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Abstract 

Background:  Geriatric people are prone to suffer from multiple chronic diseases, which can directly or indirectly 
affect renal function. Through bioinformatics analysis, this study aimed to identify key genes and pathways associ-
ated with renal insufficiency in patients with geriatric multimorbidity and explore potential drugs against renal 
insufficiency.

Methods:  The text mining tool Pubmed2Ensembl was used to detect genes associated with the keywords includ-
ing "Geriatric", "Multimorbidity" and "Renal insufficiency". The GeneCodis program was used to specify Gene Ontol-
ogy (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Protein–pro-
tein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape. Module analysis was 
performed using CytoHubba and Molecular Complex Detection (MCODE) plugins. GO and KEGG analysis of gene 
modules was performed using the Database for Annotation, Visualization and Integrated Discover (DAVID) platform 
database. Genes clustered in salient modules were selected as core genes. Then, the functions and pathways of core 
genes were visualized using ClueGO and CluePedia. Finally, the drug-gene interaction database was used to explore 
drug-gene interactions of the core genes to identify drug candidates for renal insufficiency in patients with geriatric 
multimorbidity.

Results:  Through text mining, 351 genes associated with "Geriatric", "Multimorbidity" and "Renal insufficiency" were 
identified. A PPI network consisting of 216 nodes and 1087 edges was constructed and CytoHubba was used to 
sequence the genes. Five gene modules were obtained by MCODE analysis. The 26 genes clustered in module1 were 
selected as core candidate genes primarily associated with renal insufficiency in patients with geriatric multimorbid-
ity. The HIF-1, PI3K-Akt, MAPK, Rap1, and FoxO signaling pathways were enriched. We found that 21 of the 26 selected 
genes could be targeted by 34 existing drugs.

Conclusion:  This study indicated that CST3, SERPINA1, FN1, PF4, IGF1, KNG1, IL6, VEGFA, ALB, TIMP1, TGFB1, HGF, 
SERPINE1, APOA1, APOB, FGF23, EGF, APOE, VWF, TF, CP, GAS6, APP, IGFBP3, P4HB, and SPP1 were key genes potentially 
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Introduction
With the rapid progress of global aging, the proportion 
of the geriatric population is gradually increasing, and 
the growth rate of the population above 80  years old is 
much higher than that of the population over 65  years 
old [1]. Geriatric people are prone to suffer from multi-
ple chronic diseases, also known as multimorbidity. The 
latter refers to the state of having two or more chronic 
diseases simultaneously [2].

Related studies have revealed that the incidence of 
multimorbidity in the geriatric population ranges from 
55 to 98% [3]. The incidence of renal disease in the geri-
atric population is much higher than that in the middle 
and young populations, and the prognosis for the geri-
atric population is relatively poor [4]. Chronic kidney 
disease (CKD) generally occurs in the spectrum of geri-
atric multimorbidity and there are many chronic dis-
eases co-existing with CKD, which are mostly classified 
as consistent/inconsistent multimorbidity with CKD [5]. 
Using a single creatinine-based estimating glomerular fil-
tration rate (eGFR) calculation for physiological changes 
in the body composition that occur with aging does not 
apply to all adult groups [6]. In the geriatric population, 
age-related physiological renal changes may lead to a 
decrease in eGFR. In addition, polypharmacy is common 
among patients with geriatric multimorbidity due to the 
presence of multiple diseases. In western countries, the 
rate of polypharmacy in geriatric multimorbidity patients 
over 65  years old can reach 30–40% [7]. Therefore, it is 
imperative to accurately evaluate renal function and 
identify the pathogenesis of renal insufficiency in geri-
atric multimorbidity patients to simplify treatment regi-
mens, adjust the dosage and rationalize medication use. 
Old age is also a factor that interacts with metabolic dis-
eases such as hypertension and diabetes. Therefore, it is 
critical to evaluate whether renal insufficiency in patients 
with geriatric multimorbidity is caused by diseases or old 
age.

Current eGFR assessments in the elderly are mainly 
derived from equations used to assess eGFR in the young. 
The 2012 Kidney Disease: Improving Global Outcomes 
(KDIGO) Clinical Practice Guidelines recommends using 
the creatinine-derived Chronic Kidney Disease Epide-
miology Collaboration (CKD-EPI) equation to estimate 
eGFR in routine practice. The guidelines suggest that 
cystatin C-based equations have the potential to improve 
the diagnosis and epidemiology of CKD and should only 

be used in individuals with an eGFR between 45 and 
59  ml/min/1.73 m2 with no other evidence of CKD [8], 
suggests limited availability of eGFR assessments rather 
than poor performance. Assessing the eGFR by measur-
ing biomarkers in urine or blood is invasive and time-
consuming. There has been significant progress in using 
transdermal measurements of eGFR in murine models [9, 
10], which are non-invasive and allow real-time measure-
ment of eGFR. Transdermal measurement of eGFR may 
be the key to the non-invasive and real-time measure-
ment of eGFR in various clinical settings in the future.

At present, multiple studies have established that the 
interaction between metabolic diseases and aging affects 
renal function in older people and the underlying patho-
genic cause is cellular dysfunction. A meta-analysis of 
genome-wide association studies found that the genes 
identified in the eGFR locus are highly expressed in renal 
tissues and pathways associated with renal development, 
transmembrane transporter activity, renal structure, and 
the regulation of glucose metabolism [11]. Metabolic 
analysis in CKD animal models also revealed alterations 
in numerous metabolites such as metabolic reprogram-
ming of the S-nitroso-coa reductase system that can pre-
vent renal insufficiency. The regulation of PKM2 in the 
mouse proximal tubules may be a new perspective in the 
treatment of renal insufficiency [12]. At the cellular level, 
it has also been observed that blood glucose and albumin 
affect the cellular metabolic expression of four kinds of 
innate cells in the kidneys [13]. For patients with moder-
ate to high risk of CKD, bariatric surgery can maintain 
better levels of eGFR in obese patients, suggesting that 
the incidence of renal disease can be reduced by improv-
ing metabolic risk [14]. It has also been determined that 
blood homocysteine level in the elders is closely related 
to age-induced renal insufficiency [15], suggesting 
that renal insufficiency in older people is related to cell 
metabolism.

