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Abstract
Anthropogenic disturbances often change ecological communities and provide opportuni-

ties for non-native species invasion. Understanding the impacts of disturbances on species

invasion is therefore crucial for invasive species management. We used generalized linear

mixed effects models to explore the influence of land-use history and distance to roads on

the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis
thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Re-

serve. Although much of the reserve has been continuously forested since at least 1939,

aerial photos revealed a variety of land-uses since then including agriculture, mining, log-

ging, and development. By 2008, both R.multiflora and B. thunbergii were widespread

throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed

vegetation plots, respectively) with occurrence and abundance of each varying significantly

with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined,

logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Ber-
beris thunbergii was more likely to occur in plots with agricultural, mining, or logging history

than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture in-

creased the probability that R.multiflora had >10% cover while only past agriculture was

related to cover of B. thunbergii. Proximity to roads was positively correlated with the occur-

rence of R.multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thun-
bergii, and roads had no impact on the abundance of either species. Our results indicated

that a wide variety of disturbances may aid the introduction of invasive species into new

habitats, while high-impact disturbances such as agriculture and mining increase the likeli-

hood of high abundance post-introduction.

PLOS ONE | DOI:10.1371/journal.pone.0128161 June 5, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Calinger K, Calhoon E, Chang H-c,
Whitacre J, Wenzel J, Comita L, et al. (2015) Historic
Mining and Agriculture as Indicators of Occurrence
and Abundance of Widespread Invasive Plant
Species. PLoS ONE 10(6): e0128161. doi:10.1371/
journal.pone.0128161

Academic Editor: Jian Liu, Shandong University,
CHINA

Received: December 1, 2014

Accepted: April 22, 2015

Published: June 5, 2015

Copyright: © 2015 Calinger et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The vegetation survey was made possible
through a grant from the Heinz Endowment, http://
www.heinz.org/.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0128161&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.heinz.org/
http://www.heinz.org/


Introduction
A variety of factors determine whether a biological community is particularly susceptible to in-
vasion, including soil nutrients, light levels, disturbance regime, and land-use history [1]. How-
ever, some questions remain as to how these factors interact and, in particular, how both the
ability of a species to invade and its population abundance once it establishes are influenced by
land-use history. The effects of some types of land use on invasive species establishment and
spread have been studied in greater detail than others and most studies do not include the
effects of distance to road or consider the combined effects of past and current land use.

Several studies have implicated past land use as a major factor in the establishment and
spread of invasive plant species [1][2][3][4]. Changes in land use, such as clearing land for agri-
culture and then subsequent reforestation, often create “windows of opportunity” for invasive
species to establish in these disturbed areas [1]. Agriculture, logging, and residential or com-
mercial development all typically increase the distribution of invasive plants, although this de-
pends on the species in question and land use seems to have more of an effect on occurrence
than on abundance [1][2][3][5]. Additionally, past land use is more predictive of invasive oc-
currence and abundance than present land use [1][2], but the best predictor of distribution
may be found by combining past and present land use into a single metric of land-use change
[5], which is rarely done.

Furthermore, the effects of some past land uses are less well studied, despite their high prev-
alence in the landscape. For example, the effects of agriculture and logging on invasive spread
have been extensively studied, whereas the effects of mining have not been studied as extensive-
ly or in the same ways. Over 400,000 hectares of forest have been lost to mining since 1973 in
the eastern United States alone and coal mining is currently the leading cause of forest loss in
the Allegheny Plateau ecoregion that contains our study site, Powdermill Nature Reserve [6].
Given that mining destroys vegetation, disrupts soils, and alters microbial communities [7], it
seems likely that mining would enhance the spread of invasive organisms by also creating “win-
dows of opportunity” in a similar manner to how agriculture enhances the spread of invasive
species. This situation appears likely, but studies of mining impacts have generally focused on
the prevalence of invasive species over the course of succession or on the effects of planting in-
vasive species as part of the mine reclamation process on subsequent invasive species preva-
lence [8][9][10,11]. Previous studies have not compared the occurrence and spread of invasive
species in historically mined areas to those that were historically forest or compared the effects
of mining to the effects of other land uses.

