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Abstract: Alzheimer’s disease (AD) is the most common form of dementia and is characterized by
irreversible and progressive neurodegeneration. Cholinergic dysfunction has been reported in AD,
and several cholinesterase inhibitors, including natural compounds and synthetic analogs, have
been developed to treat the disease. However, there is currently no treatment for AD, as most
drug-like compounds have failed in clinical trials. Acetylcholinesterase (AChE) is the target of most
drugs used commercially to treat AD. This work focused on screening natural compounds obtained
from the ZINC database (224, 205 compounds) against AChE to identify those possibly capable of
enabling the management of AD. Indirubin and dehydroevodiamine were the best potential AChE
inhibitors with free binding energies of −10.03 and −9.00 kcal/mol, respectively. The key residue
(His447) of the active site of AChE was found to participate in complex interactions with these two
molecules. Six H-bonds were involved in the ‘indirubin–AChE’ interaction and three H-bonds in the
‘dehydroevodiamine–AChE’ interaction. These compounds were predicted to cross the blood–brain
barrier (BBB) and to exhibit high levels of intestinal absorption. Furthermore, ‘indirubin–AChE’ and
‘dehydroevodiamine–AChE’ complexes were found to be stable, as determined by root mean square
deviation (RMSD) during a 50 ns molecular dynamics simulation study. Based on the free binding
energies and stabilities obtained by simulation studies, we recommend that experimental studies
be undertaken on indirubin and dehydroevodiamine with a view towards their potential use as
treatments for AD.

Keywords: Alzheimer disease; molecular dynamics; neurotransmitters; ZINC database; pharmacokinetic

1. Introduction

Alzheimer’s disease (AD) is a typical neurodegenerative condition that affects more
than 46 million individuals globally [1–3]. AD is a deadly neurodegenerative disease for
which no preventative treatment is available [4–7]. In the US, the prevalence of AD is
expected to increase three-fold by 2050 [8], and 121,404 deaths were attributed to AD during
2017, which made it the sixth most common cause of death and the fifth most common
among Americans aged ≥65 years. In 2018, more than 16 million Americans and unpaid
caregivers spent an estimated 18.5 billion hours caring for individuals with AD or another
form of dementia. In 2019, total expenditure on health, long-term care, and hospice facilities
for people age ≥65 years with dementia was projected to be $290 billion [9]. Disturbances
in cholinergic neurotransmission contribute to the memory weakness that characterizes
AD. Currently accessible treatments target cholinergic synapses to increase synaptic levels
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of acetylcholine (ACh) and relieve memory deficits [10]. The brain cholinergic neurotrans-
mitter framework is critical for processing cognitive data [11], and neurotransmitters are
fundamental components of the machinery articulated by neurons [12]. Cholinesterase
inhibitors (ChEIs) have been approved for the symptomatic treatment of AD [13]. Tacrine
was the first ChEI approved by the Food and Drug Administration for the treatment of
AD [14,15], but unfortunately, its side effects, which include gastrointestinal problems and
hepatotoxicity, have limited its use [16].

Plants have been known to have medicinal properties. Plant-derived drugs have been
used to treat a variety of pathological disorders. Recent developments in computational
methods have opened up new possibilities for processing complex natural products and
using their structures to develop novel drugs [17]. Numerous natural and synthetic
compounds have been investigated for effectiveness against AD [18–20]. In particular,
indirubin plays significant roles in the treatments of numerous chronic sicknesses and
has been reported to exhibit strong anti-inflammatory effects and antileukemic efficacy in
chronic myelocytic leukemia [21,22]. Indirubin is a specific cyclin-dependent kinase (CDK)
inhibitor that suppresses the activities of CDK1, CDK2, and CDK5 [23] and inhibits several
eukaryotic cell-signaling pathways [24]. Dehydroevodiamine is a bioactive component of
the Chinese herbal drug [25] and is used to treat cardiovascular and neuropharmacological
diseases [26]. The goal of this research was to screen a wide range of natural compounds
for anti-Alzheimer efficacy using an in silico approach with focus on AChE.

