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Background: Multiple studies suggest a plausible connection between urologic cancers and branched-
chain amino acids (BCAAs) breakdown metabolic enzymes. Nevertheless, there is scarce exploration into 
the variations in circulating BCAAs. In our research, we utilize bidirectional, two-sample Mendelian 
randomization (MR) analysis to predict the link between BCAAs levels and three distinct types of urological 
tumors.
Methods: The study examined data from the UK Biobank, including a comprehensive genome-wide 
association study (GWAS) of total BCAAs, leucine, isoleucine, and valine, alongside three urological system 
tumors [prostate cancer (PCa), kidney cancer, and bladder cancer] sourced from the Medical Research 
Council Integrative Epidemiology Unit (MRC-IEU) and FinnGen Consortium databases. The primary 
analytical approach involved the use of the inverse variance weighted (IVW) method, complemented by MR-
PRESSO global testing and MR-Egger regression to identify potential horizontal pleiotropy. Heterogeneity 
was evaluated using the Cochran Q test.
Results: The levels of circulating total BCAAs [odds ratio (OR) =1.002688, 95% confidence interval (CI): 
1.000, 1.005, P=0.03], leucine (OR =1.0038, 95% CI: 1.001, 1.007, P=0.008), isoleucine (OR =1.003352, 
95% CI: 1.000, 1.007, P=0.04), and valine (OR =1.00279, 95% CI: 1.001, 1.005, P=0.009) showed positive 
associations with PCa risk. However, there was inadequate evidence to establish a link between BCAAs and 
bladder or kidney cancer.
Conclusions: In summary, an association existed between elevated levels of circulating total BCAAs, 
leucine, isoleucine, and valine, and an increased risk of PCa. However, no correlation was detected between 
BCAAs and kidney or bladder cancer.
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Introduction

Tumor growth correlates significantly with changes in 
energy metabolism, a key biochemical feature of cancer cells 
commonly known as the “hallmark of cancer” (1). Cancer 
cells exhibit uncontrolled proliferation and sustained 
growth, depending on obtaining necessary nutrients from 
the tumor microenvironment to support their biomass and 
survival, even in low-nutrient and hypoxic settings (2-4).

Amino acids can be involved in the occurrence and 
development of tumors. They not only form the basic 
building blocks for protein production, but also serve as the 
suppliers of energy and metabolites for tumors (4). Tumors 
have a preference for absorbing branched-chain amino 
acids (BCAAs), in particular isoleucine, leucine, and valine. 
BCAAs make up a substantial part of the necessary amino 
acids, comprising 35% of the total. Previous studies have 
highlighted the crucial role of BCAAs in supporting cell 
survival, growth, proliferation, migration, and invasion (5-8). 
In addition to their direct contribution to protein synthesis, 
the breakdown of BCAAs generates various metabolites 
(e.g., glutamate) that participate in the metabolic processes 

of tumors. Furthermore, through mTORC1, BCAAs 
have the ability to function as signaling molecules that 
stimulate cell proliferation. Recent researches have shown 
that BCAAs play important roles in various malignant 
tumors (7,8), including glioblastoma (9,10), pancreatic 
ductal adenocarcinoma (11,12), leukemia (13,14), non-
small cell lung cancer (15), ovarian cancer (16), clear cell 
renal cell carcinoma (ccRCC) (17), osteosarcoma (18), and 
hepatocellular carcinoma (HCC) (19).

The current emphasis of BCAAs and cancer research 
lies in fundamental investigation, particularly examining 
enzymes associated with breakdown (BCAA transferase, 
BCAT). Yet, limited attention has been given to exploring 
the influence of alterations in circulating BCAAs levels 
on cancer. A recent study by Xu et al. revealed a potential 
connection between circulating BCAAs levels and squamous 
cell lung cancer. However, that study did not extensively 
probe into the examination and analysis of urological 
tumors (20).

We employed Mendel ian randomizat ion (MR) 
methodology to substantiate the link between BCAAs and 
urologic cancers and to offer robust clinical evidence. MR 
is a sophisticated approach that leverages genetic variation 
to investigate connections between exposure factors and 
outcome phenotypes. It can address the constraints of 
observational studies and yield impartial estimates in the 
absence of randomized controlled trials (RCTs) (21). In our 
analysis, we utilized a two-sample bidirectional MR strategy 
to investigate the association between circulating BCAA 
concentration and the incidence of diverse cancers, such as 
prostate cancer (PCa), bladder cancer, and kidney cancer. 
We present this article in accordance with the STROBE-
MR reporting checklist (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-24-1142/rc).