Roads may also aid the spread of invasive species, even in areas that have historically been
forested [12][13]. Roads provide suitable habitats for invasive species as well as corridors for
the dispersal of invasive species [12][14]. However, only a few studies have combined models
of invasive species presence and distance to roads with land-use history to examine whether
roads continue to be important predictors of invasive spread when land use is included in the
model and vice versa [2][15][16]. It is important to include both land use and distance to roads
in models because the land use history and roads could potentially have interacting effects. For
instance, a road close to a disturbed site could increase propagule pressure in that site [4]. The
handful of studies that have made this comparison have found inconsistent results [2][15][16],
potentially due to species-specific differences in the effects of roads on the occurrence and
spread of invasive species [17].

In this exploratory study, we examined patterns of occurrence and abundance of two inva-
sive plant species in a deciduous forest ecosystem in eastern North America as a function of
roughly 70 years of land-use history and of distance to roads to ask the following questions: (1)
How do patterns of land-use change including surface mining for coal, logging, agriculture,
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and development affect the occurrence and abundance of invasive species? (2) How does the
distance to a road affect the occurrence and abundance of invasive species? (3) Is land-use
change still a significant predictor of invasive occurrence and abundance once distance to road
is accounted for and vice versa?

Multiflora rose (Rosa multiflora) and Japanese barberry (Berberis thunbergii) were the only
invasive species in our study site that were present in large enough numbers to examine their
distribution patterns individually. We predicted that historical land use change would have
greater effects on occurrence of invasive species than abundance for both species in accordance
with previous research [1][2][3][5]. We also expected that mining would have equal, or greater
effects, than agriculture on the occurrence and abundance of these species, given that the effects
of mining on the environment tend to be more long-lasting and severe than the effects of agri-
culture [11]. Lastly, we expected to observe species-specific differences in the effect of roads on
invasive species occurrence and abundance, potentially with distance to road having greater ef-
fects on B. thunbergii than on R.multiflora, as was seen in previous research, although that
study did not include the effects of land-use change in their model [13].

Materials and Methods

Study Site
To examine the impacts of land-use history on invasive species, we analyzed an extensive vegeta-
tion survey from Powdermill Nature Reserve (PNR; 40°09’S, 79°16’W), currently private proper-
ty maintained as a research field station by the Carnegie Museum of Natural History in
Pittsburgh, PA. PNR covers nearly 900 hectares of temperate deciduous forest in southwestern
Pennsylvania (U.S.A), where the predominant tree taxa are maple (Acer), oak (Quercus), hickory
(Carya), and tulip poplar (Liriodendron, [18] for more information on native species in PNR).

Although PNR is currently predominantly forested, the region has experienced a variety of
anthropogenic disturbances. As with most forests in the eastern U.S., much of the reserve was
logged in the 1800s. The majority of the reserve returned to forest afterward although a small
fraction of the reserve experienced more recent clear cutting in the 1960s and became forested
later. Following logging, parts of the property were used for agriculture until the early to mid-
1900s. In addition, surface mining for coal occurred during the 1940s. Little development (e.g.,
building) has taken place since PNR was designated as a nature reserve and became a part of
Carnegie Museum of Natural History in 1956. At present, most of the PNR remains forested
and undisturbed with its east boundary connected to the 200-ha Laurel Mountain State Park.
However, a high level of anthropogenic disturbance (e.g., residential areas and highways) has
occurred to the west side of the reserve, which could have accelerated the introduction and es-
tablishment of invasive species. No special permission was required to measure woody plants
on private property and no protected species were involved in the survey. This study was ap-
proved by the Director of Powdermill Nature Reserve and by the Director of the Carnegie Mu-
seum of Natural History.

Data Collection
During the summers of 2006, 2007, and 2008, a continuous 120m x 120m grid was mapped
across PNR (for a total of 647 'blocks'). Within each block, nine circular vegetation plots (10m
in radius, ~314 m2 in area, total area = 2827 m2) were established in a square around the center
of each block. Within each vegetation plot, all trees, shrubs, and herbs were surveyed. Shrub
and herb abundance was assessed as percent cover (“cover class” hereafter) and assigned a nu-
meric value between 0 and 6 (0, trace = 1, 1–10% = 2, 11–25% = 3, 26–50% = 4, 51–75% = 5,
and>75% = 6). Based on cover class assignments, R.multiflora and B. thunbergii cover in each
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plot was binned into a “low cover” category (trace-10% cover, hereafter “low abundance”) and
a “high cover” category (>10% cover, hereafter “high abundance).

