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Abstract: Soluble beta-amyloid (Aβ) oligomer is believed to be the most important toxic 

species in the brain of Alzheimer’s disease (AD) patients. Thus, it is critical to develop a 

simple method for the selective detection of Aβ oligomer with low cost and high sensitivity.  

In this paper, we report an electrochemical method for the detection of Aβ oligomer with a 

peptide as the bioreceptor and silver nanoparticle (AgNP) aggregates as the redox reporters. 

This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical 

analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution 

triggered together the in situ formation of AgNP aggregates, which produced a well-defined 

electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized 

peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was 

observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenabil-

ity of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid 

(aCSF) samples was demonstrated.

Keywords: electrochemical biosensors, Alzheimer’s disease, beta-amyloid oligomer, peptide, 

silver nanoparticles

Introduction
Alzheimer’s disease (AD), the most common neurodegenerative disorder, will 

affect ~66 million people globally by the year 2030.1 A hallmark of AD is the deposition 

of the beta-amyloid (Aβ) peptide in the brain.2,3 Aβ monomer, typically comprising 

39−43 amino acid residues, results from proteolytic cleavage of amyloid precursor 

protein (APP) by β- and γ-secretase.4 Furthermore, the monomers can coalesce to 

form small, soluble oligomeric species and then assemble into higher molecular 

weight fibrils. Thus, Aβ monomer and its aggregates have been considered not only 

as a therapeutic target but also as a diagnostic marker.5–9 There are many methods 

for the detection of Aβ monomer with high sensitivity, such as electrochemical 

immunosensors, colorimetric assays, resonance light scattering and surface plasmon 

resonance.10–18 However, assay of Aβ monomer only might be unable to discriminate 

between AD patients and healthy controls or other types of dementia because the levels 

of Aβ monomer may differ by gender and age.19 Soluble Aβ oligomer comprising 

50–100 Aβ monomers is believed to be neurotoxic and responsible for neuronal death 

in preclinical AD.20,21 In addition, elevated levels of Aβ oligomer have been detected 

in the cerebrospinal fluid (CSF) of AD patients.22,23 Therefore, the direct detection of 
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Aβ oligomer level would be more reliable for AD diagnosis 

than assay of its monomer.24,25

Recently, a few novel biosensors have been developed for 

the detection of Aβ oligomer, including electrochemistry,26–29 

surface plasma resonance (SPR),30 localized surface plasmon 

resonance (LSPR),24,31 fluorescence,32,33 nuclear magnetic 

resonance,34 and surface-enhanced Raman spectroscopy.35 

These methods are feasible, but they require the use of special 

instruments and/or relatively expensive and variable antibod-

ies for the capture and recognition of Aβ oligomer. Moreover, 

the reported antibody of Aβ oligomer also recognizes Aβ 

monomer and other Aβ aggregates and metabolites to some 

extent.36 Alternatively, the organic dye-based fluorescence 

assays (eg, thioflavin T [ThT]) have been commonly used 

for monitoring the formation of Aβ aggregates in laboratory 

investigation.37,38 However, most of the dyes cannot be used 

to discriminate Aβ oligomer from other β-sheets of Aβ 

aggregates,37 thus limiting their applications for the routine 

test of Aβ oligomer for early diagnosis of AD.

Cellular prion protein (PrPC) is a membrane-bound 

glycoprotein present in the central nervous system. There is 

increasing evidence demonstrating that PrPC may be a high-

affinity receptor for Aβ oligomer.39–44 The core region of PrPC 

to bind with Aβ oligomer is PrP
95–110

, which is located within 

the unstructured N-terminal region of PrPC with an amino 

acid sequence of THSQWNKPSKPKTNMK (PrP
95–110

).39,42–45 

The dissociation constant (K
d
) for the Aβ oligomer/PrP

95–110
 

interaction is in the subnanomolar range, and the interaction 

is highly specific for Aβ oligomer, but not for its monomer 

and fibril.42,43,46 These results provide researchers a hint that 

PrP
95–110

 would be a good receptor for the design of novel 

biosensors for Aβ oligomer detection.

