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Abstract

Background: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response
and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-
based, case-control study.

Methods/Principal Findings: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of
white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a
modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed
the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and
genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of
associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer.
These included rs5762746 (median OR(odds ratio)per allele = 0.66; 95% credible interval (CI) = 0.44–1.00) and rs6005835
(median ORper allele = 0.69; 95% CI = 0.53–0.91) in CHEK2, rs2078486 (median ORper allele = 1.65; 95% CI = 1.21–2.25) and
rs12951053 (median ORper allele = 1.65; 95% CI = 1.20–2.26) in TP53, rs411697 (median OR rare homozygote = 0.53; 95% CI = 0.35
– 0.79) in BACH1 and rs10131 (median OR rare homozygote = not estimable) in LIG4. The six most highly associated SNPs are
either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be
associated in a large follow-up study.

Conclusions/Significance: Based on our findings, further follow-up of the DNA repair and response pathways in a larger
dataset is warranted to confirm these results.
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Introduction

Ovarian cancer is the leading cause of mortality among

gynecologic cancers [1]. The highly lethal serous histological type

comprises about two-thirds of cases and causes most disease-

related deaths. Reproductive factors such as high parity, oral

contraceptive use, breast feeding, hysterectomy, and tubal ligation

protect against ovarian cancer [2], whereas infertility and

endometriosis increase risk [3,4]. The biological mechanisms that

underlie these risk factors are not well understood, but

inflammation-related oxidative stress has been proposed as a

unifying theory by which these risk factors could cause genomic

damage leading to the development of cancer [5,6,7,8,9]. If this

theory is correct, it is plausible that the risk of ovarian cancer

would be modified by common genetic variants that affect the

efficacy of DNA repair genes [10,11].

Several lines of evidence suggest that DNA repair pathways play

an important role in ovarian carcinogenesis. First, all of the high

penetrance ovarian cancer susceptibility genes that have been

identified thus far play a role in DNA repair. In this regard,

deleterious mutations in the BRCA1 and BRCA2 genes reduce

repair of double stranded DNA breaks. In addition, the germline

mutations in DNA mismatch repair genes that cause Hereditary

Nonpolyposis Colon Cancer (HNPCC) syndrome also strikingly

increase ovarian cancer risk [12,13]. Second, somatic mutations in

the TP53 gene are the most commonly acquired molecular
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alterations described thus far in high grade serous ovarian cancers

[14,15,16]. TP53 is involved in maintenance of genomic integrity

via several mechanisms including induction of cell cycle arrest in

response to DNA damage, DNA repair and regulation of

apoptosis.

The above observations led us to hypothesize that common

polymorphisms in genes associated with DNA response and repair

or the p53-DNA damage checkpoint might increase ovarian

cancer risk. We focused on 477 tagging single nucleotide

polymorphisms (SNPs) and seven additional amino acid changing

SNPs in 53 genes in DNA damage response and repair pathways.

We used a Bayesian model search strategy called Multi-level

Inference for SNP Association (MISA) [17] to analyze these SNPs

for evidence of association with ovarian cancer using data from the

population-based North Carolina Ovarian Cancer Study

(NCOCS).

Bayesian methods are becoming a far more common choice for

analysis of genetic association studies ([18] and references therein).

This can be attributed to several factors including several key

advantages the Bayesian paradigm has over the frequentist

paradigm and to the increasing availability of software specifically

designed for Bayesian analysis of genetic association data such as

the MISA package employed here. The key shortcoming to testing

in the frequentist paradigm is in its failure to explicitly account for

the likelihood of the association arising under the alternative

hypothesis, i.e. to account for power – data that generate a small

p-value under the null may also be very unlikely under the

alternate hypothesis [18]. In contrast, Bayesian methods provide

measures of association – Bayes factors (BFs) and posterior

probabilities – that explicitly account for the likelihood of the data

under the competing hypotheses. This comes at the cost of

additional modeling assumptions; namely, specification of prior

probabilities for each hypothesis and prior distributions over

model parameters conditional on the hypotheses.

MISA [17] improves upon SNP-at-a-time (marginal) methods

by modeling phenotype as a function of a multivariate genetic

profile and, as a result, provides measures of association adjusted

for the remaining markers. MISA employs Bayesian Model

Averaging [19], [20] to account for uncertainty in the specification

of the true model of association, something that stepwise logistic

regression and other model selection approaches such as lasso do

not do. This has important implications: methods that identify a

single model may miss important SNPs due to LD structure. In

addition, MISA provides summaries of the degree to which the

data support an association at the level of individual variants,

genes and pathways while allowing for inference regarding the

genetic parameterization (log-additive, dominant or recessive) of

each SNP. The prior distribution employed by MISA was carefully

chosen for the multiplicity correction it induces.