Geriatric multimorbidity complicated with renal insuf-
ficiency can influence the prognosis of patients. How-
ever, most of the above studies have assessed the risk of 
renal disease development in a certain disease, and there 
is still a lack of tools to accurately assess the impact of 
multimorbidity on renal insufficiency. Clinicians should 
precisely identify renal insufficiency in geriatric mul-
timorbidity patients to provide an early diagnosis and 
treatment to slow down the progression and prevent or 
delay end-stage renal disease (ESRD). Discovering novel 

involved with renal insufficiency in patients with geriatric multimorbidity. In addition, 34 drugs were identified as 
potential agents for the treatment and management of renal insufficiency.
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pharmacotherapy by traditional means can be time-con-
suming and expensive, while treating diseases beyond 
their original development purpose through drug reuse 
may be more effective and faster [16]. New informa-
tion about old drugs and new therapies can be obtained 
through the text mining of bioinformatics [17]. The pur-
pose of this study was to explore the existing published 
literature and biological databases and use other analysis 
tools for the assessment of renal insufficiency in geriatric 
multimorbidity patients, to further clarify the molecu-
lar mechanism of renal insufficiency in geriatric patients 
with multimorbidity and identify potential therapeutic 
targets to guide rational clinical drug use better.

Methods and materials
Text mining
Text mining was conducted using Pubmed2Ensembl 
(http://​www.​pubme​d2ens​embl.​org), which is an exten-
sion of the BioMart system. It links more than 2 million 
articles in PubMed to approximately 150,000 genes from 
50 species in Ensembl [18]. We entered "Geriatric" and 
"Multimorbidity" in the search box in Pubmed2Ensembl. 
Then non-duplicate genes were extracted. The union of 
the extracted genes from the two gene sets was defined as 
the gene set associated with "Geriatric Multimorbidity" 
and was denoted as the "G-M" gene set. We entered the 
search term "Renal insufficiency " in Pubmed2Ensembl 
to extract the unrepeated genes. After retrieving the 
related genes, the "G-M" and "Renal insufficiency" genes 
sets were intersected using Venny (https://​bioin​fogp.​cnb.​
csic.​es/​tools/​venny/). The intersection of genes extracted 
from two gene sets constituted our text mining genes 
(TMGs).

Biological process and pathway enrichment analysis 
of TMGs
Genecodis is a powerful web-based tool for the func-
tional interpretation of genomics experimental technical 
results, which integrates different sources of informa-
tion to search for annotations that often coexist in a set 
of genes and ranks them based on statistical significance 
[19]. The TMGs from our text mining were entered and 
analyzed using the GO biological process analogy. Then, 
significantly enriched biological process genes were 
selected. The enriched genes were further analyzed using 
the KEGG pathways annotation. Afterward, the genes 
involved in the significantly enriched KEGG pathways 
were selected for further analysis.

Integration of protein–protein interaction (PPI) network 
and identification of Hub genes
Results obtained from the gene enrichment analysis in 
the previous step were applied to the gene retrieval tool 
STRING (http://​string-​db.​org) for PPI analysis [20]. 
STRING provides a platform that can analyze Pub-
Med text mining data and integrate multiple database 
resources. It covers about 24.6 million proteins from 
5090 organisms and more than 3.1 billion interactions, 
which can be used to analyze the relationships and inter-
actions between proteins. First, STRING was employed 
to construct the PPI network of different genes. In addi-
tion, the application of CytoHubba in Cytoscape was 
used to identify hub genes [21]. CytoHubba for hub 
Genes is a Cytoscape plugin that provides 11 topological 
analysis methods to sort nodes in a network based on the 
network characteristics [22]. According to the results of 
correlation analysis, the relevant genes with a degree ≥ 10 
were screened out for further analysis.

Molecular Complex Detection (MCODE) analysis of subnet 
networks
MCODE constructed by Cytoscape was downloaded and 
ran using a Cytoscape visualization network of molecu-
lar interaction to screen important gene modules in the 
visual network of molecular interaction [23]. In the anal-
ysis results, the gene modules in the analysis were sorted 
according to the network score. The gene module with 
the highest score was an important gene module in the 
visual network of molecular interaction screening, which 
represented the most critical and typical genes in the 
network. Two gene modules (including 40 genes) with 
the highest network score from the PPI network were 
selected for further verification and analysis.

Gene ontology and KEGG pathway enrichment analysis 
of module genes
The GO functional and KEGG pathway enrichment 
analysis of important module genes was performed using 
the online gene function analysis tool DAVID (https://​
david.​ncifc​rf.​gov/) [24]. DAVID is a database of annota-
tion, visualization and integrated discovery of biological 
information, which can associate the genes in the input 
list to the term of biological annotation and find the most 
significantly enriched biological annotation through sta-
tistical methods. At present, it is mainly used for related 
function and pathway enrichment analysis of differential 
genes. The FDR we chose in the DAVID analysis uses the 
Benjamin-Hochberg multiple test method to approxi-
mate control the error detection rate [25]. Before Gene 
ontology and KEGG pathway enrichment analysis, we set 
FDR < 0.05 was the cut-off point. GO (http://​www.​geneo​

http://www.pubmed2ensembl.org
https://bioinfogp.cnb.csic.es/tools/venny/
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ntolo​gy.​org) database contains three main categories 
of genome data function classification terms including 
biological process, cell composition and molecular work 
[26]. KEGG (www.​genome.​jp/​kegg) is a knowledge base 
for systematic analysis, annotation and visualization of 
gene function [27]. We set the Cytoscape plugins ClueGo 
and Cluepedia to P < 0.01 was considered statistically sig-
nificant to visualize the GO function of core genes and 
KEGG pathway enrichment analysis [28].

Drug‑gene interactions
The drug-gene interaction database (DGIDB) mines 
available resources to generate hypotheses about how 
mutated genes can be targeted for therapy or prioritized 
for drug development [29]. It provides information on 

drug-gene interactions and known or potential drug 
associations to genes. DGIDB was utilized to explore 
drug-gene interactions associated with the identified 
genes to generate potential targets for existing drugs or 
compounds.