Methods

Study design

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
utilized public genome-wide association studies (GWAS) 
summary data and refrained from collecting new human 
data. With ethical approval and informed consent from 
patients obtained, no further approval was necessary. 
Bidirectional MR analysis was conducted to evaluate the 
relationship between BCAAs (total BCAAs, valine, leucine, 
and isoleucine) and urologic cancers, comprising prostate, 

Highlight box

Key findings
• Some studies have found a certain relationship between branched-

chain amino acids (BCAAs) and urologic cancers (prostate cancer, 
kidney cancer, and bladder cancer). Our research has discovered 
a relationship between BCAAs and prostate cancer, however, no 
relationship has been found between them and kidney or bladder 
cancers.

What is known and what is new?
• Some studies have explored the mechanisms between BCAA 

catabolic enzymes and urologic cancers, indicating that BCAA 
metabolic enzymes may affect urologic cancers through certain 
pathways.

• Few studies have explored the relationship between changes in 
circulating BCAAs and urologic cancers. Therefore, we conducted 
a bidirectional Mendelian randomization analysis with two samples 
to investigate the relationship between the two.

What is the implication, and what should change now?
• Our research results indicate a significant relationship between 

BCAAs and prostate cancer. Currently, there are few studies on the 
relationship between the two. Therefore, our research can provide 
opportunities for early and more effective therapeutic interventions 
for prostate cancer. In future clinical applications, BCAAs may 
become potential biomarkers and therapeutic targets for prostate 
cancer.
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bladder, and kidney tumors. Five MR methods were utilized 
to assess causal effects. Additionally, reverse MR analysis 
was conducted to scrutinize the causal impact of urological 
tumor-related features on BCAAs as outcomes.

Data sources

The blood levels of BCAAs were gathered via a GWAS 
meta-analysis using UK Biobank data. The analysis 
encompassed the measurement of 249 metabolic biomarkers 
in a cohort of 121,584 participants selected at random, which 
included total BCAAs, valine, leucine, and isoleucine (22).

Summary statistics for PCa, involving 9,851,867 single-
nucleotide polymorphisms (SNPs) and consisting of 
3,269 cases and 459,664 controls, were obtained from the 
Medical Research Council Integrative Epidemiology Unit 
(MRC-IEU) database. Likewise, the summary statistics 
for bladder cancer encompassed 9,851,867 SNPs, 1,101 
cases, and 461,832 controls from the same database. The 
summary statistics for kidney cancer, covering 16,380,466 
SNPs, 971 cases, and 217,821 controls, were sourced from 
the FinnGen Consortium database. These datasets can 
be accessed at https://gwas.mrcieu.ac.uk/. For additional 
GWAS dataset information, please see Table 1.

Genetic instrumental variants selection

To acquire qualified SNPs as instrumental variables (IVs), a 
series of rigorous screening steps was implemented. Three 
assumptions outlined for MR analysis (23) must be fulfilled: 
(I) the relevance presumption, demonstrating that IVs are 
closely linked to the exposure factor; (II) the independence 
assumption, ensuring that IVs are not affected by 

confounding factors; (III) the exclusion assumption, 
indicating that IVs solely act on the outcome through 
exposure. To guarantee methodological rigor, our analysis 
adhered to three essential steps.

In order to fulfill the relevance assumption, the following 
criteria had to be met: (I) establishing a significant 
association (P<5×10−8) of genome-wide SNPs with exposure. 
To prevent weak instrument bias, we adopted an F statistic 
>10 [F calculation formula: R2(N−2)/(1−R2)] (24,25); (II) we 
selected independent SNPs using linkage disequilibrium 
(LD) (r2<0.001, window size =10,000 kb), and performed 
minor allele frequency (MAF) filtering (<0.05). To examine 
the independence and exclusion assumptions, PhenoScanner 
was utilized to assess each important SNP linked to 
exposure and to exclude any SNPs associated with potential 
confounding factors, in order to ensure they did not exert 
multiple effects on other phenotypes at the genome-
wide significance level. Lastly, the MR-PRESSO test was 
conducted to identify outliers among the SNPs used in the 
MR analysis.

In the final analysis, our study distinguished 16 SNPs 
linked to BCAAs, 20 SNPs linked to leucine, 16 SNPs 
linked to isoleucine, and 9 SNPs linked to valine as crucial 
genetic tools in our MR investigation. 