To document the various anthropogenic disturbances that have occurred at PNR, we used
historical aerial images to assign land-use history categories to each vegetation plot. Aerial im-
ages were available from 1939, 1957, 1967, 1993, and 2006 [19]. We classified types of land-use
history using the standard national land cover database classification system [20], which in-
cludes forest land, shrub land, planted/cultivated, and barren (including surface mining). His-
torical mining activities inside the property were matched with the aerial imaging. We
ultimately classified each plot into one of the following six categories based on previous anthro-
pogenic disturbances and current conditions (as suggested by Mosher et al. 2009 [5]): always
forested (since at least 1939), agriculture to forest, mined to forest (all mining was surface min-
ing for coal), logged to forest, developed to forest, and always developed (Fig 1a). Many of
these land-use history categories represent patterns of secondary succession common through-
out the eastern U.S.A.

Current human disturbance (e.g., buildings, yards, and trails) within a 10m radius of each
plot was noted. Among the plots with a history of development, ~58% of them were open space
with minimal construction materials (e.g., lawn grass) that later became forested. The rest of
the plots had impervious surfaces accounting for 50–79% of the total cover (e.g., buildings).
Distances from each plot to roads and forest edge were calculated in the ArcGIS software pro-
gram [21].

Study species
Five invasive plant species were identified in the survey plots at PNR. Multiflora rose (Rosa
multiflora) and Japanese barberry (Berberis thunbergii) were widespread in the reserve (ac-
counting for 65% and 34% of all invasive species occurrences, respectively), while the three re-
maining species combined accounted for<1.5% of invasive species coverage (Lonicera
morrowi, Alliaria petiolata, and Celastrus orbiculatus, Fig 1). Only R.multiflora and B. thunber-
gii had sufficient sample sizes to be analyzed individually. All five invasive species were includ-
ed for a third analysis assessing impacts of land-use history on the general occurrence of
invasive species within PNR.

Rosa multiflora Thunb. is a thorny shrub, originally introduced to the U.S.A. as rootstock in
1866 from Eastern Asia [22][23] and it was later planted for erosion control and as fences and
highway strips. A prolific species, a mature R.multiflora individual could produce up to one
million seeds per year [24] and the fruits could remain viable for 20 years [25]. Besides seed dis-
persal by birds, vegetative spread is also common. Rosa multiflora is tolerant to various soils,
moisture and light conditions, and can be found in open woodlands, forest edges and areas
that have experienced disturbance. Rosa multiflora was introduced to Pennsylvania as root-
stock during the 1930s through the 1960s [26].

Berberis thunbergii DC. is a dense spiny shrub that was introduced from Japan as an orna-
mental plant in 1875 [27], but it did not become feral in the Northeast U.S.A. until the 1910s
[28]. Berberis thunbergii seeds are dispersed by birds and mammals, although expansion
through vegetative growth is also common. Berberis thunbergii can tolerate both shade and
drought; therefore, it could adapt to various environmental conditions, including wooded habi-
tats, wetland and disturbed areas [28].

Statistical Analyses
We evaluated the effects of land-use history (a six-level categorical variable) and distance to
road (continuous, meters) on the occurrence and abundance of the two most abundant
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invasive plant species at PNR, R.multiflora and B. thunbergii, using generalized linear mixed
effects models from the lme4 package [29] in the statistical software R [30].

First, to predict the occurrence of invasive plants, we ran a separate logistic regression for
each species (one for R.multiflora, one for B. thunbergii) to model occurrence (presence/ab-
sence) as a function of land-use and distance to roads. Second, to predict the abundance of in-
vasive plants (i.e., abundance in those sites that contained the invasive species, ignoring sites
where they did not occur), we also ran two separate logistic regressions (one for R.multiflora,
one for B. thunbergii) to model abundance as a function of land-use and distance to roads. In
this case, we divided invasive plant abundance into two classes, low and high, based on percent
cover assigned in the field, as stated above. Low abundance sites had trace-10% cover of the in-
vasive plant; high abundance sites had>10% cover. All models of invasive species occurrence
and abundance used a binomial error structure and a logit link function. Finally, to predict the
number of invasive plant species, we ran a generalized linear model with a Poisson error struc-
ture, to model the number of invasive plant species as a function of land-use history and dis-
tance to roads. All models used a Type III sum of square errors.

For all models, we assigned the least disturbed “always forested” land-use category as the
reference group against which all other land-use categories were compared. Distance to road
(meters) was log transformed prior to analyses to normalize the data.