Materials and Methods

Study subjects
Cases and controls were participants in the NCOCS, conducted

in a 48-county region of North Carolina. A detailed description of

the study has been published previously [2,21]. Briefly, cases were

identified through the North Carolina Central Cancer Registry

using rapid case ascertainment. Eligible cases, aged 20 to 74, were

diagnosed with epithelial ovarian cancer between 1999 and 2007.

Histologic slides were obtained and all cases underwent standard-

ized histopathologic review by the study pathologist (RCB) to

confirm diagnosis. The response rate among eligible cases was

70%. We found little difference in demographic and clinical

characteristics among cases who participated in this study

compared to those who declined. Control women were identified

from the same region using random digit dialing and were

frequency matched to cases by age (five-year categories) and race

(black or non-black). Seventy-three percent of potential controls

who passed the eligibility screening agreed to be sent additional

study information. Among those sent study information, the

response rate was 64 percent. Although the control response rate is

somewhat low, this has not affected associations with established

epidemiological risk factors [2,21]. Additionally, it is unlikely that

participation would have been influenced by genotype. The

protocol was approved by the Duke University Medical Center

Institutional Review Board and the human subjects committees at

the Central Cancer Registry and each hospital where cases were

identified.

We restricted the current analyses to white, non-Hispanic

invasive serous ovarian cancer cases (n = 364) and white non-

Hispanic controls (n = 761) with genotype data meeting quality

control requirements. Participants had blood drawn during their

in-person interview by the study nurse. Germline DNA was

extracted from peripheral blood lymphocytes using PureGene

DNA isolation reagents, according to manufacturer’s instructions

(Gentra Systems, Minneapolis, MN).

Genotyping Methods
We selected a broad group of candidate genes in the DNA

repair and response pathways (Table S1) that likely interact with

BRCA1 or BRCA2 or are involved in double strand break,

mismatch repair, nucleotide excision repair, or base excision

repair. We tagged these 53 candidate genes using release 19 of the

International HapMap Project’s (www.hapmap.org)[22] CEU

founder population and the ldSelect program [23]. We tagged

the region beginning 10,000 base pairs upstream and ending

10,000 base pairs downstream of each gene so as to include the

coding, non-coding and regulatory regions. ldSelect identified bins

of SNPs with minor allele frequency (MAF) $0.05 using a pair-

wise linkage disequilibrium (LD) threshold of r2$0.8. We chose to

genotype two tags in bins where all SNPs had low Illumina design

scores to improve expected coverage. For purposes of analysis, we

retained the tag with the more accurate genotype calls as

measured by call frequency and concordance rate in the CEPH

trios. Of the 671 tagging SNPs genotyped, 61 were nonsynon-

ymous; an additional 14 non-tagging amino acid changing SNPs

were also genotyped when the tag that was chosen was also

nonsynonymous. All nonsynonymous SNPs that met the criteria

for the Illumina Golden Gate assays were included. The samples

were genotyped using an Illumina Golden Gate AssayTM at the

Duke Institute for Genome Sciences and Policy (IGSP), with cases

and controls randomly mixed on each of 21 plates. Six CEPH-

Utah trios (Coriell Institute, Camden, N.J.) were distributed across

six plates. The plates were processed in four batches by the

genotyping facility. SNPs that could not be called using the

Illumina BeadStudio software on more than 1% of samples within

a batch were treated as missing for that batch. We used logistic

regression analysis to determine if batch and DNA quality metrics

were associated with case-control status.

We evaluated the accuracy of the genetic data using SNP- and

subject-specific quality control analyses. First, we removed from all

association analyses SNPs with one or more CEPH genotypes in

disagreement with their published values, i.e. those that had an

estimated error rate greater than or equal to 1/18 assuming the

published genotypes are correct. Second, we utilized the X2

goodness of fit test with continuity correction 0.25 to test for

departures from Hardy-Weinberg-Equilibrium (HWE) among

controls [24] and among the 60 CEPH parents using their
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published genotypes at the loci of interest. We removed a subset of

samples on the basis of an analysis of the left tail of the distribution

of p-values for HWE. This subset accounted for the Illumina

GenCall 50th percentile score (GC50PCT) of each sample and

used the corresponding distribution estimated from the HapMap

CEPH samples for comparison. Reported estimates of minor allele

frequency (MAF) are the minimum of the observed allele

frequencies among controls.

