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Abstract

Background: Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic
studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global
‘‘omic’’ scale are not focused on human samples and when they correspond to human very often include heterogeneous
datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression
microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the
estimation of errors in the data is not provided.

Methodology/Principal Findings: Human genome-wide expression data from a controlled set of normal-healthy tissues is
used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve
this we describe a new method that combines several statistical and computational strategies: robust normalization and
expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-
validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of
coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives
are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network
that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over
previously published datasets. Further functional analysis of a subset core network, validated by two independent methods,
shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression
clusters organized in well defined functional constellations. Two major regions in this network correspond to genes
involved in nuclear and mitochondrial metabolism and investigations on their functional assignment indicate that more
than 60% are house-keeping and essential genes. The network displays new non-described gene associations and it allows
the placement in a functional context of some unknown non-assigned genes based on their interactions with known gene
families.

Conclusions/Significance: The identification of stable and reliable human gene to gene coexpression networks is essential
to unravel the interactions and functional correlations between human genes at an omic scale. This work contributes to this
aim, and we are making available for the scientific community the validated human gene coexpression networks obtained,
to allow further analyses on the network or on some specific gene associations. The data are available free online at http://
bioinfow.dep.usal.es/coexpression/.
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Introduction

Exploration and analysis of gene expression data using genome-

wide microarrays is a technique often used in genomic studies to

find coexpression patterns and locate groups of co-transcribed

genes. This kind of studies has been used in model organisms, like

yeast [1], to discover gene functions, to define biological processes

and to find related transcription factors and their products. The

main features of expression patterns that give a wide utility in

bioinformatic studies are: the functional information associated

[2], the high conservation of gene coexpression groups along

evolution [3] and the high correlation of these groups with

biomolecular pathways or reactions [4]. All these features leverage

genome-wide expression profiling, and convert this topic in a hot

research area.

Despite the described interest, coexpression studies done at

global ‘‘omic’’ scale are not focused in many cases on human

samples [5], and, when they correspond to human, very often they

include heterogeneous datasets, mixing ‘‘normal’’ samples with

‘‘disease altered’’ samples from patients suffering from some kind

of pathological state. This is the case, for example, in several

human gene expression large studies [2,6]. The inclusion of many

disease datasets (mainly from cancer) in such meta-analyses may

introduce strong bias and produce a lot of biological noise in the

results. In fact, it is well known that cancer cells have altered

genomes. Therefore, these kind of studies cannot be used to clarify
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how a normal-healthy human cellular system works, and they

cannot be used to draw a reliable map of the human gene

coexpression landscape.

The technical noise in the genome-wide expression microarray

studies is another well reported problem that can not be ignored

when gene coexpression studies at ‘‘omic’’ scale are undertaken.

Considering all these problems and knowing the interest of having

a reliable normal human gene coexpression network, we have

undertaken this task selecting human genome-wide expression

microarrays from a controlled set of different normal tissues to

build a confident human transcriptomic network using several

statistical and computational methods. These methods (which

include robust data normalization and signal calculation, com-

bined parametric and non-parametric correlation and random

cross-validation) help to avoid both biological and technical noise

and provide a human gene coexpression network that shows good

accuracy and coverage. Moreover, the network reveals well

defined biological functions and pathways that map to specific

coexpression clusters.

Results and Discussion

Genome-wide expression profiles from a broad set of
human samples

An expression matrix was calculated for a dataset of human

genome-wide microarrays hybridized with mRNA samples

coming from different human tissues, glands and organs from

healthy normal individuals. As indicated in Materials and
Methods the dataset included two biological replicates of samples

from 24 parts of the body: adrenal gland, appendix, blood, bone marrow,

brain, kidney, liver, lung, lymph node, muscle heart, ovary, pancreas, pituitary

gland, prostate gland, salivary gland, skin, spinal cord, testis, thymus gland,

thyroid gland, tongue, tonsil gland, trachea and uterus. Figure 1 presents

the heatmaps and clustering of the 48 samples analyzed by two

different methods following the strategy and steps described in

Methods: (1st) ‘‘MAS5-Spearman’’ method, that applies MAS5

algorithm for signal calculation and Spearman correlation coefficient

(r) for distance calculation (based on the sample expression profiles

and displayed in the heatmap as 12r); (2nd) ‘‘RMA-Pearson’’

method, that applies RMA algorithm for signal calculation and

Pearson correlation coefficient (r) for distance calculation (also based

on the sample expression profiles and displayed as 12r). We use

‘‘Spearman with MAS5’’ and ‘‘Pearson with RMA’’ because it has

been shown that the inclusion of at least one non-parametric step

based on ranks in the analyses of microarray data offers statistically

more robust and more accurate estimation of expression values [7]

and expression correlations [8]. The two methods proposed provide

such non-parametric transformation (i.e. change to ranks), because

Spearman is a rank correlation coefficient and RMA includes a

quantile normalization.

The heatmaps (Figures 1A and 1B) show a clear and

coherent clustering of each pair of biological replicates. A color

bar with scales for each heatmap is included in the figure,

indicating that dark-red corresponds to minimum distance (i.e.

maximum correlation) and dark-blue to maximum distance (i.e.

minimum correlation). White color corresponds to medium values

and the distributions inside the color bars show that the two

methods are similar but not identical: MAS5-Spearman provides

larger distances between samples (more blue values in the

heatmap) than RMA-Pearson (more red values in the heatmap).