Statistical analyses

In our analysis, we utilized various methods to assess the 
relationship and effects between the exposure and the 
outcome. Primarily, the inverse variance weighted (IVW) 
method was employed, which is the most commonly 
utilized approach in MR analysis and encompasses fixed-
effects and random-effects versions. As an approach that is 

Table 1 The characteristics of GWAS studies on the exposures and outcomes 

Trait Consortium Population Case (n) Control (n) Sample size SNPs (n) GWAS ID

Total-BCAA UK biobank European NA NA 115,051 11,590,399 ebi-a-GCST90092984

Valine UK biobank European NA NA 115,052 11,590,399 ebi-a-GCST90092995

Leucine UK biobank European NA NA 115,078 11,590,399 ebi-a-GCST90092891

Isoleucine UK biobank European NA NA 115,079 11,590,399 ebi-a-GCST90092843

Prostate cancer MRC-IEU European 3,269 459,664 462,933 9,851,867 ukb-b-13348

Bladder cancer MRC-IEU European 1,101 461,832 462,933 9,851,867 ukb-b-8193

Kidney cancer FinnGen European 971 217,821 218,793 16,380,466 finn-b-C3_KIDNEY_NOTRENALPELVIS

GWAS, genome-wide association study; SNP, single-nucleotide polymorphisms; BCAA, branched-chain amino acid; MRC-IEU, Medical 
Research Council Integrative Epidemiology Unit; NA, not applicable.

https://gwas.mrcieu.ac.uk/
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meta-analytical in nature, IVW obtains the overall estimate 
of the exposure’s impact on the outcome by combining the 
Wald estimates for each IV (26). To address the potential 
influence of exposure-related genetic tools on the outcome, 
supplementary methods such as the weighted median, 
the weighted mode, the simple mode, and MR-Egger 
regression were also utilized to assess the relationship 
between the exposure and the outcome. If the results of the 
IVW method are significant (P<0.05), even if the results of 
other methods are not significant, and no pleiotropy and 
heterogeneity are detected, it can be considered as a positive 
result, provided that the β values of other methods are in 
the same direction (27,28).

To address potential horizontal pleiotropy, we employed 
the MR-PRESSO test and MR-Egger regression. The 
intercept term in MR-Egger regression can provide a useful 
indicator of directional horizontal pleiotropy influencing 
the results of MR analysis. MR-PRESSO was utilized as a 
means to detect and handle outliers. To assess the detected 
heterogeneity, Cochran’s Q statistic was computed using the 
IVW and MR-Egger regression methods, and a significance 
threshold of P<0.05 was used for heterogeneity (29).

All statistical analyses and plots in this study were 
performed using Rstudio software based on R version 4.3.3. 
Data analysis predominantly relied on the MR-PRESSO 
and Two-Sample MR packages.

Results

Association of total BCAAs and urologic cancers in the  
bi-directional MR analysis

We discovered 16 SNPs associated with total BCAA, with 
detailed information provided in Table S1. All these IVs 
had F statistics exceeding 10. Following LD clustering 
and harmonization, we used the MR-PRESSO test to 
identify any anomalies in the SNPs, but none were found. 
Ultimately, we acquired the IVs meeting the criteria (11 
SNPs for PCa, 5 SNPs for bladder cancer, and 12 SNPs for 
kidney cancer) for the MR analysis of BCAA and urological 
tumors.

The IVW results demonstrated a potential link between 
genetically predicted BCAAs levels and PCa risk [odds 
ratio (OR) =1.002688, 95% confidence interval (CI): 
1.000, 1.005, P=0.03]. While the P values from the other 
four methods exceeded 0.05, their β values aligned with 
the IVW’s, underlining the strength of our findings. 
Moreover, we observed no substantial correlation between 

BCAAs and bladder or kidney cancer (bladder cancer: OR 
=0.9998688, 95% CI: 0.998, 1.001, P=0.88; kidney cancer: 
OR =1.616809, 95% CI: 0.772, 3.385, P=0.20). Since the 
ORs was low, it indicated that the relationship between 
BCAA and PCa may be weak; therefore, readers should 
interpret our results with caution. Table 2 contains detailed 
MR analysis. Regarding the link between BCAAs levels 
and urological tumors, both MR-Egger regression and 
MR-PRESSO tests did not detect significant directional 
pleiotropy. Furthermore, Cochran’s Q test did not reveal 
notable heterogeneity. Further details can be available in 
the Table S2.

In the reverse MR analysis, we detected 18 SNPs linked 
to PCa (using a threshold of P<5×10−8), 7 SNPs linked to 
bladder cancer (using a threshold of P<1×10−5), and 21 SNPs 
linked to kidney cancer (using a threshold of P<1×10−5) to 
assess their relationship with BCAAs (see Tables S3-S5 for 
specific SNPs information). The F statistics for all SNPs 
exceeded 10, indicating no weak instrument bias. Our 
study ultimately revealed no link between PCa, bladder 
cancer, kidney cancer, and BCAAs. For comprehensive 
details, consult Table S6. Both the MR-Egger regression 
and MR-PRESSO test did not detect significant horizontal 
pleiotropy. Additionally, the Cochran’s Q test found no 
evidence of heterogeneity (Table S7).