Twenty-two of the 685 DNA repair SNPs on the assay had call

rates below 99% on all four batches and were removed from

further consideration. Thirty-seven of the remaining 663 SNPs

had less than 95% concordance in the CEPH samples between our

genotype calls and those published by HapMap and were removed

from further consideration. Of those remaining, 484 were non-

redundant and included in all subsequent analyses. A QQ plot of

the HWE p-value distribution over these SNPs using all 787 white

non-Hispanic controls showed evidence of an overabundance of

small p-values relative to what is expected under the uniform

distribution. The corresponding plot based on the HapMap

genotypes of the 60 CEPH parents did not have this property.

The number of SNPs with a HWE p-value less than 0.01

calculated using all 787 white non-Hispanic controls was 17; using

the HapMap sample, it was 5. Assuming the p-values are

independent and uniformly distributed the expected number less

than 0.01 is 4.84, the 2.5th percentile of this distribution is 1 and

the 97.5th percentile is 10.

This suggests that, rather than having a population genetic

explanation, this departure is likely due to genotyping errors. To

verify this, we considered removing samples with an Illumina

GC50PCT less than a threshold larger than the customary 0.7. We

systematically increased the threshold up to 0.8 and found that the

distribution of HWE p-values was dramatically improved at a

threshold of 0.789. This choice left 364 (of 390) cases and 761

controls. Using this threshold, there were 9 SNPs with a HWE p-

value less than 0.01. All further analyses were conducted using

these samples and their genotype data on the 484 non-redundant

SNPs passing our quality control analysis.

Statistical Methods
MISA Analysis. We used MISA to identify likely associations

and the genetic parameterizations of associated SNPs. MISA

implements a model search over logistic regression models for

case-control status given the SNP variables and a set of design and

potential confounding variables. In the current analyses, age at

diagnosis/interview, batch, the DNA quality metric GC50PCT,

and interaction terms between batch and GC50PCT are the

‘design’ variables included in all models. We refer to the model

with only the design variables as the model of ‘no genetic

association,’ or ‘null’ model for short. It is

logit P Di~1jZi,M~0ð Þð Þ~a0zZi
0b0

where Di is the indicator of whether subject i is a case, M is a

model identifier, a0 is the intercept, Zi is the vector of design

variables for subject i, and b0 is the vector of coefficients of the

variables in Zi under the null model. Adding main effects for any

combination of the SNPs to the null model will define a model of

association. MISA allows each included SNP to have a log-

additive, dominant or recessive parameterization. MISA uses an

evolutionary Monte Carlo algorithm to sample models in this class

according to their posterior probabilities. This stochastic search is

carried out in lieu of an enumeration of the models on account of

their huge number.

Because of the astronomical number of statistical models of the

above form, MISA incorporates a permissive single SNP-at-a-time

(marginal) Bayes Factor (BF) screen using the entire set of non-

redundant SNPs to eliminate SNPs unlikely to be associated in the

multivariate logistic regression model. Wilson et al. [17] show that

the screen followed by the multivariate adjusted analysis from

MISA provides increased power to detect associations over the

marginal analysis alone, with minimal increase in false positive

rates. They show that MISA also has much better power than

standard multiple comparison adjustment methods and false

discovery rate procedures, stepwise logistic regression or the lasso.

MISA utilizes a prior distribution over model parameters

calibrated for small to modest effect sizes and a beta-binomial

prior distribution on the number of SNPs included in a model. The

latter distribution induces a multiplicity correction by specifying a

global prior odds of association that is independent of the number

of SNPs or genes in the analysis. Its parameters, a = 1/8 and b = S

(the number of SNPs in the model search phase), were chosen on

basis of the results of a simulation experiment to achieve a desired

balance between false positive and false negative rates. More detail

on the statistical methods employed in this analysis can be found in

Wilson et al. [17] (Text S1).