In recent years, metal nanoparticles (MNPs) have been 

widely used for creating effective recognition and transduc-

tion processes in chem/biosensing due to their unique physi-

cochemical attributes.47–59 In particular, silver nanoparticles 

(AgNPs) offer clear advantages for the design of electrochemi-

cal (bio) sensors, such as a simple preparation procedure, a 

size-dependent optical property, facile surface modification, a 

high surface area and a low oxidation potential.55–59 Based on the 

specific Aβ oligomer/PrP
95–110

 interaction and the well-defined 

and signal-amplified electrochemical signal of AgNP aggre-

gates, Xia et al59 have developed an electrochemical biosensor 

for the determination of Aβ oligomer by using adamantine 

(Ad)-labeled PrP
95–110

 (Ad-PrP
95–110

) as the receptor and AgNP 

aggregates as the redox reporters. In this work, the network 

architecture of Ad-PrP
95–110

/AgNP nanocomposites produced 

in solution was introduced onto the β-cyclodextrin (β-CD)-

modified electrode surface through the host–guest interaction 

(Scheme 1). The specific Aβ oligomer/PrP
95–110

 interaction 

made the Ad-PrP
95–110

 in solution to lose its capability to trigger 

the formation of AgNPs-based network architecture. This 

work presented a concept for converting the AgNPs-based 

colorimetric assay into a sensitive electrochemical analysis 

by simply incorporating the colorimetric principle into the 

electrochemical platform. The method is simple and does not 

require the modification of analyte-binding molecules onto the 

surface of nanoparticles. However, it requires the modification 

β

β

Scheme 1 schematic illustration of the previous electrochemical strategies for the detection of aβ oligomer with PrP95–110 as the receptor and agNP aggregates as the 
redox reporters.
Abbreviations: aβ, beta-amyloid; PrP, prion protein; agNP, silver nanoparticle; ad, adamantine; β-cD, β-cyclodextrin.
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of both electrode and peptide probe. More importantly, the 

unmodified method showed poor anti-interference ability to 

high concentration of salts and other components in body fluids, 

thus failing to determine Aβ oligomer in biological samples. In 

the present study, we reported an innovative electrochemical 

method for the detection of Aβ oligomer based on the in situ 

formation of AgNP aggregate tags. As shown in Scheme 2, 

PrP
95–110

 immobilized on the electrode surface and presented 

in solution triggered together the in situ formation of AgNP 

aggregates, which produced a well-defined electrochemical 

signal. Once the electrode was covered with Aβ oligomer, 

PrP
95–110

 on the electrode surface would lose its ability to trigger 

the in situ formation of AgNPs-based network architecture. To 

avoid the absorption of other components onto the surface of 

unmodified AgNPs in the real sample analysis, the competitive 

assay was performed by a two-step procedure: incubation of the 

sensing electrode with Aβ oligomer sample first and follow-up 

incubation with AgNPs/PrP
95–110

. The proposed strategy not 

only features simple manipulation principle similar to that of 

colorimetric assay but also shows high sensitivity and specific-

ity of electrochemical biosensor.

Experimental section
chemicals and materials
Peptides with the sequences of CTHSQWNKPSKPKTNMK 

and THSQWNKPSKPKTNMK (PrP
95–110

) were synthesized 

and purified by Synpeptide Co., Ltd (Shanghai, China). The 

Aβ peptide with 42 amino acid residues (Aβ
1–42

), 6-mercapto-1-

hexanol (MCH), tris(2-carboxyethyl)phosphine (TCEP), bovine 

serum albumin (BSA), immunoglobin G (IgG), lysozyme, 

thrombin, serum and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) 

were purchased from Sigma-Aldrich Co. (St Louis, MO, USA). 

All other chemicals were of analytical grade and provided by 

Beijing Chemical Reagent Co. Ltd (Beijing, China).

