S2) and two groups of recording sites (e.g., R1
and R2), the strength of the connectivity S1-R1 and S2-R2
is “high” and simultaneously, the strength of the connectiv-
ity S1-R2, and S2-R1 is “low” (i.e., good selectivity in input-
output pairs). The described scheme guarantees, somehow,
that the responses in the two (groups of) recording sites are
different on the basis of the stimulating electrodes. Of course
the above is an ideal situation and, since the mean connec-
tivity of the network is high, also due to the high density of
plated cells, it is hard to get highly specific responses in the
input-output pathways.

The methodology that we developed to make a selection
of the pathways is the “selectivity map” (see Section 3.3 for
a typical map). Each dot represents the PSTH area at a spe-
cific recording site given that there was a stimulation from
a couple of stimulating sites. All the possible input-output
combinations are explored and only the pathways producing
responses lying more distant from the diagonal (i.e., closer to
the axis) are selected.

Those specific pathways (of sensory-motor activations)
can be then conveniently utilized for driving the robot and
for implementing simple reactive behaviors (e.g., obstacle
avoidance), as presented in Section 3.1.

3.3. Example behaviors of the neurorobotic system

Once the role of the microelectrodes (i.e., selection of input-
output sites) has been decided, the experiment can start. A
desired result is achieved when an improvement of the robot
behavior is confirmed by possible modification of the neu-
ronal network dynamics (i.e., adaptation).

Each experiment with the neurorobotic system is usually
divided into the following phases:

(i) spontaneous activity recording (5 minutes);
(ii) preprocessing: test stimulus from 8 channels (serial
stimulation);
(iii) input-output channel selection: at least 2 channels for
input (sensors) and 2 channels for output (motors).

(iv) closed—loop experiment: Robot running (5 + 5 +
5 minutes):

(a) free running;

(b) obstacle avoidance with the application of a
learning protocol (when the robot hits an obsta-
cle, a conditioning stimulus at 20 Hz frequency
is delivered from the collision side). The learn-
ing protocol is based on what reported in litera-
ture: only a few examples of learning (i.e., poten-
tiation and depression) have been demonstrated
for dissociated neurons cultured over MEAs and
all of them are based on the application of trains
of stimuli at “high” frequency (Jimbo et al. [39];
Jimbo et al. [40]; Tateno and Jimbo [41]; Boni-
fazi et al. [42]; Ruaro et al. [43]). We have ev-
idence that similar protocols have the effects to
mainly potentiate the network electrophysiologi-
cal response in terms of number of evoked spikes
(Chiappalone et al. [44]);

(c) free running.
(v) post-processing:

(a) spontaneous activity recording (5');

(b) test stimulus from the two chosen stimulating
channels.

To avoid manual removal of the robot and possible damage
due to wheels’ motors heating in case of a collision against an
obstacle, a step-back mechanism (2 seconds backward move-
ment with an angular speed of 5 rad/s) was implemented.

A user-friendly GUI allows (i) to select input and output
channels (i.e., recording and stimulation sites), (ii) to choose
among different coding and decoding strategies, and (iii) to
change all the experimental parameters (e.g., spike-detection
threshold, maximum robot speed, cut-off frequency of the
filter for the estimation of neural activity, maximum stimu-
lation rate).

The signals obtained at different levels in the bi-
directional interface are represented in Figure 4. The spike
trains are then low-pass filtered to obtain instantaneous fir-
ing rates that are considered as indicators of the level of neu-
ral activity. The cutoff frequency of the filter is set, in this
case, at 1 Hz. The values corresponding to reasonable re-
sponse times range from 0.5 to 1 Hz: in fact they represent
a good compromise between fast response and time integra-
tion requirements. The previously adopted cutoff frequency
of 0.1 Hz (Cozzi et al. [18]) was not suitable for bursting net-
works because the long-term effect of time integration lets
the past events (previous bursts) to weight more than instan-
taneous activity.