Figure 1. Clustering of human tissue expression profiles. Heatmaps and clustering of the 48 human genome-wide expression microarray
samples from 24 different tissues and organs analyzed by two different methods: (A) MAS5-Spearman: MAS5 for signal calculation and Spearman for
distance calculation based on the sample expression profiles; and (B) RMA-Pearson: RMA for signal calculation and Pearson for distance calculation
based on the sample expression profiles. A color bar with scales for each heatmap is included, indicating that dark-red corresponds to minimum
distance and dark-blue to maximum distance. The color distributions observed in the heatmaps are also included inside the bars.
doi:10.1371/journal.pone.0003911.g001

Human Gene Coexpression Map
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The similarity and proximity of the replicates is closer in the case

of the second method, but in both cases there is not confusion or

separation of any pair of replicates. By contrast to this clear

clustering, the ordering and clustering of the different tissues, glands

and organs is not fixed in the heatmaps, changing quite a lot from 1A
to 1B. This observation was confirmed by bootstrap analysis done

with pvclust [9] which allows the assessment of the uncertainty in

hierarchical clusters (see Methods). The results of pvclust showed

that the biological ‘‘replicate pairs’’ gave in all cases stable groups

with optimum probability values (AU and BP = 100%). However,

within the tissues and organs only two stable groups were found with

both methods: the group that includes lymph node, thymus gland and

tonsil gland (that gave a AU value of 0.98); and the group that includes

kidney and adrenal gland (with AU value 0.97). These groups have clear

biological meaning since they correspond to physiologically and

functionally related organs (i.e. lymph node, thymus and tonsil are related

to the lymphatic and immune systems). Thus the functional

relationship between samples is captured by the gene expression

profiles. However, all the other tree branches produced low AU

values, therefore the overall sample clustering observed in the

heatmaps indicates a lack of well defined and stable groups. In

conclusion, these results show neat separation of most of the sample

expression profiles, which is an adequate condition for the

exploration of a global broad human gene expression landscape.

In order to consider if these observations are reliable enough, we

explored the data changing some conditions following another two

different strategies (data not shown). First strategy, the same

analyses with 48 microarrays were done again twice: one not using

the total number of genes (i.e. 22 283 gene probesets) but only the

25% of the genes that showed the largest variance; and another using

only the 25% of the genes that showed the highest signal. In both

cases, the heatmap and trees obtained were very similar to the ones

presented in Figure 1, and the bootstrap gave similar results.

Second strategy, we included in the data set two new groups of

microarrays corresponding to samples from specific organs: 16

microarrays from different parts of the brain and 10 microarrays

from different hematologic cell types. In this case (data not shown)

the analyses provided larger trees, where two main clusters were

segregated from other branches: one corresponding to brain related

samples (i.e. nervous system) including the two whole-brain samples;

and another cluster corresponding to the hematologic related

samples including the two whole-blood samples. These results

indicate again that any functional relation between samples is well

captured by the global gene expression profiles, and provide validity

to the genome-wide expression profiles of human normal tissues

obtained, allowing us to proceed to the next step of the study.

From sample expression profiles to gene expression
signatures

The main data presented so far correspond to the analysis of the

genome-wide expression profiles of samples from different human

normal tissues, organs or glands. These genome-wide ‘‘sample

profiles’’ are numerical vectors including the expression values of

each one of the gene probesets present in the microarray (i.e. each

one of the detectable genes of the human genome). As shown above,

the ‘‘sample profiles’’ can resemble the physiological relationships

expected between the samples (tissues, glands and organs). However,

in order to achieve a mapping of the human gene coexpression

landscape, we needed to move from the analysis of the ‘‘sample

expression profiles’’ based on the genes, to the analysis of each ‘‘gene

expression signature’’ based on the sample set.

It is difficult to achieve a proper gene coexpression study due to

several obstacles that have to be taken in consideration: (i) the

technical noise present in the microarrays at genomic scale [10],

despite the fact that the Affymetrix high density oligonucleotide

genechips have been reported quite reliable and reproducible

[11,12]; (ii) the small number of samples used to define each gene

expression signature (specially in comparison to the large number

of genes); (iii) the strong heterogeneity of the data sets frequently

studied, that include in many cases samples from pathological or

altered states [2,13] which are not adequate samples to find

‘‘normal’’ gene expression behavior.

The approach and strategies taken in this study to solve or

minimize these problems were the following: (a) careful selection

of expression samples from different parts of the human body

(tissues, whole glands and whole organs) from normal healthy

individuals; (b) calculation of expression signals and correlations

using two different independent methods: MAS5-Spearman,

RMA-Pearson; (c) use of a robust random cross-validation

strategy to find the most stable correlation pairs and distinguish

the consistent biological-signal from the noise-signal; (d) statistical

estimation of the accuracy and the coverage for each coexpression

dataset obtained. All the details and description of these strategies

are presented in Materials and Methods. The results

associated with them have been partially described above and

are explained in the following paragraphs.