Results
Acquisition of TMGs
Based on the text mining strategy described in the Meth-
ods and Materials section (Fig.  1), 1046 unique genes 
were related to the geriatric population, 18 unique genes 
were related to multimorbidity, and 684 unique genes 
were related to renal insufficiency. Then, all non-dupli-
cate genes were extracted. The union of the extracted 
genes from the two gene sets associated with geriatric 

Fig. 1  Summary of the whole study design. Text mining procedures were conducted using Pubmed2Ensembl to identify genes related to Geriatric 
Multimorbidity (G-M) and Renal insufficiency. Genes collection enrichment was used GeneCodis to find genes enriched in the GO biological 
process terms and KEGG pathways. STRING and CytoHubba were used to construct a protein–protein interaction network and screen the proteins 
encoded by the hub genes according to the degree of the nodes. MCODE were used to identify the related protein network modules and calculate 
the score of each module. DAVID and ClueGO were used to analyze the GO biological process terms and KEGG pathways. DGIDB was used to 
classify potential drug targets based on the lists of significant genes. KEGG: Kyoto Encyclopedia of Genes and Genomes

http://www.geneontology.org
http://www.genome.jp/kegg
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multimorbidity was denoted as the G-M gene set. Among 
them, 351 genes overlapped between the G-M and the 
renal insufficiency set. Hence, we considered that those 
351 genes participated in the biological processes of renal 
insufficiency in patients with geriatric multimorbidity 
(Fig. 2A).

Gene ontology and KEGG pathway analysis
The GeneCodis website was used to visualize GO func-
tional and KEGG pathways to determine the most 
enriched terms closely related to renal insufficiency in 
patients with geriatric multimorbidity. The result of our 
analysis showed that 2717 significantly enriched GO bio-
logical process annotations were identified as 343 unique 
genes. Among them, the five most enriched terms were 
"cytokine-mediated signaling pathway" (P = 2.02245E−57), 
"signal transduction" (P = 1.40787E−45), "negative regu-
lation of apoptotic process" (P = 5.31297E−44), "posi-
tive regulation of gene expression" (P = 4.56741E−41) 
and "response to drug" (P = 5.19875E−39), for 52, 77, 51, 
48 and 39 TMGs, respectively (Table  1). Other highly 

enriched biological processes included "positive regulation 
of transcription by RNA polymerase II", "inflammatory 
response", "response to lipopolysaccharide", "cellular pro-
tein metabolic process" and "response to hypoxia".

To study the function of TMGs and the enrichment of 
signaling pathways, KEGG pathway enrichment analy-
sis was also performed on the identified TMGs using 
GeneCodis. The KEGG pathway enrichment analysis 
identified 242 important pathways involving 270 TMGs. 
Table  2 shows that most of the important signaling 
pathways that were enriched were "pathways in cancer" 
(P = 2.40582E−63), "cytokine-cytokine receptor interac-
tion" (P = 9.03679E−52), "AGE-RAGE signaling pathways 
in diabetic complications" (P = 1.20609E−43), "PI3K-Akt 
signaling pathway" (P = 1.90881E−39) and "HIF-1 signal-
ing pathway " (P = 6.07415E−36) involved 58, 39, 29, 36 
and 25 TMGs, respectively (Table 2). Other highly con-
centrated pathways included the “metabolic pathways”, 
“proteoglycans in cancer”, “transcriptional misregulation 
in cancer”, “fluid shear stress and atherosclerosis” and 
"Human cytomegalovirus infection".

Fig. 2  Identification and enrichment analysis of the TMGs. A Venn diagram analysis was carried out between the G-M and Renal insufficiency using 
the Venny website. The 351 genes that were common were considered to be associated to G-M and Renal insufficiency. B The protein–protein 
interaction (PPI) network of the 216 target TMGs were visualized by Cytoscape
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Table 1  Top 10 enriched GO terms assigned to the text mining genes

Process Genes in 
query set

Total genes 
in genome

Corrected 
hypergeometric 
P value

Genes

Cytokine-mediated signaling pathway 52 298 2.02245E−57 CDKN1A, CD4, GRAP2, CASP3, TNFSF11, VIM, VEGFA, VCAM1, 
TP53, TNFRSF1B, TNF, TIMP1, TGFB1, SHC1, CCL5, CCL2, SAA1, 
BCL2, RELA, PTGS2, PRTN3, POMC, PF4, MUC1, MMP9, MMP3, 
MMP2, MMP1, KIT, JAK2, ITGAM, FASLG, IL18, IL17A, IL10, IL8, 
IL6ST, IL6, IL4, IL2RA, IL2, IL1B, IFNA1, ICAM1, HMOX1, HIF1A, 
HGF, GRB2, FN1, AKT1, F3, CCR5

Signal transduction 77 1541 1.40787E−45 CD34, CD4, ADIPOQ, CASR, TNFRSF10A, TNFSF10, CALCR, 
VEGFA, SCGB1A1, TTR, TLR4, TIMP1, TIE1, SRI, SPP1, SOX9, 
SHC1, CCL5, CCL2, BCR, OPN1SW, TNFRSF17, S100A6, RET, 
PTHLH, PRL, PPARG, POMC, PLXNA2, ATM, TNFRSF11B, NGF, 
NFKB1, NR3C2, MAS1, LTA, LEP, KIT, JAK2, FASLG, FAS, IRS1, INS, 
IL18, IL10, IL8RB, IL8, IL6ST, IL6, IL4, IL1B, IGFBP2, IGFBP1, IGF1, 
IFNA1, ANXA5, HIF1A, GSK3B, ABR, GNB3, GH1, GAS6, GAST, 
FLNB, AKT1, ESR1, EPO, EPAS1, AGTR1, EGF, RAPH1, RETN, 
ADRBK1, ADRB2, CD244, ADM, CCR5

Negative regulation of apoptotic process 51 509 5.31297E−44 CDKN1A, CD44, CD40LG, CD28, CAT, CASP3, WT1, VHL, VEGFA, 
UCP2, TP53, TIMP1, TAF9, AURKA, SOX9, SOD2, SOD1, SHC1, 
BCL2, RELA, OPA1, NGF, NFKB1, MPO, MMP9, SMAD3, LRP1, 
LEP, KDR, FAS, IL10, IL6ST, IL6, IL4, IL2, IGF1, HSPD1, HSPA5, 
ANXA5, HIF1A, HGF, HDAC2, GSK3B, GAS6, AKR1B1, ALB, AKT1, 
EPO, ITCH, DPEP1, GHRL