Citrate-stabilized AgNPs and soluble Aβ oligomer were 

prepared as in our previous report.59 Artificial cerebrospinal 

fluid (aCSF) used in the determination of the samples was 

prepared by 150 mM NaCl, 3 mM KCl, 1.4 mM CaCl
2
, 1 mM 

phosphate and 0.8 mM MgCl
2
.29,60

Instruments
The ultraviolet (UV)/visible (Vis) spectra were collected on 

a Cary 60 spectrophotometer using a 1-cm quartz spectro-

photometer cell. The atomic force microscopy (AFM) images 

were taken using a Dimension Edge microscope (Bruker 

Nano Inc., Santa Barbara, CA, USA) equipped with a tapping 

mode. The transmission electron microscope (TEM) images 

were taken using an FEI Tecnai G2 T20 TEM (Hillsboro, 

OR, USA). The electrochemical experiments were carried 

out using a CHI-660E (CH Instruments, Shanghai, China) 

electrochemical workstation. Platinum wire was used as the 

auxiliary electrode. The reference electrode was Ag/AgCl.

stability of agNPs
To examine the inhibition of Aβ oligomer on the PrP

95–110
-

triggered assembly of AgNPs, PrP
95–110

 was mixed with Aβ 

oligomer for 10 min. Then, AgNPs suspension was added to 

the PrP
95–110

 solution. After incubation for 5 min, color change 

β

Scheme 2 schematic illustration of the present electrochemical strategies for the detection of aβ oligomer with PrP95–110 as the receptor and agNP aggregates as the redox 
reporters.
Abbreviations: aβ, beta-amyloid; PrP, prion protein; agNP, silver nanoparticle.
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was observed with the naked eye and the photograph was 

taken by a digital camera. UV/Vis absorption spectra were 

collected using the spectrophotometer.

electrochemical detection of aβ oligomer
The cleaned gold disk electrode with a diameter of 2 mm was 

placed in a 100 μL phosphate-buffered saline (PBS) solu-

tion (10 mM, pH 7.2) containing 10 μM thiolated PrP
95–110

 

(CTHSQWNKPSKPKTNMK) and 50 μM TCEP overnight. 

After the formation of peptide self-assembled monolayers 

(SAMs), the electrode was washed with water and then soaked 

in a 1 mM MCH solution for 30 min. For the detection of 

Aβ oligomer, the PrP
95–110

-functionalized electrode was first 

immersed in a 20 μL PBS solution containing a given concen-

tration of Aβ oligomer for 10 min, and the electrode was then 

rinsed thoroughly with water and exposed to 20 μL of AgNPs 

suspension in an opened plastic tube. This step was followed by 

the addition of 20 μL of PrP
95–110

 to incubation for 10 min. After 

being rinsed with water, the electrode was placed in a 1 M KCl 

solution for linear sweep voltammetry (LSV) measurement.

Results and discussion
PrP95–110-triggered agNPs aggregation
As shown in Figure 1A, the AgNPs solution showed an 

absorption peak at 404 nm (black curve), which is ascribed 

to the surface plasmon resonance of AgNPs. With the addi-

tion of PrP
95–110

, the original absorbance of AgNPs at 404 nm 

decreased, while a new absorbance peak at 525 nm appeared 

(red curve). The red-shifted band demonstrated that PrP
95–110

 

triggered the aggregation of AgNPs. The aggregation is attrib-

uted to the electrostatic interaction between the negatively 

charged citrate-capped AgNPs and the positively charged 

lysine residues in PrP
95–110

.59 We also found that the absorp-

tion intensity of AgNPs at 525 nm increased and reached a 

plateau value within 7 min, indicating the achievement of 

the PrP
95–110

-triggered AgNPs assembly. When PrP
95–110

 was 

first mixed with Aβ oligomer, only one absorption peak 

at 404 nm was observed (blue curve) with the addition of 

the mixed solution to AgNPs suspension. It is indicative 

of a good dispersion of AgNPs in the presence of the Aβ 

oligomer–PrP
95–110

 complex. Furthermore, these results were 

confirmed by the TEM observations: aggregated AgNPs 

in the presence of PrP
95–110

 only (Figure 1B) and dispersed 

AgNPs in the presence of Aβ oligomer/PrP
95–110

 (Figure 1C). 