Gene pairs coexpression analyzed with cross-validated
correlations

The complete expression data matrix analyzed had, as indicated,

48 samples (24 duplicates) and 22,283 gene probesets (which

correspond to 13,068 distinct known human genes according to

Affymetrix annotation). Therefore the global pair-wise gene coexpres-

sion matrix including all possible pairs had 248,254,903 data points

and was calculated twice, once for each independent method used

(MAS5-Spearman and RMA-Pearson). These huge data matrices

have many pairs that are false coexpression pairs and to detect those

positive gene pairs that had stable and significant correlation we use

cross-validation. The results corresponding to the gene pairs

correlation obtained with the cross-validation method (described in

Methods) are presented in Figure 2, that shows what we called

‘‘rN-plots’’. The rN-plots are graphics representing: r at y axis, that

is, for each gene probeset pair, the ‘‘correlation coefficient’’ of their

expression signatures along the complete dataset of 48 samples,

calculated as Spearman or Pearson distance (for MAS5 or RMA

data, respectively) (with values from 0 to 1 for positive correlations

and from 0 to 21 for negative correlations); N at x axis, that is the

‘‘cross-validation coefficient’’ defined as the number of times that a

given gene pair has a significant correlation (i.e. r$|0.70|) out of the

1000 times random selection (as explained in Methods). This

graphical analysis presents the positive and negative correlations well

segregated and it allows to identify those gene pairs that have a

significant ‘‘cross-validated correlation’’, discriminated from those

false gene-pairs that have low r or low N values. Such false gene-

pairs do not correlate in a stable and consistent way, being

undistinguishable from noise.

To demonstrate how the rN-plots represent stable and

consistent correlations, we selected in the case of the red circles

or dots only the gene probeset pairs that correspond to probesets

assigned to ‘‘the same gene’’. For example, pairs between the 4

probesets that correspond to gene ALDOB, fructose bisphosphate

aldolase B (204704_s_at, 204705_x_at, 211357_s_at, and

217238_s_at in microarray HGU133A); or pairs between the 3

probesets that correspond to gene CDK10, cell division protein kinase

10 (203468_at, 203469_s_at and 210622_x_at in HGU133A).

When correlation is found between these kind of ‘‘common gene

probesets’’ they are drawn as red circles in Figure 2. The analysis

indicates that the red circles accumulate at high r correlations and

Human Gene Coexpression Map
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high N values. This is the result that should be expected

considering that these groups of probesets are measuring the

same gene; and, despite the fact that this is not always true, it is a

good way to evaluate the meaning of the rN-plot. A more

stringent evaluation was to find out the correlation between

probesets that correspond to ‘‘control RNAs’’ that are added in

each microarray assay in the hybridization process. Such controls,

named with prefix AFFX in the chip, are spike controls (i.e. series

of mRNAs added during hybridization protocol that correspond to

different concentrations of non-human genes like AFFX-BIO) and

human house-keeping controls (like AFFX-HUMGAPDH). These

controls should have strong correlation since they have been

added to the microarrays in known concentrations. We draw such

correlations in the rN-plots as blue circles (Fig. 2); and it could

be seen that the distribution of these true positive gene correlated

pairs was very much accumulated at high N values and high r
correlations. This observation again shows that the rN-plots are

very useful and valuable to separate noisy false correlations from

stable true correlations.

The differences observed between Fig. 2A and 2B are due to

the differences in the methods and to the characteristics of the

cross-validation (described in Methods). Some red circles with

high-r and low-N appear only in the RMA-Pearson method

because the correlations derived from this method give in some

instances high correlation values to gene pairs that are correlated

just in only one tissue (shown in Fig. 2B). The cross-validation

values of these gene pairs are low because they only appear when

such one tissue samples are selected. The probability to select one

sample pair out of 24 is: 12(23/24)6 = 0.225; and this is why the

red circles with high-r and low-N only appear for values N.225.

By contrast, the MAS5-Spearman method does not find any red

circle in the high-r and low-N region, because Spearman is a

‘‘rank correlation coefficient’’ which does not produce high

correlation values for gene pairs that correlated in only one tissue

(just once out of 6). The r value obtained with the Spearman

method is proportional to the number of tissues or samples that co-

express and so it is quite proportional to N.

Data filtering to clear genes with low information
content

The calculations and analysis presented in Figure 2, were done

without using any previous filter of gene probesets. No filtering

means using the complete gene expression matrices with all the

human gene probesets present in the microarrays. It is known that

in most samples and conditions genome-wide microarrays include

a large proportion of the genes that are not expressed and

therefore they give signal close to the background or noise. This

situation is not very likely to occur all along the complete sample

set of 24 different tissues and organs studied here. However, out of

the 22,283 gene probesets some may have no significant change,

and therefore, it is important to find out the possible presence and

effect of these ‘‘non-changing genes’’ (that we also called ‘‘flat-

genes’’) [14]. The most adequate filter to be used in most of the

expression analyses is a variance-filtering between samples (i. e.

between-array variability), because this approach filters out

elements of low information content within the sample set and

covers the complete signal range (from low to high expression),

therefore, it does not bias the data by signal intensity or signal

ratios [14,15]. However some genes with high signal may be

significant despite showing relative low variance, and for these

reasons it is better to apply combined filters that explore the

variance, but also consider the intensity of the probes [15].