Positive regulation of gene expression 48 486 4.56741E−41 CDKN2A, CD34, CD28, CASR, TNFSF11, CALCR, FGF23, WT1, 
VIM, VEGFA, VDR, TP53, TNF, TLR4, TGFB1, SOX9, BMP2, RET, 
PLAG1, PF4, ATM, NOS3, NGF, MSN, SMAD3, SMAD2, KIT, APP, 
INS, IL18, IL8, IL6, IL4, IL1B, APOB, IGF1, IFNG, HIF1A, GSN, 
GSK3B, AMH, GAS6, FN1, AKT1, F3, ENG, EGF, CRP

Response to drug 39 279 5.19875E−39 CDKN1A, ADIPOQ, CAT, CASP3, XRCC1, UMOD, SCGB1A1, 
TP53, HNF1B, SST, SOD2, SOD1, BGLAP, BCL2, BCHE, RET, REN, 
RELA, PTH, PPARG, ABCB1, TNFRSF11B, MTHFR, MAS1, LTA, LPL, 
RHOA, IL10, IGFBP2, APOA1, ICAM1, APEX1, HSPD1, HMOX1, 
HDAC2, AMH, FABP3, ENG, EDN1

Positive regulation Of transcription by 
RNA polymerase II

59 1068 7.65307E−37 CDKN2A, CD40, CD28, RUNX2, TP63, TNFSF11, CNBP, WT1, 
VEGFA, VDR, TP53, TNF, TLR4, TGFB1, HNF1B, TAF9, SOX9, BMP2, 
RELA, REL, PTH, PPARG, PPARA, POMC, PLAG1, PF4, PER1, 
SERPINE1, ATM, NOS1, NODAL, NFKB1, MAX, SMAD4, SMAD3, 
SMAD2, IRF1, APP, IL18, IL17A, IL10, IL6, IL4, IL2, IGF1, APEX1, 
HNF4A, HIF1A, HGF, HDAC2, AKT1, ESR1, EPAS1, ENG, MIXL1, 
BCL2L12, EDN1, DDIT3, ADRB2

Inflammatory response 41 403 1.72781E−35 CD44, CD40LG, CD40, CALCA, UMOD, TNFRSF1B, TNF, TLR4, 
TGFB1, TAC1, SPP1, BMP2, SELP, CCL5, CCL2, RELA, REL, PTGS2, 
PF4, NFKB1, MEFV, KNG1, KIT, IDO1, IL18, IL17A, IL8RB, IL8, IL6, 
IL2RA, IL1B, HSPG2, AKT1, AGTR1, ITCH, AGER, DPEP1, F11R, 
CRP, ADM, CC5

Response to lipopolysaccharide 31 172 2.05775E−34 CASP3, VCAM1, UMOD, SCGB1A1, TNFRSF1B, TLR4, THBD, TFPI, 
TAC1, SOD2, SELP, REN, RELA, NOS3, NOS1, MPO, LTA, JAK2, 
FASLG, IDO1, IL10, IL1B, APOB, ICAM1, HSPD1, HDAC2, GGT1, 
EPO, EDN1, CYP27B1, ADM

Cellular protein metabolic process 32 198 5.1266E−34 CALCA, FGF23, TTR, TIMP1, TF, SPP1, SAA1, PRL, SERPINA1, 
P4HB, NPPA, MMP2, MMP1, KNG1, APP, INS, APOE, IL6, APOB, 
IGFBP3, IGFBP2, IGFBP1, IGF1, APOA1, HSPG2, GSN, GAS6, FN1, 
ALB, AHSG, CST3, CP

Response to hypoxia 30 170 4.716E−33 ADIPOQ, CAT, CASP3, XRCC1, VEGFA, VCAM1, UCP2, BMP2, 
SOD2, PPARA, ATM, NOS1, MTHFR, MMP2, SMAD4, SMAD3, 
LTA, RHOA, LEP, ICAM1, HSPD1, HMOX1, HIF1A, EPO, EPAS1, 
ENG, EDN1, AGER, HIF3A, ADM
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PPI network construction, identification of Hub genes 
and Modular analysis
Various biological data networks can be obtained 
through correlation analysis, including information about 
signal transduction pathways, gene regulation and pro-
tein–protein interaction. We input the target genes into 
the STRING website. A PPI network of 270 target genes 
was constructed through analysis. The constructed PPI 
network consisted of 216 nodes and 1087 edges (Fig. 2B). 
Five of those genes were not included in the constructed 

PPI network. We ran the plugin CytoHubba in Cytoscape. 
The topological network algorithm was used to assign a 
value to each gene and rank each gene according to its 
degree in the correlation analysis result. The darker the 
color, the higher the score and the more significant the 
gene (Fig. 3A). According to the analysis results, 79 nodal 
genes with nodal degree ≥ 10 were selected (Table  3). 
Then, we found the hub genes in the PPI network, which 
referred to the gene with the highest connection in the 
module. As illustrated in Fig. 3B, APP, IL6, KNG1, AKT1, 

Table 2  Top 10 enriched KEGG pathways assigned to the text mining genes

Process Genes 
in query 
set

Total genes 
in genome

Corrected 
hypergeometric 
P value

Genes

Pathways in cancer 58 370 2.40582E−63 CDKN2A, CDKN1A, CASP3, FGF23, VHL, VEGFA, TP53, TGFB1, 
BMP2, BCR, BCLBAX, RET, RELA, PTGS2, PPARG, NOTCH3, NFKB1, 
MMP9, MMP2, MMP1, MAX, SMAD4, SMAD3, SMAD2, RHOA, 
KNG1, KIT, JAK2, FASLG, FAS, IL8, IL6ST, IL6, IL4, IL2RA, IL2, IGF1, 
IFNG, IFNA1, HMOX1, HIF1A, HGF, HDAC2, GSTT1, GSTM1, 
GSK3B, GRB2, GNB3, FN1, AKT1, ESR1, EPO, EPAS1, AGTR1, AGT, 
EGF, EDN1