Bayesian Inference. Both the marginal and multivariate

analyses use Bayes factors (BFs) to measure evidence in favor (or

against) an association. The BF is equivalently a generalized

likelihood ratio and an odds ratio. In the former characterization it

is the ratio of the likelihood of the data under one model (e.g. a

model of genetic association) to another (e.g. a model of no genetic

association). Instead of taking the ratio of sampling models under

each hypothesis evaluated at the most likely parameter value

(MLE) of each as in the Frequentist paradigm, the BF is the ratio

of the sampling models averaged over their respective prior

distributions on the model parameters. In the latter

characterization, BFs are defined as the ratio of the posterior

odds of a hypothesis (or model) of association to the prior odds (p/

(1- p)) of that hypothesis and, hence, measure the degree to which

the data update the odds of that hypothesis of association

[25,26,27]; with a BF of 10, the posterior odds of an association

are 10 times larger than the prior odds. Under a commonly used

scale of evidence [28], BFs between 1.0 and 3.2 are ‘weakly

supportive’, those between 3.2 and 10 are ‘supportive’, those

between 10 and 30 are ‘strongly supportive’, those between 30 and

100 are ‘very strong’ and those above 100 are ‘decisive’ for support

of association (we have changed the names of several of these

categories, but not their interpretation). A BF for no association is

simply the reciprocal of the BF for an association, thus unlike p-

values BFs can provide a measure of support in favor of a null

hypothesis. BFs may be converted to posterior odds (PO = BF x

p/(1- p)), and to posterior probabilities of association (PPA = PO/

(1+ PO)) to provide an ‘‘absolute’’ measure of evidence of

association[18]. The posterior probabilities may be used as part of

a decision analysis to determine which SNPs to pursue further. A

threshold of 0.5 for the PPA, assumes that false positives have the

same cost as false negatives. For preliminary studies, a lower

threshold may be more appropriate.

Missing Data. There were no missing design variables. We

used fastPHASE [26] to generate 100 imputations of the missing

genotype data given the observed, unphased genotype data. The

screen’s marginal BFs were calculated as the simple average of the

BFs for each of the 100 imputed data sets. We compared these BFs

to those calculated with a single data set in which the missing

genotypes were replaced by their modal value determined from

the 100 imputations. The two sets of BFs had correlation 0.998.

For this reason and because computations are greatly streamlined,
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we used the single data set with ‘modal fill-ins’ for the MISA

analysis.

Our imputation procedure assumes that missing SNP genotypes

are ignorable, i.e. either missing completely at random (MCAR) or

missing at random (MAR). We used the marginal BF software to

check this assumption by investigating whether a SNP’s pattern of

missingness was conditionally independent of case-control status

given the observed data we have for explaining missingness. The

design variables in this analysis were the same as used in the screen

and in MISA. For purposes of this calculation, we used the 0–1

indicator for a SNPs missingness in place of its genotype data and

calculated BFs for association of this indicator to case-control

status under the log-additive model for SNPs with five or more

missing values (60 SNPs).

Design Variables. Logistic regression analysis of case-control

status on batch and GC50PCT indicated a strong batch effect

(p,10e27), largely driven by an uneven allocation of cases and

controls in batch four and a batch-GC50PCT interaction

(p = 0.02). On the basis of this analysis, we include batch,

GC50PCT, the interaction between batch and GC50PCT in all

association models along with age.

Haplotype Analysis. Associations with one or more SNPs in

a gene may occur when those variants tag a risk haplotype. We

used Haploview 4.1 to carry out haplotype association tests to

ascertain whether this might be the case in the genes containing

the most highly associated SNPs.

Results

NCOCS Candidate DNA Repair Gene Analysis
In the marginal SNP-at-a-time analysis of the 484 non-

redundant SNPs passing quality control, S = 77 SNPs passed the

marginal screen (maximum marginal BF .1.0). (The results of the

screening phase of analysis, including median odd ratios (ORs),

95% credible intervals (CIs) and MAFs for all 484 SNPs are shown

in Table S2.) We ran MISA using the 77 SNPs that passed the

screen with parameters a = 1/8 and S = 77, which leads to marginal

prior odds of association in this subset of 1/axS = 0.0016. Table 1

lists the SNP-specific BFs for the 41 SNPs in 25 genes that had a

MISA BF .1.0. The table also reports the most likely genetic

model for each SNP, the posterior probability of that model and

median ORs and 95% CI estimates.

Of these 41 SNPs, six SNPs in four genes (CHEK2, TP53,

BACH1 and LIG4) have MISA BF .10 providing evidence for an

association between these SNPs and ovarian cancer. These are

rs5762746 (BF = 28.940) and rs6005835 (BF = 28.028) in CHEK2,

rs2078486 (BF = 19.604) and rs12951053 (BF = 14.062) in TP53,

rs411697 (BF = 15.909) in BACH1 and rs10131 (BF = 10.864) in

LIG4. Fourteen SNPs in seven genes including GADD45B, MSH3,

MSH6, NBS1, RAD52, TP53, and XRCC5 had BFs ranging from

3.39–9.09, with posterior odds that are 3.39 to 9.09 times larger

than the prior odds. The SNP-specific Bayes Factors are composite

measures that average over statistical models of association that

include that SNP while adjusting for other potentially associated

SNPs and their genetic parameterizations. Hence, they explicitly

account for uncertainty in the specification of the statistical model

of association.