The motor commands (i.e., the speeds) are then obtained
according to the control law which implements inhibitory
contro-lateral connections between inputs and outputs (see
decoding schemes section for details), thus we expect that
a feedback stimulus coming from left sensors would result
in a decrease of the speed of the right wheel of the robot,
and a stimulus coming from right sensors would determine
a deceleration of the speed of the robot’s left wheel. The
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F1GURE 4: Signals obtained at different levels of the neurorobotic interface during 20 seconds of a free running session (c.f. Results, for a
detailed description of the experimental protocol). In this particular experiment we used 2 stimulation sites and 2 recording sites. When
the robot is approaching an obstacle, the value of sensors increases and when it overcomes a threshold (i.e., 500 levels) a feedback stimulus
is delivered (max frequency 1 Hz). The left and right detected spike trains are then processed into motor commands, that is, left and right
wheel speeds (the line corresponds to 0 rad/s). The network was spontaneously active and during this phase we recorded 2046 spikes from
left and 1057 from the right one, resulting in a mean wheel speed of 1.4 rad/s (left) and 1.6 rad/s (right).

proximity signals coming from the sensors placed on the two
sides of the robot are averaged in order to obtain two feed-
back signals, each of them related to one side of the robot.
Figure 4 shows the patterns of stimuli obtained from the
feedback signals, according to the binary coding scheme.

A number of preliminary experiments were performed
using, respectively, 2 stimulation and 2 recording sites. In
the following, the results of two example experiments are re-
ported to let the reader better understand the experimental
procedure and appreciate the performances of the developed
closed-loop system.

Figure 5 shows the PSTHs obtained during the charac-
terization phase of one example experiment. The responses
evoked from different stimulation sites are similar (i.e., Fig-
ures 5(a) and 5(b)), thus revealing a low degree of selectiv-
ity and a high degree of connectivity. In a case like the one
presented in Figure 5, the preparation can hardly be used to
control the robot and it is discarded.

Figure 6 presents an example of good connectivity maps
obtained during the characterization phase (Figure 6(a))
and after the robotic experiment (Figure 6(b)): the elec-
trodes 15 and 45, that will be further chosen as recording
electrodes, are positioned close to the axis, indicating that
their responses to the stimulating channel are selective (see
Section 3.2 for further details).

Figures 7(a) and 7(b) show the PSTHs corresponding to
the inputs/outputs chosen after the characterization phase;
during an experimental session with the robot (i.e., exper-
iment is different from the previous one). In this example,
the recording electrode 15 is very sensitive to the stimulation
delivered from electrode 16 (top left) while it is quite unaf-

fected by stimuli delivered form electrode 48 (top right). At
the same time, the recording site 45 is not sensitive to stim-
uli coming from electrode 16 (bottom left) while it is very
affected by stimulation from electrode 48. In this case, differ-
ent stimulation sites evoke very different response, thus re-
vealing a high degree of selectivity that is also confirmed by
the connectivity maps presented in Figure 6.

The shapes of the PSTHs must be similar to those of the
PSTHs obtained during the characterization phase in order
to ensure the stability of the response of the neuronal cul-
ture. If the area of the PSTHs drastically decreases at the end
of the closed loop phases it means that the neuronal network
has been fatigued by excessive repeated stimulations (Sha-
haf and Marom [5]). The wellness and stability of the cul-
ture are “sine qua non” conditions to be verified before de-
scribing the neurorobotic behavior by means of the robot’s
performance indicators. Under these conditions, the perfor-
mance of the neural preparation in controlling the robot
can be represented by the STSs, depicted in Figures 7(c) and
7(d).