2. Results and Discussion

In this study, we selected the most active natural compounds from a library of
224, 205 compounds in the ZINC database. Of these, seven compounds were found to
have greater binding energy (>−7.5 kcal/mol) with AChE than tacrine and to possess drug-
like properties. Indirubin and dehydroevodiamine were focused on because of their higher
free energy of binding with AChE receptor, as determined by pharmacokinetic analysis.

A schematic of the screening process used is shown in Figure 1.

Figure 1. Procedure used for the structure-based virtual screening of the initially identified
224, 205 compounds.

The Lead-likeness properties and Lipinski of the top seven selected compounds are
provided in Table 1. The pharmacokinetic parameters of indirubin and dehydroevodiamine
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were checked and are detailed in Table 2. The values shown lie in acceptable ranges of
Lead-likeness and Lipinski drug discovery pipeline rules.

Table 1. Drug-like properties of top seven selected compounds.

Compounds ZINC ID Molecular Weight Lead-likeness
Violations

Lipinski
Violations

Binding Energy
(kcal/mol)

Coronopilin ZINC4026171 264.14 0 0 −7.94

Rutaecarpine ZINC898237 287.11 0 0 −8.09

Chelerythrine ZINC3872044 348.12 1 0 −8.13

Chelidonine ZINC30727894 353.13 1 0 −8.08

Epiberberine ZINC6017816 336.12 1 0 −7.54

Indirubin ZINC13597821 262.07 0 0 −10.03

Dehydroevodiamine ZINC13434330 301.12 0 0 −9.00

Tacrine ZINC19014866 198.12 1 0 −5.90

Table 2. Pharmacokinetics properties of selected compounds.

Compound Properties Indirubin Dehydroevodiamine

Lipophilicity

Log Po/w (iLOGP) 2.13 2.88

Log Po/w (XLOGP3) 2.73 2.11

Log Po/w (WLOGP) 2.81 0.24

Log Po/w (MLOGP) 1.70 2.78

Log Po/w (SILICOS-IT) 4.10 3.45

Consensus Log Po/w 2.69 2.29

Water Solubility
Log S (ESOL) −3.67 (Soluble) −3.55 (Soluble)

Log S (Ali) −3.76 (Soluble) −2.57 (Soluble)

Log S (SILICOS-IT) −5.70 (Moderately soluble) −5.60 (Moderately soluble)

Pharmacokinetics

Gastrointestinal
absorption High High

Blood–brain barrier
permeant Yes No

P-gp substrate No No

CYP1A2 inhibitor Yes Yes

CYP2C19 inhibitor No No

CYP2C9 inhibitor No No

CYP2D6 inhibitor Yes No

CYP3A4 inhibitor Yes Yes

Log Kp (skin permeation) −5.96 cm/s −6.64 cm/s

Druglikeness

Lipinski Yes; 0 violation Yes; 0 violation

Ghose Yes Yes

Veber Yes Yes

Egan Yes Yes

Muegge Yes Yes

Bioavailability Score 0.55 0.55

Medicinal Chemistry

PAINS 0 alert 0 alert

Brenk 0 alert 0 alert

Lead-likeness Yes Yes

Synthetic accessibility 2.84 3.83
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Free ADME-Tox Filtering Tool (FAF-Drugs4) [27] on the RPBS platform managed by
the Mobyle Portal [28] was used to determine the properties of indirubin and dehydroevo-
diamine. In a recent analysis, it was reported that over 90% of candidate drug failures were
due to hepatotoxicity and cardiovascular complications [29], and thus, in silico approaches
have been utilized to predict some key absorption, distribution, metabolism, excretion and
toxicity (ADME-Tox) properties [30] (Table 2). Drugs that affect the central nervous system
(CNS) may serve as substrates, inhibitors, or inducers of enzymes that are encoded by
metabolic genes. The drugs used for CNS are about 90% utilized by CYP enzymes as major
metabolic pathways, and CNS drugs are major substrates of CYP3A4 [31]. The blood–brain
barrier (BBB) is an important barrier for preserving the brain microenvironment and pro-
tecting the CNS from blood-borne neurotoxins. However, the BBB restricts medication
therapeutic effectiveness in the CNS, making it difficult to manage brain diseases [32].