Figure 1 summarizes the associations of the 20 SNPs with MISA

BF.3.2. This plot summarizes the top 100 models selected on the

basis of their posterior model probabilities. Models are ordered on

the x-axis in descending probability and the width of the column

associated with a model is proportional to that probability. SNPs

are represented on the y-axis. Presence of a SNP in a model is

indicated by a colored block at the intersection of the model’s

column and the SNP’s row. The color of the block indicates the

genetic parameterization of the SNP in the given model: purple for

log-additive, blue for recessive and red for dominant. A

checkerboard pattern as opposed to a pattern of strong vertical

bands indicates substantial model uncertainty. Seventy-eight of the

top 100 models depicted in Figure 1, including the top 48 models,

include only a single SNP in addition to the design variables. Only

22 of the top 100 models included two SNPs and none of them

included more than two. The top model includes only the log-

additive genetic parameterization of rs6005835 in CHEK2 with a

Maximum A Priori (MAP) estimate of the OR of 0.70. The second

ranked sampled model is comprised of the log-additive genetic

parameterization of rs5762746 in CHEK2 with a MAP OR of

0.73. SNPs rs6005835 and rs5762746 in CHEK2 have a modest

LD, measured as r2 of 0.5.

Models that incorporate multiple SNPs represent 22 of the top

100 models by number, but only 7.8% of their total posterior

mass. The low relative weighting of this class of models is largely a

result of the strong MISA multiplicity correction that controls the

false positive rate associated with calls made on the basis of SNP-

specific BFs. The highest ranked multi-SNP model (rank = 49)

includes CHEK2 rs5762746 and TP53 rs2078486. These variants

are complementary predictors, each explaining as much variability

in case-control status when modeled alone as when modeled in the

presence of the other. This suggests that SNPs from multiple genes

related to DNA damage repair provide complementary informa-

tion for characterizing ovarian cancer risk.

Haplotype Analysis.. A Haploview [29] analysis of CHEK2,

TP53, BACH1 and LIG4, containing the top six SNPs, showed no

evidence for multi-SNP (haplotype-based) risk genotypes.

Analysis of missing data. Of the 60 SNPs with more than 4

missing SNP genotypes, only six had BFs.1.0 for conditional

dependence of case-control status on missingness given the design

variables. Four of these BFs were in the range from 1.01 to 1.49

and are not of concern. The remaining two, rs11571789 in

BRCA2 (BF = 3.80) and rs1805794 in NBS1 (BF = 4.60), were

‘supportive’ of association. These may be due either to chance or

to the presence of an unmeasured confounder and reflect a pattern

of non-ignorable missingness. Missing data imputations that ignore

the possibility of low frequency polymorphisms which interfere

with the ability to assay a probe will not account for the LD

between the rare associated variant and the SNP with missing

values. The ultimate effect when fitting the association models for

this SNP will be for the SNPs apparent effect to be biased. BRCA2

rs11571789’s maximum marginal BF for association with ovarian

cancer was 0.26 (‘supportive’ of no association) and was not

included in the MISA analysis. NBS1 rs1805794’s maximum

marginal BF was 1.76 and its MISA BF was 3.82. This modest

evidence in favor of association should be interpreted in light of

the potential for this effect to have been confounded.

Discussion

The results of this study provide evidence for an association

between several genes in the DNA repair and response pathways

and risk of invasive serous ovarian cancer. There was strong

support for associations between ovarian cancer and two SNPs in

CHEK2, two SNPs in TP53, and one SNP each in BACH1, and

LIG4. Our analyses are also supportive of associations between

four SNPs in NBS1, three SNPs in MSH3, three SNPs in RAD52,

and one SNP each in GADD45B, MSH6, TP53, and XRCC5 and

invasive serous ovarian cancer. To our knowledge, this is the first

study suggesting associations between ovarian cancer and SNPs in

CHEK2, BACH1, XRCC5, NBS1, MSH6, RAD52, and GADD45B.

DNA Repair and Ovarian Cancer
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Table 1. Results from MISA for 41 of 77 analyzed SNPs with a Bayes Factor (BFs) .1.0.