Association of leucine and urologic cancers in the  
bi-directional MR analysis

We discovered 16 SNPs associated with leucine, with 
detailed information provided in Table S8. All the IVs 
had F statistics exceeding 10. Following LD clustering 
and harmonization, we performed the MR-PRESSO test 
to identify any SNP outliers, and we did not find any. 
Ultimately, we acquired valid IVs (9 SNPs for PCa, 3 SNPs 
for bladder cancer, and 13 SNPs for kidney cancer) for the 
MR analysis of leucine and urological tumors.

The IVW results unveiled a potential link between 
leucine and the risk of PCa (OR =1.0038, 95% CI: 1.001, 
1.007, P=0.008). Furthermore, no substantial association 
was found between leucine and bladder or kidney cancer 
(bladder cancer: OR =0.9995049, 95% CI: 0.997, 1.002, 
P=0.64; kidney cancer: OR =1.616809, 95% CI: 0.543, 
3.270, P=0.53). Since the ORs was low, it indicated that 
the relationship between leucine and PCa may be weak; 
therefore, readers should interpret our results with caution. 
Detailed MR analysis information is provided in Table 3. 
Concerning the association between Leucine concentration 

https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
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Table 2 Two-sample MR estimates for the effect of total BCAAs on urologic cancers

Outcome No. of SNP Method OR Beta 95% CI P value

Prostate cancer 11 MR-Egger 1.002463 0.0024604184 0.997, 1.008 0.40

Weighted median 1.002607 0.0026038709 1.000, 1.006 0.09 

Inverse variance weighted 1.002688 0.0026840934 1.000, 1.005 0.028 

Simple mode 1.000530 0.0005294807 0.994, 1.007 0.87 

Weighted mode 1.002743 0.0027392777 0.999, 1.006 0.16

Bladder cancer 5 MR-Egger 0.9985937 −0.001407264 0.995, 1.002 0.47

Weighted median 0.9995339 −0.000466174 0.998, 1.001 0.61 

Inverse variance weighted 0.9998688 −0.000131252 0.998, 1.001 0.88 

Simple mode 0.9997364 −0.000263669 0.997, 1.002 0.85 

Weighted mode 0.9995995 −0.000400553 0.998, 1.001 0.70 

Kidney cancer 12 MR-Egger 1.178389 0.1641481 0.161, 8.628 0.88 

Weighted median 2.529479 0.9280135 0.927, 6.898 0.07

Inverse variance weighted 1.616809 0.4804548 0.772, 3.385 0.20

Simple mode 3.048981 1.1148073 0.518, 17.954 0.24 

Weighted mode 3.3748 1.2163362 0.608, 18.736 0.19 

MR, Mendelian randomization; BCAA, branched-chain amino acid; SNP, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence 
interval. 

Table 3 Two-sample MR estimates for the effect of leucine on urologic cancers

Outcome No. of SNP Method OR Beta 95% CI P value

Prostate cancer 9 MR-Egger 1.004057 0.004048404 0.998, 1.010 0.23 

Weighted median 1.003102 0.003097458 1.000, 1.007 0.08 

Inverse variance weighted 1.0038 0.003792936 1.001, 1.007 0.008 

Simple mode 1.000171 0.000170762 0.994, 1.007 0.96 

Weighted mode 1.003033 0.003028131 0.999, 1.007 0.16 

Bladder cancer 3 MR-Egger 0.9996542 −0.0003458973 0.996, 1.004 0.90 

Weighted median 0.9995505 −0.0004495682 0.997, 1.002 0.68 

Inverse variance weighted 0.9995049 −0.0004952117 0.997, 1.002 0.64 

Simple mode 0.9998785 −0.0001215099 0.997, 1.003 0.95 

Weighted mode 0.9995233 −0.0004768055 0.997, 1.002 0.71 

Kidney cancer 13 MR-Egger 1.178389 −0.9157530 0.037, 4.306 0.47 

Weighted median 2.529479 0.2756015 0.354, 4.903 0.68 

Inverse variance weighted 1.616809 0.2873080 0.543, 3.270 0.53 

Simple mode 3.048981 0.4420410 0.157, 15.408 0.71 

Weighted mode 3.3748 0.4274800 0.140, 16.792 0.73 

SNP, single-nucleotide polymorphisms; MR, Mendelian randomization; OR, odds ratio; CI, confidence interval.
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and urological tumors, neither the MR-Egger regression 
nor the MR-PRESSO test indicated significant directional 
pleiotropy. Additionally, in the MR analysis of isoleucine 
and bladder cancer, only 3 SNPs were available, leading 
to unattainable results of the MR-PRESSO global test. 
Furthermore, the Cochran’s Q test did not reveal notable 
heterogeneity. Further details are available in Table S2.