ADMET and other properties [33,34] (drug-like filter area, rule of 5, and toxicity) of
indirubin and dehydroevodiamine are shown in Figures 2 and 3, respectively, and are
listed in Table 2.

Figure 2. Graphical representation of pharmacokinetic properties of indirubin. (A) 2D structure indirubin, (B) Physico-
chemical filter positioning of ligand, (C) Complexity of ligand, (D) Golden triangle rule (dot represents the position of
compound), (E) Oral absorption, (F) Pfizer rule (dot represents the position of compound).

Molecular interaction studies are used to determine the binding orientations of small
molecules and receptors and predict affinities and activities [35]. In the present study,
the catalytic anionic site of human AChE was found to interact with indirubin through
the amino acid residues Trp86, Tyr124, Tyr133, Glu202, Tyr337, Phe338, Tyr341, and His447;
and with dehydroevodiamine through the amino acid residues Gln71, Tyr72, Asp74, Trp86,
Asn87, Gly120, Gly121, Tyr124, Ser125, Gly126, Tyr133, Glu202, Ser203, Phe297, Tyr337, Phe338,
Tyr341, His447, Gly448, and Ile451. Tacrine was also found to interact through Trp86, Gly120,
Gly121, Gly122, Ser125, Gly126, Leu130, Tyr133, Glu202, Ser203, and Phe338. Interacting amino
acid residues are presented in Table 3.
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Figure 3. Graphical representation of pharmacokinetic properties of dehydroevodiamine. (A) 2D structure dehydroevodi-
amine, (B) Physicochemical filter positioning of ligand, (C) Complexity of ligand, (D) Golden triangle rule (dot represents
the position of compound), (E) Oral absorption, (F) Pfizer rule (dot represents the position of compound).

Table 3. Interacting amino acid residues and hydrogen bonds form between selected compounds with AChE.

Compounds Hydrogen Bond Hydrogen Bond
Distance Interacting Amino Acid Residues

Indirubin

Tyr133:OH-UNK1:C3
Tyr337:OH-UNK1:N12
His447:CD2-UNK1:O10

Tyr124:OH-UNK1
UNK1:H25-Trp86

UNK1:H26-Tyr337

3.279086
2.756860
3.239033
3.208647
4.083150
3.943169

Trp86, Tyr124, Tyr133, Glu202, Tyr337, Phe338,
Tyr341, and His447

Dehydroevodiamine
Tyr133:OH-UNK1:O6

UNK1:O10-His447:NE2
Tyr124:OH-UNK1

3.093207
3.296732
3.212351

Gln71, Tyr72, Asp74, Trp86, Asn87, Gly120,
Gly121, Tyr124, Ser125, Gly126, Tyr133, Glu202,
Ser203, Phe297, Tyr337, Phe338, Tyr341, His447,

Gly448, and Ile451

Tacrine UNK1:H29-Glu202:OE1 2.30175 Trp86, Gly120, Gly121, Gly122, Ser125, Gly126,
Leu130, Tyr133, Glu202, Ser203, and Phe338

Based on these results, we concluded that, of the three residues that constitute the cat-
alytic triad, namely, Ser203, His447, and Glu334 [36–38], His447 of AChE interacts with indiru-
bin and dehydroevodiamine. We further investigated these interactions in the hope that this
might aid the design of AChE inhibitors. The binding free energies and estimated inhibition
constants of indirubin–AChE, dehydroevodiamine–AChE, and tacrine–AChE interactions
were determined to be −10.03 kcal/mol and 4.36 µM, −9.00 kcal/mol and 4.25 µM, and
−5.90 kcal/mol and 47.32 µM, respectively [39]. These results predicted that indirubin and
dehydroevodiamine are more efficient AChE inhibitors than tacrine. Indirubin formed
six hydrogen bonds (Tyr133:OH-UNK1:C3; Tyr337:OH-UNK1:N12; His447:CD2-UNK1:O10;
Tyr124:OH-UNK1; UNK1:H25-Trp86; UNK1:H26-Tyr337), and dehydroevodiamine formed
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three hydrogen bonds (Tyr133:OH-UNK1:O6; UNK1:O10-His447:NE2; Tyr124:OH -UNK1)
(Figure 4).