Cytokine-cytokine receptor interaction 39 148 9.03679E−52 CD40LG, CD40, CD4, TNFRSF10A, TNFSF10, TNFSF11, TNFRSF1B, 
TNF, TGFB1, BMP2, CCL5, CCL2, TNFRSF17, PRL, PF4, TNFRSF11B, 
NODAL, NGF, LTA, LEP, FASLG, FAS, IL18, IL17A, IL10, IL8RB, IL8, 
IL6ST, IL6, IL4, IL2RA, IL2, IL1B, IFNG, IFNA1, AMH, GH1, EPO, CCR5

AGE-RAGE signaling pathway in dia-
betic complications

29 77 1.20609E−43 CASP3, VEGFA, VCAM1, TNF, THBD, TGFB1, CCL2, BCL2, BAX, RELA, 
SERPINE1, NOS3, NFKB1, MMP2, SMAD4, SMAD3, SMAD2, JAK2, 
IL8, IL6, IL1B, ICAM1, FN1, AKT1, F3, AGTR1, AGT, EDN1, AGER

PI3K-Akt signaling pathway 36 225 1.90881E−39 CDKN1A, FGF23, YWHAE, VWF, VEGFA, TSC2, TP53, TLR4, SPP1, 
BCL2, RELA, PRL, NOS3, NGF, NFKB1, KIT, KDR, JAK2, FASLG, IRS1, 
INS, IL6, IL4, IL2RA, IL2, IGF1, IFNA1, HGF, GSK3B, GRB2, GNB3, 
GH1, FN1, AKT1, EPO, EGF

HIF-1 signaling pathway 25 76 6.07415E−36 CDKN1A, VHL, VEGFA, TLR4, TIMP1, TF, BCL2, RELA, EPO, SER-
PINE1, NPPA, NOS3, NFKB1, INS, IL6, IGF, IFNG, HMOX1, HIF1A, 
GAPDH, AKT1, ENO2, ENO1, EGF, EDN1

Metabolic pathways 44 559 7.22668E−35 PHGDH, CEL, HPSE, KL, CAT, TKTL1, UROD, TYRP1, SCD, SAT1, 
ACSM3, RENBP, PTGS2, PIK3C2A, PAH, NOS3, NOS1, NEU1, 
NAGLU, MTHFR, ARG2, LBR, IDO1, HSD11B1, HMOX1, ACACA, 
GSTT1, GSTM1, GSR, GLA, GGT1, GAPDH, FUT2, AKR1B1, ALDH2, 
ENO2, ENO1, CNDP1, DPYD, CYP27B1, CYP3A5, CHDH, CYP3A4, 
COMT

Proteoglycans in cancer 27 142 9.0523E−32 HPSE, CDKN1A, CD63, CD44, CASP3, VEGFA, TP53, TNF, TLR4, 
TGFB1, MSN, MMP9, MMP2, SMAD2, RHOA, KDR, FASLG, FAS, 
IGF1, HSPG2, HIF1A, HGF, GRB2, FN1, FLNB, AKT1, ESR1

Transcriptional misregulation in cancer 25 112 2.446E−31 CDKN1A, CD40, RUNX2, WT1, TP53, BAX, RELA, REL, PPARG, PLAT, 
ATM, NFKB1, MPO, MMP9, MMP3, MAX, ITGAM, IL8, IL6, IGFBP3, 
IGF1, HDAC2, GZMB, EYA1, DDIT3

Fluid shear stress and atherosclerosis 23 98 2.08996E−29 VEGFA, VCAM1, TP53, TNF, THBD, CCL2, BCL2, RELA, PLAT, NOS3, 
NFKB1, MMP9, MMP2, RHOA, KDR, IL1B, IFNG, ICAM1, HMOX1, 
GSTT1, GSTM1, AKT1, EDN1

Human cytomegalovirus infection 26 161 8.37841E−29 CDKN2A, CDKN1A, CASP3, VEGFA, TSC2, TP53, TNF, CCL5, CCL2, 
BAX, RELA, PTGS2, NFKB1, RHOA, FASLG, FAS, IL8RB, IL8, IL6, IL1B, 
IFNA1, GSK3B, GRB2, GNB3, AKT1, CCR5
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VEGFA, APOB, FN1, TIMP1, ALB and TNF were the 10 
hub genes with the highest connectivity in the module. 
If these selected genes were supported by relevant clini-
cal research data in the research progress, we could fur-
ther study the association between these proteins and 
patient survival. To further obtain more gene modules, 
we used the MCODE plugin to analyze the 79 target 
genes screened in the previous step and obtained 5 mod-
ules (Fig. 4A–E). We selected the two modules with the 
highest scores (including 40 genes) by calculating net-
work scores for further analysis. Module 1 contained 26 
nodes and 241 edges. Module 2 contained 14 nodes and 
69 edges.

In order to further analyze the enrichment of core 
genes, we conducted Gene ontology and KEGG path-
way analysis for the two modules selected in the previ-
ous step. The results showed that the 26 genes in module 
1 were mainly related to platelet degranulation (BP), 
cytoplasmic membrane-bounded vesicle lumen (CC) 
and receptor binding (MF) (Fig. 5A). On the other hand, 
the 14 genes in module 2 were mainly associated with 
G-protein coupled receptor signaling pathway (BP), 

extracellular space (CC), and G-protein coupled recep-
tor binding (MF) (Fig. 5B). Pathway enrichment analysis 
showed that the genes in module 1 were associated with 
the HIF-1, PI3K-Akt, MAPK, Rap1, and FoxO signaling 
pathways (Fig.  5C). Conversely, the genes in module 2 
were significantly correlated with the chemokine,  phos-
pholipase, and Nod-like receptor signaling pathways 
(Fig. 5D). Module 1 contained 26 genes with 241 edges, 
all of which were core genes, indicating that module 
1 played a vital role in the PPI network. 26 genes were 
selected as core candidate genes for the PPI networks. 
The enrichment analysis indicated that these genes were 
significantly enriched in platelet alpha granule lumen, 
HIF-1 signaling pathway, Melanoma, protein kinase acti-
vator activity, Complement and coagulation cascades and 
AGE-RAGE signaling pathway in diabetic complications 
(P < 0.01, Fig. 6).