Figure 2. Plot of r and N coefficients calculated for each gene coexpression pair. rN-plots that represent the correlation coefficient (from 0
to 1) versus the cross-validation coefficient (from 0 to 1000) of each gene pair by two different methods: (A) MAS5-Spearman and (B) RMA-Pearson.
The cross-validation is considered positive for a given gene pair when it gives r.|0.7| in each sampling. As indicated in Methods 1000 samplings are
run for each gene-probeset pair. The gene probeset pairs that correspond to the same gene are drawn as red circles. The probeset pairs of Affymetrix
controls are drawn as blue circles. A random selection of 10,000 coexpressed gene probeset pairs are drawn as black circles. Two dotted lines are
drawn to indicate an approximate threshold that can be considered the border of noisy data. These lines are drawn just to show the minimal r and N
values bellow which the coexpressed gene pairs are mainly noise; therefore the coexpression signal appears mostly at r.0.65 and N.220.
doi:10.1371/journal.pone.0003911.g002
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As described in Methods we use a combined filter based on

between-sample variability and gene minimal signal, that is

designed to get rid of genes with low information content. The

use of this filter with the 48 microarrays sample set gave different

results for the data expression matrix obtained with RMA method

and the expression matrix obtained with MAS5 method. In the

first case the filter leaves out 6,893 gene probesets (leaving 69.06%)

and in the second 3,682 (leaving 83.48%) from 22,283 total gene

probesets. The difference in these numbers shows that these two

methods do not provide an equal calculation of expression signal

and variance and therefore, as explained bellow, both methods

can be considered complementary.

Analysis of accuracy and coverage along gene
coexpression data

Using the filtered data sets we follow a more thorough analysis

of the coexpression distributions with respect to the parameters r
and N. In the rN-plots (Fig. 2) two dotted lines were drawn to

indicate an approximate threshold for coexpressed gene pairs that

could be considered the border of noisy data. These lines are

tentatively drawn just to show the minimal r and N values bellow

which the coexpression pairs are mainly noise; therefore, the

coexpression signal appears mostly at r.0.65 and N.220.

However, this estimation is not robust enough and a proper

calculation of the statistical ‘‘accuracy’’ and ‘‘coverage’’ along all

the gene coexpression data matrices was done. The details about

the calculation of these parameters are described in Materials
and Methods. KEGG pathway database was used to estimate

the true positives. After these calculations, for all data presented

(i.e. all next Figures) the nodes correspond to genes and not any

more to ‘‘gene probesets’’ from the microarrays. This change was

done taking the correspondence of the probesets to the specific

genes according to the Affymetrix annotation files for HG-U133A

from 31.May.2007 (that can be found in URL: http://www.

affymetrix.com/support/technical/byproduct.affx?product = hgu133).

In this conversion all probesets of the microarray were used.

Previously, we calculated the coexpression values for each gene

pair considering each probeset independently. When multiple

probesets map to one gene, we merged the multiple probesets to

the corresponding gene and we only take the gene coexpression

pairs with maximum values of correlation (r) and cross-validation

(N) in which its probesets participate.

In Figure 3 the positive predictive value (PPV) was computed

for each coexpression data set obtained at a given correlation

factor r (Fig. 3 top graphs) or at a given the number of cross-

validations N (Fig. 3 bottom graphs). The change or evolution of

the accumulated PPV is drawn as a curve (solid red and blue
circles) for both methods (Fig. 3A: MAS5-Spearman; B: RMA-

Pearson). The graphs show that the rate of true positives increases

with higher expression correlation and with higher number of

cross-validation. The increase is more significant for the MAS5-

Spearman method that achieves PPV about 80% for r$0.8 and

Figure 3. Accuracy and coverage of the coexpression data. Accuracy measured as Positive Predictive Value PPV (for all genes in blue and
filtered genes in red) and coverage as True Positive Rate TPR (in black) computed for each coexpression dataset obtained at a given correlation
coefficient r (top figures) or at a given number of cross-validations N (bottom figures) for both methods: (A) MAS5-Spearman and (B) RMA-Pearson.
The accuracy and coverage (in y axis) correspond to accumulated values for each r$x or for each N$x.
doi:10.1371/journal.pone.0003911.g003
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for N$700. However, RMA-Pearson provides higher coverage

since the amount of positive gene coexpression pairs annotated to

common KEGGs for r and N values is quite different in both

methods (larger for RMA-Pearson). The results for the coverage

calculated for each method are shown by the curves in black in

Figure 3 (black circles), presenting the amount of gene pairs

annotated to common KEGGs that remain at each r$x or N$x.

This is calculated considering as ‘‘total amount of positive pairs’’

(value 1.0 at the beginning of the curve, 100%): the number of

gene coexpressing pairs annotated to common KEGGs at r$0.5

and N$200. This coverage parameter indicates, as it should be

expected, that the number of gene coexpressing pairs decreases

when the conditions (r and N) are more stringent. The decrease is

steeper for the MAS5-Spearman method since for r$0.75 it

retains about 16.7% of the positive data points, but RMA-Pearson

retains 25.4%. Equally for N$600 the MAS5-Spearman method

retains 13.9% of the positive data points and RMA-Pearson

retains 26.4%. The total amount of positive pairs, which

corresponds to value 100% at the beginning of the curve, was:

15,657 for RMA-Pearson and only 2,198 for MAS5-Spearman.