The reverse MR analysis revealed no significant 
association between leucine and PCa, bladder cancer, 
or kidney cancer. Refer to Table S9 for specifics. No 
evidence of substantial horizontal pleiotropy was found 
by both the MR-Egger regression and the MR-PRESSO 
test. Additionally, the Cochran’s Q test did not detect 
heterogeneity (Table S7).

Association of isoleucine and urologic cancers in the  
bi-directional MR analysis

We discovered 9 SNPs linked to isoleucine, with detailed 
data available in Table S10. The F statistics for all these IVs 
exceeded 10. Following LD clustering and harmonization, 
the MR-PRESSO test was conducted to identify SNP 
outliers, but none were detected. Ultimately, we secured 
eligible IVs for MR analysis of the association between 

isoleucine and urological tumors, including 6 SNPs for 
PCa, 3 SNPs for bladder cancer, and 8 SNPs for kidney 
cancer.

The IVW analysis showed a possible link between 
isoleucine and PCa risk (OR =1.003352, 95% CI: 1.000, 
1.007, P=0.04). We did not detect any notable correlation 
between isoleucine and bladder or kidney cancer (bladder 
cancer: OR =0.9991929, 95% CI: 0.998, 1.002, P=0.52; 
kidney cancer: OR =0.76731134, 95% CI: 0.243, 2.421, 
P=0.65). Since the ORs was low, it indicated that the 
relationship between isoleucine and PCa may be weak; 
therefore, readers should interpret our results with caution. 
Additional MR analysis details are available in Table 4. Both 
MR-Egger regression and MR-PRESSO test did not show 
significant directional pleiotropy regarding the association 
between isoleucine concentration and urological tumors. 
Moreover, due to the limited availability of only 3 SNPs for 
the MR analysis of isoleucine and bladder cancer, the global 
MR-PRESSO test result was inconclusive. Furthermore, 
Cochran’s Q test did not uncover significant heterogeneity. 
For more information, please see Table S2.

In our reverse MR analysis, we found no evidence 
of a link between isoleucine and PCa, bladder cancer, or 
kidney cancer. For more details, please consult Table S11.  

Table 4 Two-sample MR estimates for the effect of isoleucine on urologic cancers

Outcome No. of SNP Method OR Beta 95% CI P value

Prostate cancer 6 MR-Egger 1.005971 0.005953240 0.996, 1.016 0.31 

Weighted median 1.003668 0.003661245 1.000, 1.008 0.07 

Inverse variance weighted 1.003352 0.003346275 1.000, 1.007 0.038 

Simple mode 1.001609 0.001607280 0.996, 1.008 0.61 

Weighted mode 1.003604 0.003597654 0.999, 1.008 0.17 

Bladder cancer 3 MR-Egger 0.9988763 −0.0011243316 0.992, 1.006 0.81 

Weighted median 0.9991481 −0.0008522174 0.997, 1.002 0.51 

Inverse variance weighted 0.9991929 −0.0008073841 0.998, 1.002 0.52 

Simple mode 0.9990779 −0.0009225399 0.996, 1.003 0.67 

Weighted mode 0.9991811 −0.0008192720 0.999, 1.002 0.61 

Kidney cancer 8 MR-Egger 0.05801068 −2.8471281 0.004, 0.766 0.07 

Weighted median 0.63303566 −0.4572285 0.160, 2.498 0.51 

Inverse variance weighted 0.76731134 −0.2648626 0.243, 2.421 0.65 

Simple mode 2.94204562 1.0791051 0.227, 38.125 0.44 

Weighted mode 0.23321268 −1.4558044 0.0321, 1.694 0.19 

MR, Mendelian randomization; SNP, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.

https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
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Additionally, both the MR-Egger regression and MR-
PRESSO test did not reveal significant horizontal 
pleiotropy. Furthermore, the Cochran’s Q test did not 
identify any heterogeneity (refer to Table S7).