Drug‑gene interaction analysis of core genes
The final confirmed genes were used to conduct drug-
gene interaction analysis and an initial list of 34 drugs 
was obtained (Table 4). Thirty-four drugs targeted by 21 

Fig. 3  Categorize the degree and analyze Hub genes. A All nodes of PPI were presented according to degree by CytoHubba. The degree decreases 
from inside to outside and the color changes from dark to light. B The first 10 hub genes in the macro module were identified by CytoHubba 
plug-in. The image shows degree from red to yellow, the significance of genes declines



Page 9 of 16Zhang et al. BMC Medical Genomics          (2022) 15:212 	

of the 26 core genes (except IGF1, KNG1, PF4, SERPINA1 
and TIMP1) may be potential therapeutic agents for renal 
insufficiency in geriatric multimorbidity patients. The 26 
core genes in the analysis results were mainly enriched 
in PI3K-Akt signaling Pathway, HIF-1 signaling Pathway, 
Pathways in cancer and Vitamin digestion and absorp-
tion. The main links between drugs, genes, and pathways 
are displayed in Fig. 7.

Discussion
By applying a series of bioinformatics methods to explore 
gene expression, we identified 351 genes involved in renal 
insufficiency in geriatric multimorbidity patients. Among 
these genes enriched go biological process terms, which 
have so far been shown to be primarily associated with 
renal insufficiency iucluding cytokine-mediated signaling 
pathway [30], signal transduction [31], negative regula-
tion of apoptotic process [32], positive regulation of gene 
expression [33], response to drugs [34], positive regula-
tion Of transcription by RNA polymerase II [35], inflam-
matory response [36], response to lipopolysaccharide 
[37], cellular protein metabolic process [38] and response 
to hypoxia [39]. In addition, the results of KEGG path-
way analysis corresponding to 351 genes related to renal 
insufficiency including cytokine-cytokine receptor inter-
action [40], AGE-RAGE signaling pathways in diabetic 
complications [41], PI3K-Akt signaling pathway [42], 
HIF-1 signaling pathway [42], metabolic pathways [43], 
proteoglycans in cancer [44], transcriptional misregula-
tion in cancer [45], fluid shear stress and atherosclerosis 
[46] and Human cytomegalovirus infection [47]. Path-
ways in cancer may be associated with renal impairment, 
but the correlation needs to be further verified.

The PPI network and CytoHubba explored the correla-
tion connectivity between these genes (Fig. 3A) and iden-
tified 10 pivotal genes, including APP, IL6, KNG1, AKT1, 
VEGFA, APOB, FN1, TIMP1, ALB, and TNF(Fig.  3B). 
Relevant literature have shown that IL6, AKT1, VEGFA, 
FN1, TIMP1, ALB and TNF are associated with renal 
insufficiency. According to current literature, there are 
no studies on the other hub genes and their effect on 
renal insufficiency. However, these genes may also play a 
significant role in renal insufficiency. The MCODE analy-
sis generated 26 core genes, including CST3, SERPINA1, 
FN1, PF4, IGF1, KNG1, IL6, VEGFA, ALB, TIMP1, 
TGFB1, HGF, SERPINE1, APOA1, APOB, FGF23, EGF, 
APOE, VWF, TF, CP, GAS6, APP, IGFBP3, P4HB,  and 
SPP1, that participated in the HIF-1, PI3K-Akt, MAPK, 
Rap, and FoxO signaling pathways.

Table 3  Hub node genes in the PPI network identified with 
filtering node degree ≥ 10

Degree: Represents the number of connections between a node and other 
nodes. In network analysis, the higher the degree of a protein, the correlation 
between it and many other proteins is proved and it can be considered as a key 
protein

MCC (Maximal Clique Centrality): MCC algorithm can calculate the core targets 
in the network and has been proved to be an accurate method for predicting 
important targets in CytoHubba