Figure 4. The complex structures of ACHE with indirubin and dehydroevodiamine (A) H-bond interactions in AChE–
indirubin. (B) H-bond interactions in AChE–dehydroevodiamine.

On the other hand, tacrine formed only one hydrogen bond with Glu202 (UNK1:H29-
Glu202:OE1) of AChE. These findings suggest that indirubin and dehydroevodiamine form
more stable complexes with AChE than tacrine [40,41]. The lengths of these hydrogen
bonds are provided in Table 3, and Van der Waals’, hydrogen bond, desolvation, and
intermolecular energies are listed in Table 4.

Table 4. Different energies obtained by docking between selected compounds and AChE.

Compounds Binding Energy
(kcal/mol)

Inhibition
Constant

(µM)

Intermolecular
Energy

Van der Waals’, ‘Hydrogen
Bond’ and ‘Desolvation

Energy’

Electrostatic
Energy

Indirubin −10.03 4.36 −7.31 −7.33 −0.02

Dehydroevodiamine −9.00 4.25 −7.50 −7.46 −0.05

Tacrine −5.90 47.32 −6.17 −6.11 −0.06

Several reports have checked best docking scores complex by molecular dynamics
(MD) simulation [42–46]. Thus, we performed 50 ns MD simulations on indirubin and
dehydroevodiamine to evaluate the stabilities of complexes and investigate possible ligand
binding modes. Docked complexes in best docking conformations of AChE with indirubin
and dehydroevodiamine were subjected to MD simulation to confirm their stabilities. MD
trajectories were analyzed in a time-dependent manner and included root mean square
deviations (RMSDs) and radii of gyration (Rg) of all backbone atoms. RMSDs of protein
backbone atoms were plotted versus time to check stabilities throughout MD simulations.
Rg values describe molecular dimensions, which are calculated as average root squares
of distances between residues and the complex centers of gravity and provide measures
of levels of molecular compaction. The plots of RMSD, RMSF, Rg, H-bond, and solvent-
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accessible surface area (SASA) for AChE–indirubin and –dehydroevodiamine complexes
for 50 ns at 300 K are shown in Figures 5 and 6.

Figure 5. (A) 3D interaction of AChE–indirubin, (B) RMSD plot, (C) RMSF plot, (D), solvent accessible surface area
(E) Radius of gyration plot and (F) H-bond interaction for AChE–indirubin complex.

Figure 6. (A) 3D interaction of AChE–dehydroevodiamine, (B) RMSD plot, (C) RMSF plot, (D) solvent accessible surface
area (E) Radius of gyration plot and (F) H-bond interaction for AChE–dehydroevodiamine complex.
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Based on MD simulation studies, the binding free energies of indirubin and dehy-
droevodiamine against AChE were −146.00 and −126.70 kJ/mol, respectively. Other
energy values for the complexes are provided in Table 5. Summarizing, our results show
AChE–indirubin and –dehydroevodiamine complexes maintained structural integrity dur-
ing MD simulations.

Table 5. Different energies obtained by MD between selected compounds and AChE.

S.No. Energy (kJ/mol) ‘Indirubin–AChE’
Complex ‘Dehydroevodiamine–AChE’ Complex

1. Binding energy −146.0+/−9.5 −126.7+/−10.9

2. Van der Waal energy −177.0+/−8.4 −159.4+/−9.1

3. Electrostatic energy −55.4+/−8.4 −2.4+/−3.3

4. Polar solvation energy 101.8+/−10.1 50.4+/−7.6

5. SASA energy −15.4+/−0.71 −15.3+/−0.84

3. Materials and Methods
3.1. Compound Library Preparation

Natural compounds were retrieved from the ZINC database (https://zinc.docking.org,
accessed on 15 April 2021) by selecting ‘natural_products’ as a ‘subset’ under the ‘sub-
stances’ category. A total of 224,205 compounds were retrieved, downloaded in .sdf format,
imported into Discovery Studio 2020, and processed using the ligand preparation tool.