To account for potential spatial autocorrelation (or similarity between plots due to their
proximity to each other) in invasive plant occurrence and abundance because of the vegetation
sampling methods (blocks of nine 10m radius plots centered in each cell of a 120x120 m grid
(see Materials and Methods/Data Collection), all models included block as a random effect.
Plotting the model residuals indicated that the addition of block as a random effect removed
the majority of the spatial autocorrelation from our models (Figures A–D in S1 Fig). There was
no significant spatial autocorrelation in model residuals of occurrence or abundance for B.
thunbergii after the additional of block as a random effect (Moran’s I, p> 0.05, Figures C–D in
S1 Fig) and thus our results for these models are independent of spatial bias. Addition of block
to the occurrence and abundance models for R.multiflora accounted for spatial autocorrelation
in plots�50 meters apart (Figures A–B in S1 Fig). Plots that are closer than 50 meters to each
other are within the same 120x120m block, so it is reasonable that addition of block as a ran-
dom effect would not account for all spatial autocorrelation at smaller scales (Moran’s I,
p< 0.05, Figures A–B in S1 Fig). The spatial autocorrelation within a block would primarily be
of concern if R.multiflora was found in only one block for a given land-use category as that
may suggest that R.multiflora was found more often due to some site characteristic of that
block rather than its land-use history. However, R.multiflora was found in multiple blocks for
all land-use categories assessed (S1 Table) suggesting that the observed differences in occur-
rence and abundance are not due to the remaining spatial autocorrelation in our models. Fur-
ther, impacts of spatial autocorrelation are primarily of concern in studies with small sample
sizes [27]. Our samples sizes for both R.multiflora and B. thunbergii are comparable to or larg-
er than similar studies which had sample sizes ranging from n = 28 to n = 188 [1][2][11][14]
[31]. Given our large sample sizes for both R.multiflora and B. thunbergii, the remaining spa-
tial autocorrelation in our model residuals is unlikely to significantly impact our results.

Fig 1. Land-use history (a) and abundance of invasive species in Powdermill Nature Reserve in 2006. Point sizes correspond to the number of
invasive species present ranging from 1 to 3 invasive species present (b) and abundance of R.multiflora (c) and B. thunbergii (d). Blue lines represent rivers,
while brown lines represent major roads in the region.

doi:10.1371/journal.pone.0128161.g001
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Results

Invasive species occurrence
Rosa multiflora was widespread throughout the reserve, occurring in 1080 plots (24%) and 258
blocks (50%, S1 Table). Occurrence varied by land-use history within PNR, with R.multiflora
occurring in 18% of always forested plots, 74% of agriculture to forest plots, 65% of developed
to forest plots, 27% of logged plots, 64% of mined plots, and 35% of developed plots (Fig 1c).
As predicted, disturbance by humans increased the probability of invasion and the inclusion of
land-use history significantly improved model fit (LR Χ2 = 111.4, df = 5, p< 0.001); the proba-
bility of occurrence of R.multiflora was significantly higher in all land-use categories compared
to always forested sites (Fig 2). For example, for a plot that was previously mined the log odds
of containing R.multiflora increased by 2.57 (Wald Z = 4.562, p< 0.001) and the odds by
13.16. For forest that had previously been logged, the log odds of containing R.multiflora in-
creased by 1.76 (Wald Z = 3.348, p< 0.001) and the odds by 5.82. Previous agriculture was as-
sociated with the highest probability of invasion, with the log odds increasing by 3.03 (Wald
Z = 9.214, p< 0.001) and the odds increasing by 20.78.

As predicted, proximity to roads was positively correlated with the probability of invasion
by R.multiflora, and inclusion of distance to road significantly improved model fit (LR Χ2 =
4.3676, df = 1, p = 0.037; Fig 3). For every 1-m closer to a road, the log odds that a plot con-
tained R.multiflora increased by 0.26 (Wald Z = -2.14, p = 0.035, Fig 3).

Berberis thunbergii was rarer than R.multiflora, encountered in 563 plots (13%) and 190
blocks (37%) across the entire reserve (S1 Table). Occurrence varied by land-use history within
PNR, and B. thunbergii occurred in 8% of always forested plots, 49% of agriculture to forest
plots, 6% of developed to forest plots, 17% of logged plots, 36% of mined plots, and 4% of de-
veloped plots (Fig 1d). As predicted, disturbance by humans increased the probability of inva-
sion and the inclusion of land-use history significantly improved model fit (LR Χ2 = 56.78,
df = 5, p< 0.001); the probability of occurrence of B. thunbergii was significantly higher in all
but two (developed to forest and always developed) land-use categories compared to always
forested sites (Fig 2). For example, for a plot that was previously mined the log odds of contain-
ing B. thunbergii increased by 2.08 (Wald Z = 3.986, p< 0.001) and the odds by 8.08. For forest
that had previously been logged, the log odds of containing B. thunbergii increased by 1.39