Most Likely Model

SNP Gene Model Probability Median OR (95% CI)* BF

BFs are strongly supportive of an association

rs5762746 CHEK2 Log Additive 0.643 0.66 (0.44, 1.00) 28.940

rs6005835 CHEK2 Log Additive 0.752 0.69 (0.53, 0.91) 28.028

rs2078486 TP53 Log Additive 0.653 1.65 (1.21, 2.25) 19.604

rs411697 BACH1 Recessive 0.988 0.53 (0.35, 0.79) 15.909

rs12951053 TP53 Log Additive 0.618 1.65 (1.20. 2.26) 14.062

rs10131 LIG4 Recessive 0.988 NA{ 10.864

BFs are supportive of an association

rs2287497 TP53 Log Additive 0.623 1.50 (1.14, 1.96) 9.086

rs11571424 RAD52 Recessive 0.962 7.55 (1.70, 33.47) 8.388

rs3732191 MSH6 Recessive 0.428 NA 7.589

rs16855489 XRCC5 Dominant 0.963 0.69 (0.54, 0.88) 7.353

rs32989 MSH3 Dominant 0.675 0.73 (0.57, 0.93) 6.527

rs6470522 NBS1 Recessive 0.48 1.91 (0.77, 4.75) 5.712

rs245346 MSH3 Log Additive 0.608 0.76 (0.61, 0.95) 5.493

rs929461 GADD45B Recessive 0.932 NA 4.933

rs7307680 RAD52 Dominant 0.804 0.72 (0.55, 0.94) 4.796

rs4703819 MSH3 Recessive 0.963 NA 4.422

rs1805794{ NBS1 Recessive 0.471 0.67 (0.42, 1.07) 3.823

rs1063045{ NBS1 Recessive 0.557 0.66 (0.41, 1.07) 3.682

rs11571461 RAD52 Recessive 0.875 NA 3.484

rs1061302{ NBS1 Recessive 0.55 0.66 (0.40, 1.07) 3.388

BFs are weakly supportive of an association

rs1981929 MSH2 Dominant 0.900 1.40 (1.09, 1.80) 3.116

rs7546055 GADD45A Dominant 0.709 1.32 (1.04, 1.68) 2.687

rs2832283 BACH1 Log Additive 0.586 0.70 (0.42, 1.17) 2.468

rs6151640 MSH3 Recessive 0.950 0.14 (0.02, 0.97) 2.381

rs4150383 ERCC5 Dominant 0.710 0.74 (0.58, 0.96) 2.289

rs175057 MLH3 Dominant 0.849 1.41 (1.07, 1.87) 2.169

rs2299612 FANCG Dominant 0.847 1.37 (1.07, 1.74) 2.046

rs1011980 XRCC4 Recessive 0.938 0.48 (0.27, 0.86) 2.000

rs1498313 MSH4 Dominant 0.766 1.33 (1.02, 1.73) 1.952

rs7735781 XRCC4 Recessive 0.906 NA 1.893

rs3093933 PARP2 Recessive 0.667 0.63 (0.36, 1.11) 1.826

rs7190823{ FANCA Recessive 0.875 1.48 (1.09, 2.00) 1.699

rs3780560 FANCC Recessive 0.784 NA 1.588

rs1233276 PMS1 Recessive 0.693 1.83 (1.08, 3.10) 1.460

rs2678681 PARP2 Recessive 0.799 NA 1.456

rs13292454 FANCC Log Additive 0.463 2.11 (0.58, 7.68) 1.418

rs709816{ NBS1 Recessive 0.723 0.65 (0.44, 0.95) 1.360

rs4253211{ ERCC6 Log Additive 0.406 0.45 (0.11, 1.88) 1.326

rs1006548 FANCA Recessive 0.918 1.91 (1.12, 3.25) 1.239

rs5030783 RAD51 Recessive 0.893 0.64 (0.43, 0.95) 1.236

rs769412{ MDM2 Log Additive 0.438 1.40 (1.00, 1.96) 1.073

Abbreviations: MISA, Multilevel Inference for SNP Association Studies; SNP, single nucleotide polymorphism; BF, Bayes factor; OR, odds ratio; CI, credible interval.
*The OR corresponds to the posterior mode (equivalent to the maximum likelihood estimate (MLE)) under the normal prior distribution with mean equal to the MLE on
coefficients implied by AIC under the most likely genetic model identified by MISA. The 95% CI is the 95% equal tailed posterior credible interval under the normal
prior.
{The maximum likelihood estimate does not exist.
{Indicates the SNP is a nonsynonymous coding SNP (i.e., amino acid changing).
doi:10.1371/journal.pone.0010061.t001
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As discussed below, there is evidence that several of the most

highly associated SNPs may have functional significance.