We also found that Aβ monomer and fibril did not inhibit 

the PrP
95–110

-triggered red shift of AgNPs absorbance, which 

agrees with the previous report.59 These results confirmed that 

only Aβ oligomer inhibited the PrP
95–110

-induced assembly of 

AgNPs, which is contributed to the strict dependence of the 

recognition of PrP
95–110

 on the secondary structure of Aβ.

electrochemical analysis
Herein, we suggested that PrP

95–110
 both on electrode and 

in solution could trigger the in situ formation of AgNP 

λ 

β

Figure 1 characterization of agNPs in the presence PrP95–110 or aβ oligomer/PrP95–110.
Notes: (A) UV–Vis absorption spectra of agNPs in the absence and presence of PrP95–110 or aβ oligomer/PrP95–110. TeM images of agNPs in the presence of PrP95–110 (B) or 
aβ oligomer/PrP95–110 (C). The concentrations of agNPs, PrP95–110 and aβ sample (equivalent monomer) were 2.4 nM, 0.1 μM and 2 μM, respectively.
Abbreviations: UV, ultraviolet; Vis, visible; agNP, silver nanoparticle; PrP, prion protein; aβ, beta-amyloid; TeM, transmission electron microscope.
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aggregates on the electrode surface. When PrP
95–110

 immobi-

lized on the electrode surface interacted with Aβ oligomer, 

it lost the ability to trigger the in situ formation of AgNPs-

based network architecture. To demonstrate the feasibility 

of our design, LSV was used to measure the oxidation 

current of AgNPs. As shown in Figure 2, incubation of 

the PrP
95–110

-functionalized electrode with AgNPs/PrP
95–110

 

resulted in the appearance of a well-defined oxidation peak 

at ~65 mV (black curve), which is attributed to the solid-state 

Ag/AgCl reaction from AgNPs. However, no oxidation peak 

was observed when the functionalized electrode was incu-

bated with PrP
95–110

 itself (red curve), and only a small oxida-

tion peak was observed when the electrode was incubated 

with AgNPs only (blue curve). These results demonstrated 

that the strong oxidation peak in the black curve should be 

attributed to the formation of the AgNPs/PrP
95–110

 network 

architecture. When the electrode was incubated with Aβ oli-

gomer, followed by incubation with PrP
95–110

/AgNPs (green 

curve), the current dropped almost to the background level. 

This indicated that the binding of PrP
95–110

 to Aβ oligomer 

inhibited the in situ formation of AgNPs/PrP
95–110

 network 

architecture on the electrode surface. Additionally, we found 

that a slight decrease in the current was observed (magenta 

curve) when the sensor electrode was incubated with the 

mixed solution comprising AgNPs, PrP
95–110

 and Aβ oligomer 

(one-step method). Thus, the two-step method performed 

by incubation of the sensor electrode with Aβ oligomer 

first and follow-up incubation with AgNPs/PrP
95–110

 (green 

curve) is more sensitive than the one-step method. The result 

is understandable since large amount of PrP
95–110

 in solution 

would preferentially bind to Aβ oligomer, thus hampering the 

formation of Aβ oligomer/PrP
95–110

 on the electrode surface 

and facilitating the in situ assembly of AgNPs. Furthermore, 

other components in biological samples may absorb on the 

surface of unmodified AgNPs to reduce the selectivity of 

biosensor.59 Therefore, the competitive assay was performed 

by the two-step procedure.

Optimization of experimental conditions
A higher concentration of PrP

95–110
 can make the aggregation 

of AgNPs more powerful. However, a higher concentration 

of PrP
95–110

 in solution would compete with the anchored 

PrP
95–110

 on the electrode surface to bind with AgNPs, thus 

hampering the in situ formation of the AgNPs/PrP
95–110

 

network architecture. Thus, we first investigated the effect 

of the concentration ratio of PrP
95–110

 to AgNPs ([PrP
95–110

]/

[AgNPs]) on the oxidation current (I
pa

). It was found that I
pa

 

initially increased with the increasing [PrP
95–110

]/[AgNPs] 

ratio until the maximal value appeared at 83:1 (Figure 3A). 

Furthermore, the dependence of I
pa

 on the AgNPs concen-

tration was examined. It was found that I
pa

 increased upon 

increasing concentrations of AgNPs and began to level off 

beyond 1.2 nM (Figure 3B). Thus, in the following quantita-

tive assays of Aβ oligomer, the concentrations of AgNPs and 

PrP
95–110

 were kept at 1.2 and 100 nM, respectively.