Fig 2. Plot-level odds of (a)R.multiflora and (b) B. thunbergii occurrence and (c) plot-level log odds of findingmultiple invasive species. A total of
4388 10-m diameter plots with different land-use histories in a deciduous forest in eastern North America were included in this analysis except in the invasive
species count analysis in which only plots with at least one invasive species were included (n = 792). The odds of occurrence for each invasive species in a
given land-use category relative to always forested plots is given by each point with 95% confidence intervals. Sample sizes are given in parentheses.
Among land-use histories, always forested plots (i.e. forested continuously since at least 1939) was used as the reference group and asterisks indicate a
significant difference from always forested plots (*p < 0.05, **p < 0.01, ***p < 0.001).

doi:10.1371/journal.pone.0128161.g002
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(Wald Z = 2.827, p = 0.0047) and the odds by 4.03. As with R.multiflora, previous agriculture
was associated with the highest probability of invasion, with the log odds increasing by 2.13
(Wald Z = 7.509, p< 0.001) and the odds increasing by 8.38.

Unlike with R.multiflora, increasing proximity to roads did not significantly increase the
probability of B. thunbergii occurrence (Wald Z = -1.856, p = 0.06, Fig 3b), and inclusion of dis-
tance to road did not significantly improve model fit (LR Χ2 = 3.34, df = 1, p = 0.067).

The total number of invasive species found in individual plots varied from 0 to 3. A total of
792 plots contained one invasive species, 427 plots contained two invasive species, and only
nine plots contained three (S1 Table). As predicted, disturbance by humans increased the prob-
ability of invasion and the inclusion of land-use history significantly improved model fit (LR
Χ2 = 28.50, df = 5, p< 0.001). However, the species count was significantly higher than in the
always forested sites in only two land-use categories: agriculture to forest (log count = 0.28,
z = 5.024, p< 0.001) and mined (log count = 0.23, z = 2.309, p = 0.021; Fig 2). Inclusion of dis-
tance to road did not improve model fit (LR Χ2 = 0.36, df = 1, p = 0.55).

Invasive species abundance
When present, most invasive species were not abundant, with a median cover class of 2 (1–10%
cover, classified as low invasive species abundance) for both R.multiflora and B. thunbergii

Fig 3. Probability of occurrence ofR.multiflora versus distance to a road. Individual points represent plot-level observations of R.multiflora’s
occurrence (1 = present, 0 = not present,n = 4388 plots). The best fit line was fitted using the generalized linear model of occurrence versus log distance to
road and provides the probability of R.multiflora occurrence at varying distances from roadways.

doi:10.1371/journal.pone.0128161.g003
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(Fig 4). Most plots were in cover class 1 or 2 (70% of plots for R.multiflora, 76% for B. thunber-
gii), and very few had abundance over 50% cover (3.5% of plots for R.multiflora, 1.6% for B.
thunbergii).

Abundance of R.multiflora varied by land-use history within PNR, with cover above ten
percent (high abundance) in 19% of always forested plots, 47% of agriculture to forest plots,
29% of developed to forest plots, 35% of logged plots, 54% of mined plots, and 11% of devel-
oped plots. As predicted, disturbance by humans increased the probability that an invasive spe-
cies would be highly abundant and the inclusion of land-use history significantly improved
model fit (LR Χ2 = 28.18, df = 5, p< 0.001). The probability of high abundance of R.multiflora
was significantly greater in all land-use categories compared to always forested sites, except
sites that had experienced development (Fig 4a). For example, for a plot that was previously ag-
ricultural, the log odds of high R.multiflora abundance increased by 1.50 (Wald Z = 4.473,
p< 0.001) and the odds increased by 4.46. For forest that had previously been logged, the log
odds increased by 1.44 (Wald Z = 2.297, p = 0.022) and the odds by 4.24. Previously mined
plots had the highest probability of having a high abundance of R.multiflora with the log odds
increasing by 1.99 (Wald Z = 3.540, p = 0.0004) and the odds by 7.37. Proximity to roads did
not significantly increase the probability of abundant R.multiflora, and inclusion of distance to
road did not significantly improve model fit (LR Χ2 = 1.00, df = 1, p = 0.317).