These numbers seem small but they only correspond to the

‘‘positive pairs’’, and so, if we take the total number of gene

probeset coexpression pairs of the study (i.e. not including only the

genes annotated to KEGGs but the complete coexpression data

sets) the figures are much larger: 1,340,472 for RMA-Pearson and

180,305 for MAS5-Spearman. These results also indicate that the

coverage is larger with the RMA-Pearson method.

In conclusion, the study shows that the RMA-Pearson method has

better coverage of the coexpression landscape and the MAS5-

Spearman is more accurate to find coexpression pairs. These results

support the use of both methods in order to find a confident human

coexpression network, since they do not find exactly the same

expression signal and both provide important and complementary

data allowing a progressive improvement of the significance and

confidence of the coexpression set. Moreover, a better knowledge of

the strength of each method is a discovery that complements

previous comparative studies about RMA [7] and MAS5 [8].

Effects of gene filtering
The original coexpression data used in Figure 2 are obtained

without any gene filtering, however for the analyses in Figure 3 it

was convenient to study the effect of gene filtering upon the accuracy

and coverage of the methods. The evolution of the coverage did not

show any significant change (data not shown). The evolution of the

accuracy was studied by plotting the relative changes of the positive

predictive values (PPV) of the coexpressing data with r (Fig. 3 top

graphs) and N (Fig. 3 bottom graphs) for each method. In these

graphs the blue circles correspond to non-filtered data and red
circles to filtered data. This analysis indicates that for the case of

RMA-Pearson method (Fig. 3B) a significant improvement was

obtained with the gene filtered versus non-filtered. However, in the

case of MAS5-Spearman there was not any relative improvement, as

it can be seem in Fig. 3A both for r and N. This means that r and N
are already very stringent in MAS5-Spearman dataset and the filter

takes out approximately the same amount of estimated true positives

and false positives within the data, and so it does not improve the

coexpression accuracy (i.e. PPV). This observation, together with the

fact that filtered data with the MAS5-Spearman method gives low

coverage (as indicated above the total amount of positive pairs was

only 2,198), brings us to the resolution of not using the filter for

MAS5 dataset. By doing this, the MAS5-Spearman non-filtered

dataset at r = 0.5 and N = 200 included 15,623 positive coexpression

pairs; and this number was very similar to the 15,657 pairs found for

RMA-Pearson filtered.

Integration of correlation, cross-validation and PPV for
datasets obtained with two balanced methods

Following the observations and arguments described above we

proceed to integrate in ‘‘three-dimensions color plots’’ the data

corresponding to the values of correlation (r), cross-validation (N)

and PPV obtained with each method. The results are shown in

Figure 4. The graphic considers all the calculated subsets of

coexpression gene pairs and represents, for each one, the

numerical relationship between the accumulated values of the

estimated accuracy (PPV) corresponding to the correlation

coefficients (r in y axis) and to the cross-validation coefficients (N
in x axis). PPV ranges from 0.05 to 1.0 as indicated in the color

scale of Fig. 4: red low and blue high. The graph are calculated

for the data corresponding to two methods: MAS5-Spearman

without gene filtering (all gn) (Fig. 4A) and RMA-Pearson with

gene filtering (filtered gn) (Fig. 4B). As indicated above, in these

conditions both methods include a similar number of coexpression

pairs and so they are ‘‘balanced’’ with respect to the coverage.

The three-dimensions color plots allow to assess in a graphic

way the level of confidence for a given coexpression data subset.

We use them to select three data subsets derived from each

method at three specific PPV values: $0.60, $0.70 and $0.80.

The values of the correlation and cross-validation coefficients that

correspond to these data subsets are indicated in the table enclosed

as Fig. 4C. The figures show that the second method (RMA-

Pearson) is more stringent, since the same given PPVs correspond

to higher values of N and r. The size of the gene coexpression

networks that correspond to the three selected accuracy values are

also presented in Fig. 4C, including for each network the number

of nodes (i.e. number of genes) and the number of links (i.e.

number of coexpression pairwise relations). The selection and

combination of these subsets at well defined and precise accuracy

allows the identification of stable and confident human coexpres-

sion networks. This was done in the table enclosed as Fig. 4D,

where the results of the union and the intersection of the datasets

provided by the two methods at each PPV are presented. The

union with accuracy $0.60 provides a full confident and cross-

validated human gene coexpression network that includes 3327

genes and 15841 coexpression links. As indicated bellow, we have

analyzed in detail a core transcriptomic network that corresponds

to the intersection of both methods with accuracy $0.60 and

includes 731 gene nodes and 2249 coexpression links.

Biological significance of the coexpression datasets:
house-keeping gene pairs and tissue-specific gene pairs

Once significant human gene coexpression datasets have been

found and evaluated using statistical parameters, we started

exploring the biological meaning and functional consistency of

these datasets.

In a first approach, we investigate the location of house-keeping

gene pairs in the coexpression datasets, taking two different

published compendiums of human house-keeping genes [16,17].