Examples of the robot trajectories are presented in Fig-
ures 8(a) and 8(b). Figure 8(c) shows the indicators generally
used for quantifying the robot performance. The first indica-
tor alone, that is, the number of hits, is not sufficient for de-
scribing the performances of an obstacle avoidance task. In
fact, a low number of hits could result from limited robot
movements or from the repetition of the same trajectory.
For this reason, it is necessary to consider also the fraction
of space covered by the robot and the length of its trajec-
tory. Together, these simple indicators evaluate the robot per-
formances inside the arena, even if they are not related to
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denoting an absence of strong selection with respect to the stimulating electrode. X-scale [0, 1]; Y-scale [0,400] milliseconds.
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F1GURE 6: Connectivity maps (same data reported in Figure 4). The connectivity map represents a plot of the PSTH areas evoked by a couple
of stimulating electrodes on a specific electrode. In this way we are able to represent the network response to a specific choice of stimulating
sites. The ideal case should be to have two recording electrodes placed on the axis, far from the origin (i.e., maximum response to one
stimulating electrode and zero to the other). (a) Before the robotic experiment. (b) After the robotic experiment.

the sensory feedback coming from the external environment.
These parameters do not allow quantifying any relationship
between the motor response and the sensory information,
but, considering different phases, if the robot covered the
same area and the trajectories are in the same order, then the
two phases are comparable, and a reduction of the number
of hits should indicate an improvement of the robot’s be-
havior. An improvement in the robot’s behavior must cor-
respond to an improvement in the relationship between the
motor response and the feedback sensory information (i.e.,
the STSs). The STS is the only parameter that permits to un-
derstand and demonstrate whether a different behavior of
the robot actually corresponds to a different dynamics of the

neuronal activity, and for this reason it can be considered the
best indicator of the performance of the overall neurorobotic
system.

The comparison of the STSs and connectivity maps
obtained during each phase illustrates that a modifica-
tion in the robot’s behavior has occurred. Therefore, one
couldspeculate that the origin of such a modification re-
lies on specific synaptic changes, (i.e., Hebbian potentia-
tion in terms of number of evokes spikes) of the neu-
rons placed at the recording electrodes (Jimbo et al. [39];
Jimbo et al. [40]; Tateno and Jimbo [41]; Bonifazi et
al. [42]; Ruaro et al. [43]). We cannot infer or demonstrate
that synaptic changes are pathways specific but considering
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FiGure 7: PSTH and STS in a neurorobotic experiment. (a) PSTHs for two electrodes (chosen as recording—motor electrodes) with respect
to two stimulating sites. Electrode 15 responds well to stimulation from electrode 16 and bad to stimulation from electrode 48; on the
contrary electrode 45 responds well to 48 and bad to 16. This tendency is maintained and even improved after the robotic experiment (b).
The STS graphs before (c) and after (d) the robotic experiment prove again the selectivity of the chosen electrodes and the improvement in

the performances (increased STS area).

the global behavior of the recording sites after a neuro-
robotic experiments a possible effect at (sub)population
level (i.e., a kind of network plasticity) has occurred in-
duced by the external correlated stimulation (Chiappalone
et al. [44]).

4. DISCUSSION AND CONCLUSION

“We have this common internal neural language that we are
born with and so if you can exploit that with the right stimuli
then you are going to help the brain develop to do the things
like reason.” (Shaw [45].)

We have developed a general real-time, bidirectional neu-
ral interface platform. The system is capable of acquiring
multisite electrophysiological activity at 10 kHz per channel,
to perform spike detection and artifact suppression, from up
to 32 channels. That is a step forward with respect to simpler
systems (Reger et al. [7]; Karniel et al. [11]) or to bidirec-
tional systems implemented by others (DeMarse et al. [12];
Bakkum et al. [13]) or by ourselves (Martinoia et al. [14];
Cozzi et al. [18]).

The use of portions of brain, such as the brainstem of a
sea lamprey, connected to an artificial device represents the
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FIGURE 8: Robot trajectories and performances in a neurorobotic experiment. (a) Robot trajectory during the first free running phase. (b)
Robot trajectory during the last free running phase (i.e., after the learning phase). (c) Indicators of the robot’s performance. The last two
parameters only show that the two phases are comparable in terms of covered space and trajectory length during the robot’s movement
inside the arena. For this reason, the reduction of hits in the second phase (i.e., first parameter) suggests an improvement of performances
during the obstacle-avoidance task. The conclusion is that an improvement in the robot’s behavior in terms of a decreased number of hits
must depend from the modulation of the neuronal activity, as also confirmed by the graphs of the STS presented in the previous figure.

very first application of the “embodied electrophysiology”
paradigm. The main difference between the lamprey-based
neurorobotic system and the bidirectional interface we devel-
oped is the fact that in the lamprey preparation the circuitry
governing the stabilization and orientation during swim-
ming (Deliagina [46]; Deliagina et al. [47]) maintains the
original citoarchitecture and the natural input-output sys-
tem is used as a controller to drive the robotic body (Reger
etal. [7]; Karniel et al. [11]).