3.2. Preparation of Receptor

A 3D structure of human AChE (PDB ID: 3LII) was obtained using RCSB-PDB
(www.rcsb.org, accessed on 15 April 2021). The PDB file of AChE was cleaned, and het-
eroatoms were removed manually because they were non-standard. These heteroatoms
included the atomic coordinates of cofactors, coenzymes, prosthetic groups, metal ions, sug-
ars, drugs, peptides, heavy-atom derivatives, non-standard amino acid residues/nucleotides,
and water molecules [47].

3.3. Structure-Based Virtual Screening

The prepared compound library was screened against the active site of AChE using
AutoDock Vina (version 1.1.2) program. The compound library was converted from .sdf
to.pdbqt format using the Open Babel tool. The XYZ axes of AChE were set as 90.81,
83.98, and −8.04, respectively. Top-ranked compounds obtained from AutoDock Vina were
also processed for ADMET and drug-likeness filtration, and top-ranked compounds were
subjected to in-depth docking analysis using AutoDock 4.2.

3.4. Drug-Likeness Study and ADMET Profiling

The drug-likeness properties were employed to the selected ligands. It included
molecular mass (< = 500 Dalton), high lipophilicity (Log p < = 5), H-bond donors (< = 5),
and H-bond acceptors (< = 10) [48,49].

3.5. Docking Simulations

The molecular interaction study was performed using Autodock version 4.2 suite
and the Cygwin interface [50,51]. The docking protocol included receptor preparation,
ligand preparation, and the plotting of a grid-box based on selected interaction sites around
AChE (dimension 60 × 60 × 60) with grid centers at 90.81, 83.98, and −8.04 [52]. The
Lamarckian genetic algorithm was applied at AChE with indirubin and dehydroevodi-
amine for adaptable docking calculations [53]. The search parameter was set to bind the
AChE with indirubin and dehydroevodiamine. Docking experiments were performed

https://zinc.docking.org
www.rcsb.org
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using automated program (.exe) files of Autogrid and Autodock, which resulted in .glg
and .dlg files. Docking outcomes in .dlg format were analyzed to obtain binding energies
(kcal/mol) and inhibition constants (Ki value-µM/nM).

3.6. Molecular Dynamics

GROMACS 5.1.2 molecular dynamics (MD) [54] was used to analyze the structural
stabilities of AChE–indirubin and –dehydroevodiamine complexes. Ligand topologies
were generated using the PRODRG server [55]. In addition, complexes were solvated
using the SPC216 water model in a triclinic-box of dimension 1.0 nm. Bond angles were
constrained using LINCS [56]. Van der Waals and electrostatic long-range interactions
were applied using fast Particle-Mesh Weald electrostatics (PME) [57]. Additionally, the
Parrinello–Rahman [58] method was used to regulate pressure, and the modified weak
Coupling Berendsen thermostat and Vrescale algorithm were used to regulate system
temperature. The (constant number of particles, volume, and temperature) NVT and
constant number of particles, pressure, and temperature (NPT) were used to monitor
equilibration status. Finally, systems were simulated [59] using 50 ns MD runs. Binding
energy calculations were performed [60].

4. Conclusions

Many compounds have already been reported to have potential activity against AChE,
but none have been granted FDA approval due to failure to cross the BBB, toxicity, and
other shortcomings. In terms of toxicity, natural compounds are generally accepted to be
‘safe’. Our in silico analysis predicted that indirubin and dehydroevodiamine both bind
strongly to the active site residues of AChE and follow the drug-like properties. Further
experimental evaluations of indirubin and dehydroevodiamine may eventually lead to
exciting alternative AD therapies.
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