Hsiao et al. identified 451 genes that are expressed in all 19 different

human tissue types. Eisenberg et al. identified 575 human genes that

show constitutive expression in all conditions tested in several

publicly available databases. Mapping these genes in the general

distribution of coexpression data shows that the ratio of house-

keeping genes increases at high N and r coefficient values

(Fig. 5A,B). The top panels in Fig. 5A and B present the density

distributions of coexpression data for N.220 corresponding to all

gene pairs (in black), to Eisenberg’s house-keeping gene pairs (in

green) or to Hsiao’s house-keeping gene pairs (in red). Bottom

panels in Fig. 5A and B show the same information including now

Human Gene Coexpression Map
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all data points of coexpression pairs with N.220 and r.0.65 for

either all gene pairs (in black) or only Hsiao’s house-keeping gene

pairs (in red). Panels A correspond to coexpression data obtained

with method MAS5-Spearman and B to RMA-Pearson. The results

reveal that house-keeping genes have a clear tendency to coexpress

in many different tissues. This can be expected from the mere

definition of house-keeping; however, since the result is obtained by

mapping external datasets [16,17] on our human gene coexpression

data, it provides functional validity to our coexpression study. The

analysis also reveals a clear difference between the data obtained

with different methods. Meanwhile MAS5-Spearman method finds

mainly house-keeping gene coexpression, the RMA-Pearson method

finds many gene pairs that are not in the major house-keeping

region, but rather they show high levels of r correlation with lower

levels of N cross-validation (N.220 and N,600).

We further investigate this observation by selecting subsets of the

coexpression data for genes included in specific KEGG pathways.

Examples of this subsetting are presented in Fig. 5C, that includes 6

panels with the coexpression data obtained with the RMA-Pearson

method for the human genes included in 6 different pathways: (1)
ribosome (KEGG ID = hsa03010), (2) oxidative phosphorylation

(hsa00190), (3) proteasome (hsa03050), (4) cytokine-cytokine

receptor interaction (hsa04060), (5) neuroactive ligand-receptor

interaction (hsa04080), and (6) complement and coagulation

cascades (hsa04610). First three pathways can be considered as

general constitutive, present in all tissues and cellular types. The

other three pathways are tissue-specific, only present in some cell

types, like: nervous system cells in the case of the neuroactive ligand-

receptor interaction pathway or blood cells in the case of the

complement and coagulation cascades pathway. These differences in

functional specificity are reflected in the coexpression distributions:

only the three panels on the right (Fig. 5C 4,5,6) present data points

with high r values but relatively lower N values (220,N,600). In

conclusion, this analysis reveals that such coexpression pairs

correspond to genes expressed in specific cells or specific tissue

types, and so they are tissue-specific genes.

Figure 4. Coexpression networks obtained at different levels of accuracy. Color plots (A and B) that represent the Positive Predictive Value
(PPV) calculated for each set of gene coexpression data for different values of correlation coefficient (r) and cross-validation coefficient (N). The PPV
corresponds to accumulated values for N$x and r$y. Calculations are done for data derived from two methods: (A) MAS5-Spearman without gene
filtering (all gn) and (B) RMA-Pearson with gene filtering (filtered gn). Table (C) shows the specific values of correlation and cross-validation for three
coexpression datasets derived from each method at 3 specific PPVs: $0.60, $0.70 and $0.80. This table also shows the number of nodes and links
included in each coexpression dataset. Table (D) shows the number of gene-nodes and interaction-links that are included in the combined
coexpression networks at 3 specific PPVs.
doi:10.1371/journal.pone.0003911.g004
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Comparison of human coexpression datasets: molecular
machines and pathways consistently co-regulated

In a second approach, we investigate the functional assignment of

the gene coexpression data following the strategy taken by Stuart et al.

[5], who explored functional coverage on a coexpression network

obtained for four organisms looking at the percentage of genes that

are connected to at least one other gene in the same ‘‘functional

category’’. We proceed to the same percentage calculation using the

KEGG pathways as ‘‘functional categories’’. The analysis was done

for the coexpression dataset derived from RMA-Pearson method

with r.0.63 and N.500. The same functional analysis was also

done using two other external human coexpression datasets

previously published by Lee et al. [2] and Griffith et al. [6].

The results are presented in Table 1, that includes the ten-top

pathways found with best percentage of genes coexpressing within

the gene groups assigned to KEGG pathways for 3 different human

coexpression datasets (this work, Lee et al. and Griffith et al.). This

comparative analysis of functional coverage shows some interesting

results: (i) All coexpression datasets find the most significant

coexpression for 3 key molecular machines: ribosome, proteasome

and oxidative phosphorylation. (ii) Genes involved in cell scaffolding

and cell to cell interaction or anchoring are also found to coexpress

quite often, as indicated by the presence of pathways like focal

adhesion, extracellular matrix (ECM) interaction and cytoskeleton

regulation. (iii) Genes involved in cell cycle pathway are also

common to the three datasets, indicating that cells keep a tight

regulation of the genes involved in essential living functions

(maintenance, proliferation, survival). (iv) An important difference

between our coexpression dataset and Lee et al. or Griffith et al. datasets

is that this work only includes samples coming from normal non-

pathological tissues, but the others include quite heterogeneous

samples mixing normal and disease altered samples (for example, Lee

et al. includes many human cancer samples). The inclusion of

pathological samples can bias the results and this may be the reason

of the appearance of ‘‘pathogenic infection pathways’’ in Lee et al.

data. (v) Finally, the data obtained in this work also includes many

coexpressing pairs involved in cell-cell communication like cytokine-

receptor and ligand-receptor interactions.