Abundance of B. thunbergii varied by land-use history within PNR, with cover above ten
percent in 13% of always forested plots, 43% of agriculture to forest plots, 30% of logged plots,
and 12% of mined plots. Berberis thunbergii was not present at high abundance in the devel-
oped to forest plots or developed plots. As predicted, disturbance by humans increased the
probability of high abundance and the inclusion of land-use history significantly improved
model fit (LR Χ2 = 20.39, df = 5, p< 0.001). The probability of high abundance of B. thunbergii
was significantly higher in agriculture to forest plots, where the log odds increased by 1.71
(Wald Z = 4.395, p< 0.001) and the odds by 5.50. There was no significant difference between
always forested plots and previously mined plots (log odds = -0.05, Wald Z = -0.058, p = 0.95)
or previously logged plots (log odds = 1.46, Wald Z = 1.827, p = 0.068). Plots with a history

Fig 4. Odds of high abundance for (a)R.multiflora, (b) B. thunbergiiwith different land-use histories. Each point indicates the odds that each invasive
species will be highly abundant (>10% cover) in a given land-use history ± 95% confidence intervals (n = 1074 plots for R.multiflora and n = 558 plots for B.
thunbergii). Asterisks indicate a significant difference from always forested (i.e. forested continuously since at least 1939) plots (*p < 0.05, **p < 0.01,
***p < 0.001) and sample sizes are given in parentheses. Plots with R.multiflora or B. thunbergii cover class of 1–2 were categorized as low abundance
plots and plots with cover classes of 3–6 were categorized as high abundance plots. Analysis of the always developed and developed to forest land-use
categories were not complete for B. thunbergii due to small sample size.

doi:10.1371/journal.pone.0128161.g004
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of development were not included in this model due to sample size limitations (n< 3). Fur-
thermore, as with R.multiflora, proximity to roads did not significantly increase the probability
of highly abundant B. thunbergii, and inclusion of distance to road did not significantly im-
prove model fit (LR Χ2 = 1.08, df = 1, p = 0.298).

Discussion
We found that a wide array of land-use histories significantly increased the likelihood of R.
multiflora and B. thunbergii occurrence. Plots with a history of mining, logging, or agricul-
ture were significantly more likely to have both invasive species than plots that had been con-
tinuously forested since 1939. Rosa multiflora was also more likely to occur in plots that were
closer to roads and was more likely to occur in plots that had been developed than in plots
that were always forested. By comparison, disturbance had less of an impact on the abun-
dance of these invasive species after their introduction. Only a history of agriculture resulted
in greater abundance of B. thunbergii, whereas R.multiflora was significantly more abundant
in plots with mining, logging, or agricultural history. These results suggest that historic dis-
turbances create “windows of opportunity” for introduction of invasive species, which results
in long-term persistence of these species in the invaded ecosystem; however, effects of past
disturbance on abundance following introduction are limited and depend on the type of
disturbance.

Mining
Our study is unique in examining the impacts of historic coal mining on the introduction and
spread of invasive species along with other historic land-use changes. Strip mining for coal re-
sults in total vegetation clearing and a suite of changes to the soil [11], including compaction
and the resultant decrease in water absorption [32], acidification, and loss of mycorrhizal sym-
bionts [33], the seed bank, and soil microbes [10]. Furthermore, invasive species, such as
Elaeagnus umbellata, are sometimes planted as part of the reclamation process because of their
ability to spread quickly and grow under harsh conditions [10]. These alterations differ from
modifications resulting from agriculture and other disturbances, but are similar in that they
often inhibit re-establishment of native species while allowing disturbance specialist invasive
species to establish. Our findings showed that mining significantly increased R.multiflora oc-
currence and abundance relative to plots that had always been forested. Berberis. thunbergii
was also more likely to occur in areas that had historically been mined but, in contrast, was not
more abundant where it did occur. Historically mined plots also contained more than twice the
number of invasive plant species compared to plots that had been forested since 1939. As in
our study, invasive species have been found in historically-mined areas, including Latana
camara in coal fields in India [8] and autumn olive (Elaeagnus umbellata) and R.multiflora in
historically-mined areas of Appalachia [9][31]. Latana camara and E. umbellata spread quickly
in these areas after mining ceased, having negative effects on the recovery of native species,
while spread of R.multiflora was not examined [8][9]. Our research implies that mine reclama-
tion efforts should focus not only on soil amendments to decrease acidification and introduce
mycorrhizal symbionts, but also on the establishment of native or non-invasive plant commu-
nities to limit invasion opportunities for species such as R.multiflora and B. thunbergii, which
persist in the ecosystem for decades after mine abandonment.