Potter and colleagues (DeMarse et al. [12]; Bakkum et
al. [13]) overcame the simplification of an already structured
portion of brain presenting an innovative embodied electro-
physiology paradigm in which a randomly grown neuronal
networks controlled a simulated body. As they reported, it
was simply a “neuroethology experiment” to merely observe
the effect of feedback stimulation on the general behavior
and where their “animat” has not to perform any particu-
lar task. Our neurorobotic interface, on the contrary, has to
work in a reactive manner expressing a kind of “stimulus-
driven behavior” Here we reported, in details, the method-
ology of the system (including hardware and software fea-
tures), an optimized way to identify the “functional I/O path-
ways” and we presented a method to analyze the robot behav-
ior and correlate it to the network electrophysiology.

As described in the previous sections, in our system,
the spike trains can be decoded into motor commands (at
250 Hz) through a variety of decoding strategies. Such mo-
tor commands are then used to control a mobile robot, to
which a specific task is assigned. Conversely, sensory signals
can be coded into patterns of stimulation (again, according
to a variety of coding schemes) and sent to a custom electrical
stimulator with up to 8 stimulation channels. Although the
algorithms used for spike detection and artifact blanking
are simple, compared to those adopted in other experimen-
tal frameworks (Wagenaar and Potter [48]; Obeid and Wolf
[49]), they allow a good level of reliability with the advan-
tage of an extremely light computational load. It should be
underlined that the presented experimental paradigm can be
extended to other computational schemes and one of the key
features of the system is to allow testing different coding and
decoding strategies in relationship with optimal coding and
performances and with the capability of the neuronal system
to adapt for a new task in an actual closed loop environment.

The software architecture is flexible and modular, and al-
lows fast prototyping of new modules according to the ex-
perimental requirements. Real-time performance was very
good and it is comparable to other simpler systems (in terms
of recording/stimulating channels), previously described in
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the literature (Reger et al. [7]; Martinoia et al. [14]; Wage-
naar and Potter [38]; Cozzi et al. [18]; Karniel et al. [11];
Wagenaar et al. [50]). We developed a library of coding and
decoding modules, which, as mentioned, could be easily ex-
tended. This is a key point with respect to possible implica-
tion for the development of novel brain-machine interface
with enhanced capabilities and bidirectional interactivity.

Concerning our particular application, we also developed
the tools for studying the ability of a culture of cortical neu-
rons to process information in order to drive a robot ac-
cording to a defined motor task (with a particular empha-
sis on the method for input-output pathways selection), and
at the same time it allows to supervise the population activ-
ity changes in response to external feedbacks. It should be
stressed that this is the first time that a closed-loop neuro-
robotic system (with in vitro neuronal populations) is uti-
lized for performing specific behavioral oriented tasks.

The proposed experimental framework creates new pos-
sibility for investigating basic mechanisms of learning and
adaptation (e.g., distributed synaptic plasticity, long term
potentiation (LTP) and long term depression (LTD)) by di-
rectly studying how behavior arises from the emerging col-
lective dynamics of a neuronal ensemble. Additionally, the
experimental system could be also conveniently utilized and
adapted to other in vitro models such as acute, organotypic
slices, and patterned neurons, where the network architec-
ture is partly preserved or can be designed.

Finally, on a long term perspective, this approach could
have a relevant impact in the field of bio-inspired compu-
tational systems and for the development of novel brain-
computer interfaces and of advanced neuroprosthetic de-
vices.
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