As a general conclusion of this analysis, we can say that KEGG

pathways is revealed as a good database to investigate the biological

functions of human genes, because it includes groups of genes that

really work together in well defined biomolecular processes.

The comparative calculation of the coverage for the three

human coexpression datasets included in Table 1 indicates that

the data obtained in this work present a higher level of functional

coherence than previously published datasets [2,6]. This compar-

ison was also done taking coexpression networks of similar sizes

(including in each case around 12,000 best coexpression relations)

and calculating the statistical accuracy for all of them. The result

presented in Table 2 shows that the accuracy estimated as PPV

Figure 5. Coexpression of house-keeping and tissue-specific genes. Top panels A and B: Density distributions of coexpression data for
N.220 corresponding to all gene pairs (in black), to Eisenberg’s house-keeping gene pairs (in green) or to Hsiao’s house-keeping gene pairs (in
red). Bottom panels A and B: rN-plots with all data points of coexpression pairs with N.220 and r.0.65 for either all gene pairs (in black) or only
Hsiao’s house-keeping gene pairs (in red). In these panels (A) correspond to data from MAS5-Spearman method and (B) from RMA-Pearson method.
Panels (C) 6 rN-plots that present the coexpression data obtained with the RMA-Pearson method corresponding to the human genes included in 6
different pathways: (1) ribosome (KEGG ID = hsa03010), (2) oxidative phosphorylation (hsa00190), (3) proteasome (hsa03050), (4) cytokine-cytokine
receptor interaction (hsa04060), (5) neuroactive ligand-receptor interaction (hsa04080), and (6) complement and coagulation cascades (hsa04610).
doi:10.1371/journal.pone.0003911.g005
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was 0.61 for our dataset obtained with MAS5-Spearman, 0.56 for

Lee et al. and 0.49 for Griffith et al. As a whole these numbers

indicate that the human coexpression network derived from this

work includes very consistent co-regulation of genes many times

involved in common pathways.

A high confidence human coexpression network reveals
a map of ubiquitous biological functions

As far as we know, none of the previously published human

coexpression networks [2,5,6] has a comprehensive calculation of the

estimated statistical error in the datasets at different levels of

coverage. However, following the analysis and data presented in

Figure 4 we can select coexpression datasets at specific thresholds of

PPV accuracy. In order to gain in reliability, we can also combine

the data obtained with 2 methods: MAS5-Spearman and RMA-

Pearson. This was done taking the datasets of both methods with

PPV$0.60 (3052 and 1672 genes) to produce an intersect

coexpression network that includes 731 genes and 2249 coexpression

interactions (see Fig. 4D). We also restrict the network including

only coexpressing groups including at least three genes. In this way, a

high confidence core subset of 615 gene nodes and 2190

coexpression links was obtained.

Table 1.

This work (2008)

Pathway Name (KEGG ID number) nu gn 1 gn coexp/gn 2 % gn coexp mean r 3

Proteasome (3050) 31 28/28 100.0% 0.69

Ribosome (3010) 120 52/55 94.5% 0.75

Oxidative phosphorylation (190) 129 88/95 92.6% 0.73

Focal adhesion (4510) 194 154/168 91.7% 0.68

Antigen processing and presentation (4612) 86 71/78 91.0% 0.75

Glycan structures - degradation (1032) 30 20/22 90.9% 0.65

Neuroactive ligand-receptor interact. (4080) 299 227/255 89.0% 0.68

Cell cycle (4110) 114 90/102 88.2% 0.66

Regulation of actin cytoskeleton (4810) 208 141/161 88.2% 0.66

Cytokine-cytokine receptor interact. (4060) 256 196/223 87.9% 0.69

Lee et al. (2004)

Pathway Name (KEGG ID number) nu gn 1 gn coexp/gn 2 % gn coexp

Ribosome (3010) 120 43/44 97.7%

Proteasome (3050) 31 19/22 86.4%

Oxidative phosphorylation (190) 129 31/44 70.5%

Cell cycle (4110) 114 33/47 70.2%

ECM-receptor interaction (4512) 87 16/23 69.6%

Gap junction (4540) 92 9/13 69.2%

Pathogenic Escherichia coli infection (5130) 49 11/16 68.8%

Pathogenic Escherichia coli infection (5131) 49 11/16 68.8%

T cell receptor signaling pathway (4660) 93 15/22 68.2%

Metabolism of xenobiotics by cytP450 (980) 70 7/11 63.6%

Griffith et al. (2005)

Pathway Name (KEGG ID number) nu gn 1 gn coexp/gn 2 % gn coexp

Ribosome (3010) 120 36/38 94.7%

Proteasome (3050) 31 20/24 83.3%

Oxidative phosphorylation (190) 129 55/67 82.1%

Val, Leu and isoleucine degradation (280) 50 15/19 78.9%

ECM-receptor interaction (4512) 87 16/22 72.7%

Cell cycle (4110) 114 36/51 70.6%

Propanoate metabolism (640) 34 9/14 64.3%

Butanoate metabolism (650) 44 9/14 64.3%

Hematopoietic cell lineage (4640) 88 18/28 64.3%

beta-Alanine metabolism (410) 24 7/11 63.6%

1nu gn = whole number of genes included in this KEGG pathway.
2gn coexp/gn = genes that coexpress within the genes included for this pathway in the network.
3mean value of the correlation factor (r) for the coexpressing gene pairs included in this pathway.
doi:10.1371/journal.pone.0003911.t001
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Figure 6 presents a graphical view of this coexpression network

where the nodes correspond to genes and the edges to coexpression.