We used SNPInfo analysis [30] to determine if any of the six

SNPs with a MISA BF .10 were in LD with a putative functional

variant or are predicted to have functional significance. We

examined each HapMap SNP with LD of 0.5 or higher to one of

the six top SNPs. Table S3 reports whether the variant is predicted

to affect a transcription factor binding site, a splicing site, an

miRNA binding site or alter the structure of a protein product. In

addition, it indicates whether the SNP is a non-synonymous or

nonsense variant and reports its regulatory potential and sequence

conservation scores. Based on this analysis, both rs10131 in LIG4

and rs9587535 in ABHD13, a SNP in high LD with rs10131

(LD = 0822) are predicted by miRanda [31] to affect an miRNA

binding site. In addition, rs10131 has a high predicted sequence

conservation score (for a non-coding variant). Two other LIG4 LD

SNPs (rs1931336 and rs9587535 with LD 0.59 and 0.82 with

rs10131, respectively) also have this property. Several variants in

weak LD (0.5,LD,0.7) with TP53 rs12951053 are predicted to

affect a transcription factor binding site; one of these (rs17882227)

is in perfect LD with TP53 rs2078486, one of the most highly

associated SNPs. In addition, rs2287498 in WDR79 (in perfect LD

with rs2078486 and in LD (R2 = 0.62) with rs12951053) is

predicted to affect function at a splice site and a non-synonymous

variant (rs2287499) in WDR79 in weak LD with the two most

highly associated TP53 SNPs is predicted by PolyPhen [32] to be

benign. Several of the non-coding TP53 variants have high

regulatory potential and/or sequence conservation scores; of these

rs17882227 is in highest LD (1.0) with a top candidate

(rs2078486). SNP rs388707 in LD with BACH1 rs411697 is

predicted to affect splicing, while another SNP (rs425989) in LD

with rs411697 is predicted by miRanda to affect an miRNA

Figure 1. Models are ordered on the x-axis in descending posterior probability with the width of the column associated with a
model proportional to the model’s posterior probability. Individual SNPs are represented on the y-axis with labels giving the gene and RS
number for the SNP and are ordered on the basis of the Bayes Factor in favor of SNP association, which are given on the y-axis on the right side of the
plot. The presence of a SNP in a model is indicated by a colored block at the intersection of the model’s column and the SNP’s row, while the color of
the block indicates the parameterization of the SNP: purple for log-additive, blue for recessive and red for dominant.
doi:10.1371/journal.pone.0010061.g001
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binding site. In addition, three intronic SNPs in LD with our

BACH1 candidate have sequence conservation scores greater than

0.1, suggesting that they may be functionally interesting. Several

variants in and near CHEK2 demonstrate the potential to affect

function. There are a number of non-coding CHEK2 SNPs (e.g.

rs5762629, rs2346397 and the top SNP rs6005835) with high

regulatory potential or sequence conservation scores. In addition

to having a high regulatory potential score, SNP rs6005835 in

CHEK2 is predicted to affect a transcription factor binding site.

In addition to the functional significance, a recently published

multi-center study [33] (which included data from the NCOCS)

examined six SNPs in TP53 and validated our findings (with and

Table 2. Comparison of SNPs with MISA Bayes Factors .1.0 to previously published data.*

Gene

Associated
SNP(s) from
NCOCS

MISA BF for associated
SNP(s) from NCOCS

SNPs examined
in previous studies

Maximum r2 and/or r2$0.75
between associated NCOCS
SNP and SNP from previous study

TP53 rs2078486
rs12951053
rs2287497

19.604
14.062
9.086

rs2078486[33]{

rs12951053[33]{

rs2287497[33]{

1.00 (rs2078486, rs2078486)
1.00 (rs12951053, rs12951053)
1.00 (rs2287497, rs2287497)

NBS1 rs6470522 rs1805794
rs1063045 rs1061302
rs709816

5.712
3.823
3.682
3.388
1.360

rs1805794[34]
rs1063045[34]
rs1061302[34]
rs709816[34]

1.00 (rs1805794, rs1805794)
1.00 (rs1061302, rs1061302)
1.00 (rs1063045, rs1063045)
1.00 (rs709816, rs709816)

LIG4 rs10131 10.864 rs1805386[37] 0.02 (rs10131, rs1805386)

MLH3 rs175057 2.169 rs7303[35]
rs175080[35]

0.93 (rs175057, rs175080)
0.78 (rs175057, rs7303)

MSH2 rs1981929 3.116 rs4952887[35]{

rs2303428[35]{

rs1981928[35]
rs2059520[35]
rs3771274[35]
rs3771281[35]
rs13425206[35]

0.44 (rs1981929, rs3771274)