Agriculture
The increases in occurrence and abundance of R.multiflora and B. thunbergii in plots with a
history of agriculture were similar in magnitude to the impacts of mining. Plots with a history
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of agriculture also contained significantly more invasive plant species than plots that had re-
mained forested since 1939. Berberis thunbergii is a known post-agricultural specialist and a
history of agriculture has been found to increase abundance and occurrence of many other in-
vasive species including R.multiflora, L.morrowii, A. petiolata, and C. orbiculata, in addition
to increasing the total number of invasive species found at a site [1][3][5] [34][35][36]. Agri-
cultural abandonment creates an invasion opportunity, as with mining, by clearing native vege-
tation. As some invasive plant species were once planted in hedgerows or to prevent erosion,
they are ideally located to take advantage of abandoned fields [37]. Further, agriculture often
results in persistent changes in soil chemistry, as fertilizer application increases nitrogen and
phosphorus concentrations for decades after the farmland is abandoned [38]. These highly fer-
tile sites have been shown to increase growth of invasive species relative to forested areas [39].
Our results suggest that the disturbance and removal of the native plant community as a result
of historic agriculture allowed for the initial invasion of R.multiflora and B. thunbergii, and
thus resulted in a greater probability of invasive occurrence even after the forest regrew in
those plots. However, historic agriculture is unique among our land-use history categories in
that it increased the abundance of both invasive focal species as well. These results suggest that
a history of agriculture continues to enhance invasive species performance for decades after
abandonment perhaps due to long-term increases in soil fertility. Further, our findings high-
light the importance of re-establishing a native plant community quickly after farming is dis-
continued to limit invasive species introduction and spread.

Other land-use histories
Past logging increased the occurrence of both invasive species at PNR. It also increased the
probability of high abundance of R.multiflora compared with plots that had always been for-
ested. The effects of logging on invasion dynamics vary significantly among studies, with some
finding results similar to ours for B. thunbergii [40], while others suggest logging is associated
with both increased occurrence and abundance of invasive species, as we saw in R.multiflora
[41]. This variability among studies may be due to differing intensity of logging among studies
and interactions with soil fertility characteristics. Low intensity logging typically results in lim-
ited change in species composition and is primarily associated with release of shade-tolerant,
late successional native species [34]. In contrast, high intensity logging may result in increased
opportunities for invasion by non-native species, particularly when combined with high soil ni-
trogen levels. Occurrence of both R.multiflora and B. thunbergii, along with several other inva-
sive species was associated with high intensity logging, but only if the carbon to nitrogen ratio
in the soil was relatively low [42].

Historic and present development increased the likelihood of R.multiflora occurrence,
whereas development had no impacts on B. thunbergii occurrence or abundance. In one of the
few studies that examined the effects of continuous development on R.multiflora and B. thun-
bergii, Mosher et al. [5] found that both species were significantly more abundant in areas that
were continuously developed than in areas that stayed forested, in contrast to our results; how-
ever they did not have a category for areas that had been developed and then allowed to return
to forest. Another study found that high levels of present development corresponded with
higher frequency and cover of invasive species and that this pattern held true to a certain extent
for both R.multiflora and B. thunbergii [2]. However, that study had only three sites and com-
pared the effects of past and present land use, unlike our study, which created land-use catego-
ries based on both past and present land use. Most of the developed plots at PNR are of
relatively low disturbance intensity (i.e., lawns). This low level of disturbance may have resulted
in the limited effects of development on invasive species occurrence and abundance. Studies of
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the impacts of previous development followed by reforestation on non-native species invasion
are quite rare as the conversion of forest to developed land is much more common than the re-
verse [6]. Thus, our study is unique in contributing to our limited understanding of both the
temporal sequence of land-use change and the effects of present and historic development.