With the increase in incubation time, Aβ monomers 

can assembly spontaneously into oligomeric and fibrous 

species. We also studied the influence of Aβ incubation 

time on the formation of Aβ oligomer and the inhibition 

of PrP
95–110

-triggered assembly of AgNPs. As shown in 

Figure 4, the lowest points of the currents are in the range 

of 16–24 h, indicating the optimal incubation time for the 

formation and detection of Aβ oligomer. In the following 

quantitative assays, 20 h was set as the optimized time for 

oligomer preparation.

sensitivity and selectivity
Under the optimized experimental conditions, the quantita-

tive detection of Aβ oligomer was performed. As shown 

in Figure 5A, I
pa

 decreased with increasing Aβ oligomer 

concentration ([Aβ], equivalent monomer) varying from 

0 to 2 μM. The relative standard deviations (RSDs) are 

all ,13% for assay of the same Aβ oligomer sample at 

three different electrodes in parallel. The acceptable repro-

ducibility demonstrated that multiple electrodes can be 

β

β

Figure 2 The lsV responses of the PrP95–110-functionalized electrodes after incubation 
with agNPs/PrP95–110 (black curve), PrP95–110 (red curve), agNPs (blue curve), aβ 
oligomer and agNPs/PrP95–110 (green curve) and the mixture of aβ oligomer/PrP95–110/
agNPs (magenta curve).
Notes: The arrow indicates the scan direction. The concentrations of agNPs,  
PrP95–110 and aβ sample were 2.4 nM, 0.1 μM and 2 μM, respectively.
Abbreviations: lsV, linear sweep voltammetry; PrP, prion protein; agNP, silver 
nanoparticle; aβ, beta-amyloid.
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Figure 3 Dependence of the current on the concentration ratio of PrP95–110 to agNPs (A) and the agNPs concentration (B).
Notes: In (A), the agNPs concentration was kept at 2.4 nM and the concentration of PrP95–110 was increased from 0.05 to 0.5 μM (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 μM). In (B), 
the concentration ratio of PrP95–110 to agNPs was kept at 83:1 and the agNPs concentration was increased from 0.15 to 4.8 nM (0.15, 0.3, 0.45, 0.9, 1.2, 2.4 and 4.8 nM). 
Ipa, oxidation current.
Abbreviations: PrP, prion protein; agNP, silver nanoparticle; aβ, beta-amyloid.

Figure 4 Influence of Aβ incubation time on the formation of aβ oligomer and the current.
Notes: (A) Dependence of the current on the incubation time for the preparation of aβ oligomer. The final concentrations of AgNPs, PrP95–110 and aβ sample were kept at 
1.2 nM, 100 nM and 1 μM, respectively. (B) aFM images of the mica substrate after incubation with aβ samples pre-incubated for 24 and 48 h. Ipa, oxidation current.
Abbreviations: aβ, beta-amyloid; agNP, silver nanoparticle; PrP, prion protein; aFM, atomic force microscopy.

prepared concurrently for the analysis of many different 

samples. Herein, the current change ΔI
pa

 (I
pa

 − I
pa

′, where I
pa

 

and I
pa

′ represent the current in the absence and presence of 

Aβ oligomer, respectively), was used to evaluate the sensor 

performances. As shown in the inset, ΔI
pa

 is proportional 

to [Aβ] in a linear range of 0.01–200 nM. The regression 

equation was found to be ΔI
pa

 =0.289+0.045 [Aβ] (nM). 

The detection limit was estimated to be 6 pM by measuring 

the sensor response to a dilution series and determining the 

target smallest concentration at which the sensor response is 

clearly distinguishable from the response to a blank solution. 

This value is comparable to that achieved by the AgNPs- or 

AuNPs-based LSPR techniques (0.1 or 1.5 pM),24,31 and is 

significantly lower than that achieved by other methods, 

including molecular beacon (MB; 3.57 nM)-based,6 graphene 

oxide (1 nM)-based and CdTe quantum dots (QDs)-based 

fluorescent assays;46 square wave voltammetry (48 pM);27 

electrochemical impedance spectroscopy (100 pM);45 mag-

netic bead-droplet immunoassay (2.22 mM)61 and surface-

enhanced Raman spectroscopy (0.1 μM).35 Moreover, our 
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method required very simple sample handling procedure 

and obviated the modification of nanoparticles and the uti-

lization of expensive and variable antibodies for the capture 

and recognition of Aβ oligomer. The physiological content 

of Aβ in a normal human CSF is in the range of nanomolar, 

and a higher concentration of Aβ oligomer is present in AD 

patients.2 Thus, the proposed method is promising to detect 

Aβ oligomer in body fluids.