Name Degree MCC Name Degree MCC

APP 50 9.22E+13 P4HB 19 9.22E+13

IL6 44 9.22E+13 CP 19 9.22E+13

KNG1 44 9.22E+13 HSPG2 18 870

AKT1 38 1.86E+03 SMAD4 18 134

VEGFA 35 8.72E+10 ITGAM 18 25

APOB 33 9.22E+13 IL1B 17 6744

FN1 31 9.22E+13 VWF 17 8.72E+10

TIMP1 30 9.22E+13 HGF 17 8.72E+10

ALB 29 9.22E+13 IL2 17 5088

TNF 29 6252 CASR 17 4.04E+07

APOA1 28 9.22E+13 CCR5 17 3.99E+07

EGF 28 8.72E+10 ADRB2 17 6056

SHC1 26 4286 SMAD3 16 128

RELA 26 3075 IRS1 16 1634

CXCL8 26 4.00E+07 MMP9 15 104

SERPINA1 25 9.22E+13 SST 15 4.00E+07

GAS6 25 9.22E+13 CCL5 14 3.99E+07

APOE 25 9.22E+13 HIF1A 13 99

IGF1 25 8.72E+10 LEP 13 95

GRB2 25 4154 CCL2 12 2916

INS 25 2607 LPL 12 2169

TP53 25 85 LRP1 12 1474

GNB3 24 4.04E+07 ESR1 12 48

JAK2 23 2276 ADRBK1 12 378,240

TGFB1 23 8.72E+10 PTH 12 5050

RHOA 23 946 CD40LG 11 72

PF4 23 8.72E+10 CASP3 11 30

SPP1 22 9.22E+13 CXCR2 11 3.99E+07

IGFBP3 22 9.22E+13 TAC1 11 403,206

NFKB1 22 880 CD4 11 729

TF 22 9.22E+13 PPARG​ 11 43

AGT​ 22 4.04E+07 MMP2 10 66

IL4 21 6585 KIT 10 771

FGF23 21 9.22E+13 ICAM1 10 731

POMC 21 4.00E+07 TLR4 10 844

CST3 20 9.22E+13 APOC3 10 4320

SERPINE1 20 8.72E+10 CDKN1A 10 75

EDN1 20 368,215 GAST 10 403,200

AGTR1 20 449,598 CALCA 10 5.05E+03

IL10 19 3815
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The results showed that Interleukin 6 (IL-6) is an auto-
crine growth factor secreted by  mesangial cells and is 
involved in the pathological proliferation of mesangial 
cells [48]. A meta-analysis showed that serum cystatin 
C is superior to serum creatinine as a marker of renal 
function [49]. Serum albumin levels have been shown 
to further predict the clinical outcomes in patients with 
CKD undergoing cardiac resynchronization therapy [50]. 
Among these genes, APOA1, APOB, and APOE all belong 
to the apolipoprotein family. ApoA1 was negatively asso-
ciated with eGFR decline during a short period of one 
year [51]. APOB-containing lipoproteins complex of the 
medium and low-density apolipoprotein complexes may 
contribute to renal insufficiency by interacting with glo-
merular or tubulointerstitial problems [52]. Patients with 
high APOE2 levels have a higher risk of developing CKD 
or even ESRD because APOE2 affects the clearance of 

very-low-density lipoprotein (VLDL) and chylomicron 
(CM) remnants [53]. FN1 mutations lead to glomeru-
lar disease with fibronectin deposition [54]. Excessive 
FN production can accelerate glomerulosclerosis and 
tubulointerstitial fibrosis and increase the incidence of 
diabetic nephropathy (DN) by causing the thickening of 
the glomerular and tubular basement membranes [55]. 
Fibroblast growth factor 23 (FGF23) regulates phosphate 
reabsorption and 1alpha-hydroxylase activity in the kid-
ney [56]. Studies have shown that FGF23 levels appear 
to be independently associated with mortality in dialysis 
patients [57]. SPP1 (Osteopontin) is a cell-attached glyco-
protein and its expression correlated with the severity of 
the renal tubulointerstitial injury [58]. In the process of 
renal aging, the high expression of TIMP-1 up-regulates 
the expression of PTEN through an MMP-independent 
pathway and subsequently leads to aging-related vascular 

Fig. 4  Description and enrichment analysis of the TMGs. A–E The five modules were carried out from PPI network using MCODE. A Module 1, the 
most significant module with 26 nodes; B Module 2; C Module 3; D Module 4; E Module 5
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damage [59]. TGFB1 can further induce renal intersti-
tial fibrosis through endothelial-to-mesenchymal transi-
tion (EndMT) [60]. Individuals with renal insufficiency 
with increased VWF levels may have an increased risk of 
venous thrombosis [61]. Decreased vascular endothelial 
growth factor A (VEGFA) levels are associated with glo-
merular microangiopathy [62]. Currently, there are few 
studies on the direct relationship between APP, CP, EGF, 
GAS6, HGF, IGF1, IGFBP3, KNG1, SERPINE1, SER-
PINA1, TF, PF4 and P4HB, and renal insufficiency in rel-
evant literature, which can provide a reference for future 
studies on renal insufficiency with geriatric multimorbid-
ity patients.

HIF is involved in the renal fibrosis process during 
the disease course of CKD through gene transcription, 

signaling pathways, epithelial-mesenchymal transition 
and epigenetic regulation [63]. The PI3K-Akt signaling 
pathway is mainly involved in regulating cell proliferation, 
migration, differentiation and angiogenesis [64]. Helix B 
surface peptide (HBSP) can improve renal ischemia–rep-
erfusion injury, renal function and also improve apopto-
sis after ischemia–reperfusion injury by regulating the 
PI3k/Akt pathway [65]. Activating mitogen-activated 
protein kinase (MAPK) and lipopolysaccharide (LPS) can 
lead to the increased transcription of pro-inflammatory 
cytokines, which can directly affect renal parenchyma, 
promote renal tubular cell apoptosis and directly induce 
AKI [66]. Decreased RAP1-GTP mediated by elevated 
RAP1GAP levels may be a crucial factor in inducing 
podocyte dysfunction in human glomerular disease [67]. 

Fig. 5  Gene ontology and KEGG pathway analysis of the genes in the first two modules. A Top 18 significantly enriched GO terms in module 1. B 
Top 12 Significantly enriched GO terms in module 2. C Top 15 significantly enriched KEGG pathways in module 1. D Top 15 significantly enriched 
KEGG pathways in module 2. The functional and pathway enrichment analyses were performed using DAVID. KEGG: Kyoto Encyclopedia of Genes 
and Genomes
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FoxO bound to β-catenin can prevent rHTGF-1-induced 
profibrosis [68].

As many drugs are metabolized through the kidneys, 
they might damage renal function. Potential drugs iden-
tified through the search of drug-gene interaction are 
mainly divided into protecting renal function, damag-
ing renal function and adjusting doses according to 
renal function. Burosumab treats x-linked patients with 
hypophosphatemia (XLH) by antagonizing FGF23, 
increasing renal tubular phosphate reabsorption and 
normalizing serum phosphorus concentrations [69]. 
Additional preclinical and clinical studies are warranted 
to determine whether blocking FGF23 with burosumab 
will provide a new targeted intervention for mineral 
metabolism disorders in CKD [70]. Adalimumab (ADA) 
is a tumor necrosis factor (TNF-α) inhibitor that reduces 
or suppresses inflammatory processes by inhibiting pro-
inflammatory cytokines [71]. ADA pretreatment may 
play a role in experimental renal insufficiency [72]. Sil-
tuximab inhibited tumor growth of human renal car-
cinoma in nude mice by binding to IL-6 [73]. Related 
studies have shown that angiotensin receptor blockers 
(ARB) can play a role in renal protection through mul-
tiple and complex mechanisms [74]. Olmesartan may 
delay or prevent microalbuminuria in type 2 diabetes 
mice, improving renal function [75]. In animal models, 

ramipril significantly reduced the number of glomeru-
lar and tubule-interstitial fibrosis and activated fibro-
blasts, exerting a protective effect on the kidney [76]. 
Defibrotide can prevent the upregulation of endothelial 
dysfunction markers induced by a uremic environment, 
and downregulate the expression of HDACs through the 
PI3/AKT signaling pathway, thus playing a protective 
role in the endothelia [77]. In addition, cholestyramine 
[78], mipomersen [79] and soybean oil can regulate lipid 
metabolism and directly improve renal function [80]. 
Glp-1 RA inhibits NHE3-dependent sodium reabsorp-
tion in the proximal tubule and has a direct renal protec-
tive effect on the renin-angiotensin system, which can 
improve inflammation, ischemia/hypoxia, apoptosis and 
neural signaling [81]. Studies have shown that imatinib 
mesylate interferes with PDGF and TGF-β activated 
signaling cascade and improves renal tubulointerstitial 
fibrosis [82]. Hydroxychloroquine (HCQ) reduces renal 
insufficiency by downregulating NLRP3 inflammasomes 
activation mediated by CTSB and CTSL [83].