Association of valine and urologic cancers in the  
bi-directional MR analysis

We discovered 20 SNPs associated with valine, with 
detailed information provided in Table S12. All these IVs 
had F statistics greater than 10. Subsequently, following LD 
clustering and harmonization, we utilized the MR-PRESSO 
test to identify SNP outliers, of which none were found. 
As a result, we acquired suitable IVs (13 SNPs for PCa, 5 
SNPs for bladder cancer, 17 SNPs for kidney cancer) for 
the MR analysis of the link between valine and urological 
tumors.

The IVW analysis revealed a potential link between 
valine and PCa risk (OR =1.00279, 95% CI: 1.001, 
1.005, P=0.009). Additionally, no notable association 
was found between valine and bladder or kidney cancer 
(bladder cancer: OR =0.9999136, 95% CI: 0.998, 1.001, 
P=0.91; kidney cancer: OR =1.0002258, 95% CI: 0.558, 
1.793, P>0.99). Since the ORs was low, it indicated that 

the relationship between valine and PCa may be weak; 
therefore, readers should interpret our results with caution. 
For specific MR analysis details, please see Table 5. Both 
the MR-Egger regression and MR-PRESSO tests did not 
indicate significant directional pleiotropy in the relationship 
between valine concentration and urological tumors. 
Moreover, the Cochran’s Q test did not reveal significant 
heterogeneity. Detailed information is available in Table S2.

In our reverse MR analysis, we found no evidence of a 
link between valine and prostate, bladder, or kidney cancer. 
Detailed information can be found in Table S13. Notably, 
neither the MR-Egger regression nor the MR-PRESSO test 
revealed any significant horizontal pleiotropy. Furthermore, 
the Cochran’s Q test did not identify any heterogeneity (see 
Table S7).

Discussion

This study is the first to attempt exploring the relationship 
between plasma BCAAs levels and urologic cancers using 
bidirectional MR methods. Associations between plasma 
levels of circulating total BCAAs, isoleucine, leucine, and 
valine, and the risk of PCa, kidney cancer, and bladder 
cancer were examined in our investigation. Our study 

Table 5 Two-sample MR estimates for the effect of valine on urologic cancers 

Outcome No. of SNP Method OR Beta 95% CI P value

Prostate cancer 13 MR-Egger 1.002433 0.002430076 0.998, 1.007 0.28

Weighted median 1.00263 0.002626786 1.000, 1.006 0.07 

Inverse variance weighted 1.00279 0.002785813 1.001, 1.005 0.009 

Simple mode 1.003412 0.003405751 0.998, 1.008 0.20 

Weighted mode 1.002711 0.002707217 1.000, 1.006 0.10 

Bladder cancer 5 MR-Egger 0.998876 −1.124614E−03 0.996, 1.002 0.53 

Weighted median 0.9995597 −4.404440E−04 0.998, 1.001 0.60 

Inverse variance weighted 0.9999136 −8.642125E−05 0.998, 1.001 0.91 

Simple mode 0.9997387 −2.612941E−04 0.997, 1.002 0.86 

Weighted mode 0.9996122 −3.878993E−04 0.998, 1.001 0.67 

Kidney cancer 17 MR-Egger 0.8515512 −0.1606956688 0.247, 2.933 0.80 

Weighted median 0.9697176 −0.0307503852 0.401, 2.348 0.95 

Inverse variance weighted 1.0002258 0.0002258054 0.558, 1.793 >0.99

Simple mode 0.652576 −0.4268277174 0.111, 3.837 0.64 

Weighted mode 1.8552205 0.6180035701 0.354, 9.727 0.48 

MR, Mendelian randomization; SNP, single-nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.

https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1142-Supplementary.pdf
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uncovered a relationship only between circulating total 
BCAAs, isoleucine, leucine, and valine levels, and PCa, 
without any correlation with the other cancer risks.

The essential amino acids for human nutrition, leucine, 
isoleucine, and valine, are known as BCAAs. Not only 
do they act as fundamental elements of proteins, but 
they also have critical roles in cell signaling, molecular 
regulation, carbohydrate and lipid metabolism, apoptosis, 
and autophagy (7). Recent research has established a close 
association between abnormal BCAAs metabolism and the 
development of diseases such as insulin resistance (30),  
diabetes (31), atherosclerosis (32), and tumors (19). The 
accumulation of BCAAs in the plasma and various tissues 
due to irregular BCAAs metabolism is considered a 
significant risk factor for these diseases. To sustain their 
enhanced biosynthetic and nutritional needs, cancer cells 
require metabolic pathway alterations to accommodate 
features like enhanced proliferation and invasion. 
Consequently, it is hypothesized that the metabolism of 
BCAAs might satisfy the metabolic demands of tumor cells.