MSH3 rs32989
rs245346
rs4703819
rs6151640

6.527
5.493
4.422
2.831

rs26279[35]
rs10079641[35]
rs6151662[35]{

rs26282[35]
rs26779[35]
rs33008[35]
rs40139[35]
rs184967[35]
rs2112416[35]
rs2897298[35]

1.00 (rs32989, rs26279)
1.00 (rs6151640, rs10079641)

MSH6 rs3732191 7.589 rs2348244[35]
rs3136245[35]{

rs1800932[35]
rs1800935[35]
rs3136272[35]
rs3136317[35]
rs2020911[35]

0.40 (rs3732191, rs2348244)

PMS1 rs1233276 1.460 rs3762545[35]
rs5742981[35]
rs5741593[35]
rs1233291[35]
rs1233255[35]
rs1233258[35]
rs256571[35]
rs256563[35]

0.85 (rs233275, rs1233255)

RAD52 rs11571424
rs7307680
rs11571461

8.388
4.796
3.484

rs11226[34]
rs4987208[38]

0.06 (rs11571461, rs11226)

RAD51 rs5030783 1.236 rs1801320[34]
rs1801321[34]

0.48 (rs5030783, rs1801321)

Abbreviations: NCOCS, North Carolina Ovarian Cancer Study; SNP, single nucleotide polymorphism; BF, Bayes factor; MISA, Multilevel Inference for SNP Associations.
NOTE: SNPs in bold font are common to both the current NCOCS study and to previously reported studies.
*Previous reports include: Multiple reports from the same study;[34,35,36] one report that used data from two related case-control studies in Australia;[38] one Ovarian
Cancer Association Consortium (OCAC) meta-analysis[37] that includes overlap of data from the Auranen et al.[34] and Beesley et al.[38] studies; and one OCAC analysis
that includes data from the current NCOCS study[33].
{SNP was statistically significantly associated with ovarian cancer in the previous study.
{The ORs for the heterozygote genotypes, but not the homozygote rare genotypes, were statistically significant. The overall p- trend values were greater than 0.05.
1SNP was statistically significantly associated with ovarian cancer in the Auranen et al.[34] study but not the other two published studies.
doi:10.1371/journal.pone.0010061.t002
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without the NCOCS data). SNPs with strong evidence for

association in our study include two tagging SNPs in TP53,

rs12951053 and rs2287497, both of which were replicated with

posterior median ORs of 1.19 (95% CI: 1.01, 1.38) and 1.30 (95%

CI: 1.07, 1.58), respectively [33]. A third SNP in TP53, rs2078486,

was also associated with ovarian cancer in three independent

datasets in the same report. Although our data support that two

SNPs in the CHEK2 gene are associated with the risk of

developing invasive serous ovarian cancer, it is of note that one

prior study in Poland did not find evidence for an association

between invasive epithelial ovarian cancer of any histologic

subtype and three founder alleles in the CHEK2 gene but did

find evidence for an association with ovarian tumors of low

malignant potential and the CHEK2 I157T missense variant

{Szymanska-Pasternak, 2006 #447}.

Other studies that have assessed associations between variants in

the DNA repair genes included in the current analysis and ovarian

cancer risk [34,35,36,37] are summarized in Table 2. Differences

in the findings between studies when the SNPs were in high LD

may be explained by differences in the analytic approach and the

mode of inheritance analyzed. Our approach included a two-

staged analysis plan that provided increased power to detect SNP

associations and accounted for multiple modes of inheritance. A

strength of the current study was the restriction to invasive serous

ovarian cancers, whereas previous reports often combined

histologic subtypes. By restricting to the serous invasive subtype,

we achieve a more homogenous subset of ovarian cancers likely to

have similar etiology and genetic factors and avoid diluting the

magnitude of associations. In addition, inclusion of prevalent,

rather than only incident, cases may be a source of inconsistency

between studies.

Despite the relatively small sample size (364 cases/761 controls)

our analyses provide supportive evidence for associations with

several candidate genes in the DNA repair and response pathways.

Additionally, we have found evidence to suggest that the six most

highly associated SNPs either may have functional significance or

are in LD with a functional variant. Future work to replicate and

characterize these associations in serous ovarian cancer is needed,

as well as an examination of the three other important histologic

subtypes of invasive ovarian cancer including mucinous, endome-

trioid and clear cell cancers. Because ovarian cancer is a leading

cause of gynecologic cancer morbidity and mortality and DNA

repair and response is a vitally-important pathway, the identifi-

cation of genes and genetic variants in these pathways using a well-

informed selection of SNPs may lead to the identification of genes

for targeted preventive studies.
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