According to literature, ranibizuma [84], cetuxi-
mab [85], aflibercept [85], warfarin [86], gadofosveset 
[87], fluorouracil [88] and penicillamine [89] may cause 
renal insufficiency through a variety of ways. Moreover, 
the dose of ribavirin [90], ganciclovir [91], metronida-
zole [92], levofloxacin [93] and digoxin [94] needs to be 

Fig. 6  Function analysis of the 26 core genes in module 1. A Enriched GO terms and KEGG pathways. B Functions and pathways of the core genes 
were computed and visualized using ClueGO. C Distribution of the functions and pathways among the core genes. Each function or pathway is 
color coded. Corrected P < 0.01 was considered statistically significant. KEGG: Kyoto Encyclopedia of Genes and Genomes
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adjusted according to renal function. Currently, the rela-
tionship between ademetionine, caplacizumab, pegap-
tanib sodium, lomitapide mesylate, calcitonin, urokinase, 
cetrorelix, iodipamide, dexrazoxane, ocriplasmin, and 
renal insufficiency has not been reported in the existing 
literature. Future studies could further investigate the 
association between these drugs and renal insufficiency.

In conclusion, we identified 26 core genes, CST3, 
SERPINA1, FN1, PF4, IGF1, KNG1, IL6, VEGFA, ALB, 
TIMP1, TGFB1, HGF, SERPINE1, APOA1, APOB, FGF23, 

EGF, APOE, VWF, TF, CP, GAS6, APP, IGFBP3, P4HB, 
and SPP1, that may be related to renal insufficiency in 
patients with geriatric multimorbidity. These genes were 
enriched in the HIF-1, PI3K-Akt, MAPK, Rap1, and FoxO 
signaling pathways. We also identified 34 drugs that may 
help guide the future treatment of renal insufficiency in 
patients with geriatric multimorbidity. The lack of experi-
mental verification is a limitation of this study, and further 
experimental studies are needed to verify these results.

Table 4  Details of the 34 drugs that potentially target of the 26 core genes

Interaction: The nature of drug interaction with target genes

Score: Drug interaction scores with target genes

Approved?: (Yes*) Drugs that have been approved by the US Food and Drug Administration

Number Drug Genes Interaction Score Drug class Approved? PubMed ID

1 BUROSUMAB FGF23 antagonist 255.17 Not available NO 29545670

2 ADEMETIONINE TF N/A 15.95 Not available NO None found

3 ADALIMUMAB TF N/A 3.75 Not available Yes* 27115882

4 CAPLACIZUMAB VWF inhibitor 13.67 Antibody fragment NO None found

5 SILTUXIMAB IL6 antagonist 10.21 Therapeutic antibodies Yes* 8823310

6 LEVOFLOXACIN IL6 N/A 1.28 Not available NO 12714806

7 METRONIDAZOLE IL6 N/A 1.28 Not available NO 12111578

8 RANIBIZUMAB VEGFA inhibitor 8.81 Antibody fragment Yes* 18046235

9 PEGAPTANIB SODIUM VEGFA antagonist 3.36 Aptamer Yes* 23953100

10 AFLIBERCEPT VEGFA antibody 2.35 Therapeutic antibodies/fusion protein NO 22813448

11 LOMITAPIDE MESYLATE P4HB inhibitor 3.54 Not available Yes* None found

12 CALCITONIN SPP1 N/A 3.54 Small molecule Yes* 8013390

13 CETUXIMAB EGF N/A 3.38 Therapeutic antibodies Yes* 25677871

14 DEFIBROTIDE SERPINE1 N/A 3.19 Not available Yes* 12745658

15 UROKINASE SERPINE1 inducer 3.19 Thrombolytic agents/protein Yes* 12709915

16 CETRORELIX SERPINE1 N/A 2.13 Fertility agents/peptide Yes* 16391860

17 GADOFOSVESET ALB N/A 3.04 Not available NO None found

18 IODIPAMIDE ALB N/A 3.04 Not available NO None found

19 OLMESARTAN MEDOXOMIL ALB N/A 3.04 Not available NO 22086979

20 CHOLESTYRAMINE APOB N/A 2.36 Not available Yes* 3906004

21 MIPOMERSEN APOB N/A 1.77 Antisense oligo Yes* None found

22 RIBAVIRIN CST3 N/A 1.93 Not available Yes* 18637076

23 DIGOXIN CST3 N/A 1.88 Cardiotonic agents/small Molecule Yes* 17698593

24 GANCICLOVIR APOE N/A 1.88 Not available Yes* 16322528

25 SOYBEAN OIL APOE N/A 1.5 Not available Yes* 3021887

26 WARFARIN GAS6 N/A 1.77 Anticoagulants/small molecule Yes* 16014032

27 GLUCAGON APOA1 N/A 1.59 Not available Yes* 3130065

28 DEXRAZOXANE CP N/A 1.52 Not available Yes* 8285144

29 PENICILLAMINE CP N/A 1.3 Not available Yes* 11721763

30 OCRIPLASMIN FN1 cleavage 1.29 Not available Yes* 23193358

31 IMATINIB MESYLATE HGF N/A 0.91 Not available NO 11439348

32 RAMIPRIL TGFB1 N/A 0.86 Antihypertensive agents Yes* 15716710

33 FLUOROURACIL IGFBP3 N/A 0.61 Not available Yes* 20860465

34 HYDROXYCHLOROQUINE APP N/A 0.37 Small molecule Yes* 11117548
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