The MR research findings demonstrated no definitive 
relationship between BCAAs and kidney cancer. Kidney 
cancer represents only 2% of worldwide cancer instances, 
and its prevalence is steadily increasing (33). Currently, 
there are limited reports on the correlation between 
circulating BCAAs levels and kidney cancer, with research 
primarily focusing on enzymes involved in BCAAs 
breakdown metabolism. Existing studies have revealed 
that the regulation of physiological and pathological 
processes such as tumor growth, metastasis, cell cycle, 
apoptosis, necrosis, and angiogenesis is mediated by 
BCAA transaminase 1 (BCAT1), a key enzyme in BCAAs 
metabolism (16,34). As a critical enzyme in BCAAs 
metabolism, BCAT1 is involved in multiple processes. 
Zheng et al.’s results indicated a positive correlation between 
BCAT1 expression levels and poor prognosis in kidney 
cancer, indirectly suggesting a potential association between 
elevated plasma BCAAs levels and kidney cancer risk (35). 
In addition, recent studies have also found that BCAT1 was 
closely related to mTOR signaling activity in other cancers, 
such as breast cancer (36) and gastric cancer (37). Therefore, 
Zheng’s research believed that BCAAs may activate the 
PI3K/Akt/mTOR pathway through overexpression of 
BCAT1, thereby promoting the occurrence and development 
of kidney cancer (35). Conversely, Yang et al.’s study suggested 
that BCAAs could also enhance tumor proliferation and 
progression through branched-chain ketoacid dehydrogenase 
kinase (BCKDK) (38). In conclusion, the analysis indicated 

a potential link between BCAAs metabolism and the 
detrimental effects of kidney cancer. However, our MR 
research results indicated no definitive relationship between 
BCAAs and kidney cancer. This suggests that the current 
research direction on the relationship between BCAAs 
and kidney cancer may be insufficient, and our findings 
may serve as the theoretical foundation for future studies. 
Furthermore, the current lack of related clinical studies 
to validate the reliability of the findings is a limitation 
of our research. Subsequent researchers must conduct 
more rigorous research to further explore the relationship 
between BCAAs and kidney cancer.

Our MR findings did not uncover a direct link between 
BCAAs and the risk of bladder cancer. Bladder cancer, 
prevalent among women and the fourth most common in 
men (39), has relatively limited research on the BCAAs 
connection. Comparable to kidney cancer, the focus of 
bladder cancer research centers on the enzymes associated 
with BCAAs breakdown and metabolism. In their study, 
Chang et al. observed a significant association of BCAT1 
protein overexpression with adverse clinical-pathological 
features of bladder cancer, including advanced pT staging, 
lymph node metastasis, and high pathological grade (40). 
Their findings suggested the potential of BCAT1 as a 
prognostic biomarker and a new therapeutic target for 
bladder cancer. Yet, in-depth mechanistic studies have not 
been pursued. Our MR study results indicate a lack of direct 
relationship between BCAA and bladder cancer risk, laying 
a theoretical foundation for further research. Confirmation 
of high-quality future research is awaited.

Our findings suggest a potential relationship between 
BCAAs and PCa risk. PCa is prevalent among men, 
particularly in the US (41), significantly impacting public 
health. PCa comprises approximately 27% of new male 
cases and ranks second in male cancer mortality rates 
(42). Currently, no direct evidence supports the clinical 
association between BCAAs and PCa. However, extensive 
research indicates a link between the consumption of milk 
and dairy products and an increased risk of PCa (43-47), a 
point confirmed by meta-analyses and systematic reviews 
(48-50). Milk and dairy products are high in BCAAs, 
providing a plausible explanation for the potential link 
between BCAAs and PCa.

It is well known that BCAAs are essential amino acids 
that play a critical role in cell growth and survival. These 
amino acids can produce glutamate through transamination 
reactions, thereby promoting the metabolic processes 
of various tumor cells. On one hand, glutamate can act 
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as an indirect nitrogen donor through the glutamate-
glutamine axis, providing the necessary substrates for cell 
growth and proliferation (51-54). On the other hand, the 
carbon skeleton of glutamate, α-ketoglutarate, serves as an 
intermediate in the tricarboxylic acid (TCA) cycle, supplying 
the main carbon flux for energy production, thereby meeting 
the energy demands of tumor cells (53,54). Additionally, 
BCAA can function as signaling molecules to stimulate 
biosynthesis, with a key role in promoting cell growth 
and development via mTORC1 (mTORC1 is a central 
factor involved in cell metabolism, growth, proliferation, 
and migration) (55-58). Research by Ericksen et al.  
indicates that the absence of BCAA metabolism enhances 
the activity of mTORC1, promoting tumor formation and 
progression (19). Furthermore, studies have found that 
BCAAs are closely related to hormone secretion, gene 
transcription, and cellular transformations, which may also 
contribute to tumor development (59). Additional research 
shows that leucine and isoleucine can stimulate insulin 
secretion, thereby affecting glucose metabolism (60,61). 
Valine may promote α-oxidation by activating peroxisome 
proliferator-activated receptor α, thereby facilitating fat 
production (62). All of these substances are essential for the 
growth of tumor cells. Overall, the discussions suggest that 
BCAA act as a risk factor, playing a promoting role in the 
occurrence and development of tumor cells.