To explore the specificity of our method, Aβ monomer, Aβ 

fibril and three interfering proteins (BSA, IgG and thrombin,) 

were tested. As shown in Figure 5B, compared to the control, 

only the fibril control caused a significant change in the cur-

rent. This is probably due to the existence of a small amount 

of unfibrillar oligomer in the solution. The other four interfer-

ences did not cause significant change in the current. The result 

demonstrated that the tested interferences did not prevent the 

assembly of AgNPs/PrP
95–110

 on the sensor surface. Therefore, 

the proposed electrochemical method showed extraordinary 

selectivity toward the detection of Aβ oligomer. The high 

selectivity could be principally attributed to the strong and 

specific binding capacity of PrP
95–110

 to Aβ oligomer.

assay of aβ oligomer in serum and acsF
To demonstrate the viability of our method for real sample 

assay, the content of Aβ oligomer in aCSF and 20% serum 

was determined by the standard addition method. The accu-

racy of the assay was evaluated by determining the recovery 

for the spiked sample. As shown in Table 1, the recoveries 

for assays of three different concentrations of Aβ oligomer 

varied from 86% to 109%. The acceptable values implied 

that the proposed method could provide a potential platform 

for the detection of Aβ oligomer in CSF and serum samples 

of AD patients.

Conclusion
This work presented an innovative electrochemical method for 

the detection of Aβ oligomer by inhibiting the in situ forma-

tion of AgNPs-based network architecture on the electrode 

surface. The Aβ oligomer-binding peptide was used as the 

recognition element. The proposed electrochemical method 

not only features simple manipulation principle and easy 

detection procedure similar to that of colorimetric assay but 

also shows high sensitivity and specificity. The detection limit 

of this method for Aβ oligomer detection is 6 pM, which is 

comparable to or lower than that achieved by the previously 

reported methods. However, our method is rapid (,30 min) 

and label free, obviates the modification of nanoparticles 

for signal amplification and does not require the utilization 

of expensive and variable antibodies and enzymes for the 

capture and recognition of Aβ oligomer. In view of the high 

β

β
∆

∆

Figure 5 sensitivity and selectivity.
Notes: (A) Dependence of the current on the concentration of aβ sample (0.01, 0.2, 5, 50, 200, 500 and 2,000 nM). The inset shows the linear dependence of the current 
change on the concentration of the aβ sample. (B) selectivity of the sensing protocol (bar 1, aβ monomer; bar 2, aβ fibril; bar 3, Aβ oligomer; bar 4, Bsa; bar 5, Igg and 
bar 6, thrombin). The concentration of the aβ sample was 200 nM and that of Bsa, Igg and thrombin was 1 μM. Ipa, oxidation current.
Abbreviations: aβ, beta-amyloid; Bsa, bovine serum albumin; Igg, immunoglobin g.

Table 1 results of the proposed method for the detection of aβ 
oligomer in acsF and serum

Sample Added (nM) Found (nM) Recovery (%)

1 (acsF) 1 0.89 89
2 (acsF) 20 21.8 109
3 (acsF) 50 52.4 104.8
4 (serum) 1 0.86 86
5 (serum) 20 17.9 89.5
6 (serum) 50 43.7 91.4

Abbreviations: aβ, beta-amyloid; aCSF, artificial cerebrospinal fluid.
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toxicity of soluble Aβ oligomer in the brains of AD patients, 

the proposed biosensor could potentially serve as a viable 

alternative for facile clinical diagnosis of AD. The result 

also demonstrated that the bare AgNPs-based colorimetric 

assay can be converted into an electrochemical analysis with 

improving specificity. Moreover, this proposed detection 

principle should be valuable for developing label-free optical 

platforms with multiplexed aptameric peptide microarrays.
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