Roads
We found that R.multiflora was more likely to occur in plots closer to a road, even when land-
use history was accounted for in the model. However, there was no difference in the probability
of high abundance of R.multiflora with differing proximity to roads and the occurrence and
abundance of B. thunbergii were not affected by distance to roads. Roads are important in the
spread of invasive species as they provide corridors for their spread. Roads also provide suitable
habitat for invasive species as the disturbance created by roads often leads to fewer competitors
and increased nutrient, moisture, and light availability [12][13][14]. Additionally, roads are hy-
pothesized to increase propagule pressure of invasive species thereby increasing the success of
invasion into surrounding forest [4]. The effects of roads on the occurrence and abundance of
invasive species tend to vary among studies depending on which species are examined and
which other variables are included in the model. For instance, Flory and Clay [13] examined
the impacts of proximity to roads on abundance of seven invasive species. Four of the seven
species studied, including B. thunbergii, increased in abundance closer to roads, whereas the
abundance of R.multiflora and two others was not significantly related to distance to roads.
However, that study did not include land-use in its models. Models such as ours that include
both land-use history and proximity to roads as drivers of invasive species occurrence and
abundance are essential. Simultaneously testing the effects of land-use and road proximity al-
lows the effects of each to be assessed independently as our models include variation accounted
for by all other terms when assessing the significance of each variable in the model. Thus, fac-
tors like external propagule pressures associated with proximity to roads do not confound our
estimates of invasive species occurrence and abundance in plots with differing land-use histo-
ries. Of the three studies that have included land-use history in their models, one found no ef-
fect of proximity to roads on invasive species occurrence or abundance [15], whereas the other
two found that proximity to roads affected abundance, but not occurrence of invasive species,
opposite to our findings [2][16]. However, all three of these analyses pooled results from multi-
ple invasive species, with one study using data from 95 species, so effects on individual species
may have been masked in these analyses. Given that our findings and those of Flory and Clay
[13] both showed species-specific effects of proximity to roads, we suggest that individual anal-
yses of invasive species are most appropriate for assessment of disturbance and land-use im-
pacts on occurrence and abundance.

Conclusions
This study highlights the importance of historic land-use for informing predictions of invasion.
A history of mining, agriculture, logging, development, and proximity to roads all increased
the probability that at least one of the invasive species that we studied would occur in a particu-
lar plot. In contrast, fewer land uses were associated with increased probability of high abun-
dance in R.multiflora and B. thunbergii or with higher total number of invasive plant species,
though the most disturbing land uses of mining and agriculture were associated with these var-
iables. We are not the first study to note that invasive species abundance may be driven by dif-
ferent environmental and anthropogenic factors than occurrence of these species [1]. However,
since the abundance, rather than occurrence, of invasive species is related to decreases in
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community diversity [43], our research suggests it may be important to focus our invasive spe-
cies eradication efforts in areas with previous agriculture or mining.

Supporting Information
S1 Figs. Analysis of Spatial Autocorrelation. Figure A. Plot of residual semivariance vs.
distance (m) in R.multiflora occurrence models without (a) and with (b) Block as a ran-
dom effect. Distance refers to the distance between the plots from which a given pair of data
points were collected. Dashed lines indicate 95% confidence intervals (CI) and the p-value
given is for Moran’s I test of spatial autocorrelation. Inclusion of Block in the R.multiflora oc-
currence models greatly reduced spatial autocorrelation between plots in different blocks al-
though some spatial autocorrelation remains between plots within the same Block (p< 0.05).
Figure B. Plot of residual semivariance vs. distance (m) in R.multiflora abundance models
without (a) and with (b) Block as a random effect. Distance indicates the distance between
the plots from which a given pair of data points were collected. Dashed lines give 95% confi-
dence intervals (CI) and the p-value is for Moran’s I test of spatial autocorrelation. Inclusion
of Block in the R.multiflora abundance models eliminated spatial autocorrelation between
plots at least 50 meters apart although some spatial autocorrelation remains between plots
within the same Block (p< 0.05). Figure C. Plot of residual semivariance vs. distance (m) in
B thunbergii occurrence models without (a) and with (b) Block as a random effect. Dis-
tance provides the distance between the plots from which a given pair of data points were col-
lected. The dashed lines give 95% confidence intervals (CI) and the p-value given is for
Moran’s I test of spatial autocorrelation. Inclusion of Block in the B. thunbergii occurrence
models eliminated all spatial autocorrelation in the model residuals (p> 0.05). Figure D. Plot
of residual semivariance vs. distance (m) in B. thunbergii abundance models without (a)
and with (b) Block as a random effect. Distance indicates the distance between the plots
from which a given pair of data points were collected. The dashed lines give 95% confidence
intervals (CI) and the p-value given is for Moran’s I test of spatial autocorrelation. Inclusion
of Block in the B. thunbergii abundance models eliminated all spatial autocorrelation in the
model residuals (p> 0.05).
(DOCX)

S1 Table. Full Dataset. This table provides plot and block level information for every plot
and block included in this study. Among others the table includes plot and block identifica-
tion, distances to a road, and occurrence and cover class (abundance) for both R.multiflora
and B. thunbergii.
(XLSX)
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