Studies have recently uncovered unusual BCAT 
expression in PCa tissues (8,63). BCAT, targeted by the 
oncoprotein c-Myc, often triggers tumor proliferation and 
invasion. This occurs through the activation of the PI3K/
PKB/mTOR pathway and the Wnt/β-catenin signaling 
pathway (63). Billingsley et al.’s research suggests that 
BCAT expression is low in PCa tissues, resulting in a 
decrease in hyperpolarized [1-(13)C]-α-ketoisocaproate 
(KIC) metabolite and disrupting the hyperpolarized [1-(13)
C]-KIC pathway (63). Furthermore, it was observed that 
the gene BCAT1, a target of miR-218, is linked to various 
processes in cancer cells such as proliferation, invasion, 
spread, and resistance to drugs. The suppression of BCAT1 
expression is believed to hinder tumor progression, hinting 
at its potential as a therapeutic target in PCa treatment. 
In addition, research by Melnik revealed that BCAAs 
possess the ability to enhance tumor cell growth and 
proliferation via the mTORC1 pathway and to impede 
their autophagy, thereby fostering cancer development. The 
signaling cascade of mTORC1 is responsible for triggering 
gene activity, protein synthesis, insulin production, cell 

expansion, and lipid generation while restraining autophagy 
(64-66). The activation of mTORC1 hinges largely on 
the presence of adequate amino acids, with a particular 
focus on leucine, an essential BCAA (67-69). Leucine is 
capable of prompting the relocation of inactive mTORC1 
to the lysosomal membrane, rich in activated Rheb, via 
Rag GTPase stimulation, leading to mTORC1 activation. 
This assessment underscores the role of BCAAs in fueling 
the progression of PCa. The results were in line with our 
study findings, suggesting potential research directions. 
Currently, there is limited research on this relationship. 
Therefore, it is crucial to gain a better understanding of 
PCa risk and related mechanisms, as it may lead to early 
and more effective therapeutic interventions. However, 
further in-depth investigation of these aspects is needed 
by future researchers. In future clinical use, BCAAs could 
possibly serve as a biomarker and therapeutic target for 
PCa, pending extensive systematic validation.

Our MR study has several advantages. First, this study is 
the first to explore the genetic determinants of circulating 
BCAAs levels and their association with the risk of 
urological tumors. Second, we utilized the latest and most 
extensive GWAS database, which helped to more effectively 
estimate the relationship between circulating BCAA and 
urological tumors. Third, we performed multiple control 
steps to select eligible SNPs. Fourth, the data were derived 
from two reliable genetic databases and the European 
population to avoid ethnic bias. Finally, the robustness 
and reliability of our conclusions were enhanced through 
sensitivity analysis.

However, there are some inevitable limitations in this 
study. (I) Due to the limitations of the GWAS summary 
statistics, this study only included participants of European 
descent. (II) IVs found in the European population cannot 
be directly generalized to non-European populations, 
therefore more MR studies targeting other populations are 
needed to elucidate the relationship. Additionally, the results 
of MR studies can only determine the relationship between 
exposure and outcome, and cannot deeply investigate the 
biological mechanism of BCAA and urological tumors. 
(III) Our study did not conduct an in-depth analysis of the 
specific classifications of PCa, kidney cancer, and bladder 
cancer, which represents a limitation of our research. (IV) 
MR studies are positioned between interventional studies 
and observational studies in terms of evidence. Therefore, 
they cannot provide evidence as strong as randomized 
clinical trials or their systematic reviews (70).



Huang et al. BCAAs and three urologic cancers6718

© AME Publishing Company.   Transl Cancer Res 2024;13(12):6709-6720 | https://dx.doi.org/10.21037/tcr-24-1142

Conclusions

In summary, this study observed that elevated levels of 
circulating total BCAAs, leucine, isoleucine, and valine 
may increase the risk of PCa. No correlation was detected 
between BCAAs and kidney or bladder cancer. Nevertheless, 
given the absence of clinical validation for this observation, 
additional research is imperative for verification.
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