The network was produced introducing the coexpression dataset of

615 genes and 2190 pairwise interactions in Cytoscape (a bioinfor-

matics software platform for visualizing molecular interaction

networks, [18]. In the graphical view the most significant regions

of this human gene coexpression network have been marked with

background colors to enhance them as constellations within the

coexpression landscape. Labels have been placed to each colored

region to describe the main biological processes that are common to

most of the genes in each region. The map shows that the larger sub-

network corresponds to genes involved in nuclear activity and

nuclear-driven metabolism (region in blue), with a side part (in dark

blue) that includes most of the ribosomal proteins and proteins

involved in ribosomal function. The second major constellation

(region in green) includes many genes involved in mitochondrial

metabolism and redox homeostasis (like genes of the COX family,

the NDUF family and the UQCR family). The third main region (in

red) corresponds to genes involved in the immune response, genes of

the major histocompatibility complex (MHC), genes that produce

the cell surface clusters of differentiation (CD) and genes that encode

antigen-specific molecules. Finally some smaller regions include:

genes involved in metal ion homeostasis (in grey); genes related to

the extracellular matrix and cell adhesion (in orange); genes related

to the cytoskeleton (in yellow).

As a whole the network is quite stringent but it is functionally

very coherent. Moreover, coming from the intersection of two

methods it will be expected to include mainly essential human

genes. To prove if this network is enriched in house-keeping and

essential genes we identified the nodes of the network that are

included in the Hsiao human house-keeping gene set [16] and we

also identified the nodes that correspond to genes that are

orthologous to known essential yeast genes (taken from SGD

database). In this way, we found that the two major constellations

of the network, including mainly genes involved in nuclear related

and mitochondrial related metabolism, show respectively 63% and

58% of genes assigned to be house-keeping. This result reveals that

the coexpression network is enriched in essential genes.

Table 2.

Nodes 1 Links 2 TP 3 All 4 PPV 5

This work (2008) 3052 12669 729 1189 0.613

Lee et al. (2004) 1751 12187 1275 2265 0.563

Griffith et al. (2005) 2922 12686 1265 2588 0.489

1Nu of genes as nodes in the network (the values correspond to the full
networks including all genes).

2Nu of coexpression links (the values correspond to the full networks including
all links).

3True Positives = gene-pairs that coexpress and are annotated to the same
KEGG.

4All the genes that coexpress and are annotated to KEGG.
5Accuracy as PPVs that correspond to the networks derived for KEGG annotated
genes.

doi:10.1371/journal.pone.0003911.t002

Figure 6. Human Gene Coexpression Network. Graphical view of the human gene coexpression network where the nodes correspond to genes
and the edges to coexpression links. The network was produced as the intersection of two datasets (MAS5-Spearman and RMA-Pearson datasets with
PPV$0.60) to provide a confident coexpression network that includes 615 genes and 2190 pairwise coexpression interactions. The network includes
only groups of coexpressing genes with at least three nodes. The most significant regions have been marked with background colors and labels
describe main functions assigned. For each node the color (from red to grey) and shape (circles or diamonds) were obtained with MCODE algorithm.
The circular nodes are the ones found with high cluster coefficient and the diamond nodes are the ones with lower cluster coefficient. The intensity of
the red color in the nodes also indicates the degree of clustering, changing till pale grey for the most peripheral nodes that only have one link.
doi:10.1371/journal.pone.0003911.g006
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In conclusion, the functional consistency observed in the

constellations and regions defined by the coexpression network

and the enrichment on house-keeping genes place the genes in a

new integrative relational context that has strong biological

coherence and, in many cases, can reveal essential or ubiquitous

biological processes. The network also unravels new non-described

human gene associations.

All the details about this coexpression network are provided in a

supplementary file for Cytoscape (Supporting Information File S1:

S1_HumanCoexpNtw_615g_cys.zip; that can be downloaded

and used as a .cys file to be explored interactively using Cytoscape).

This file also includes information about each node with GO and

KEGG functional annotations.

Analysis of the network with clustering algorithms
The network described above was analyzed using a graph

theoretic clustering algorithm called MCODE [19] as indicated in

Materials and Methods. The result of this analysis is presented

in Figure 6, where the circular nodes are the ones with high

‘‘cluster coefficient’’ and the diamond nodes are the ones with

lower ‘‘cluster coefficient’’. The intensity of the red color of each

node indicates the degree of clustering; changing up to pale grey
for the most peripheral nodes (that only have one link). MCODE

found 5 major gene coexpressing clusters marked with numbers in

Figure 6: (cluster 1) corresponds to ribosomal genes, it includes

29 nodes and 366 links and many of the genes are RPL or RPS;

(cluster 2) corresponds to immunoglobulins and immune

response related genes (many belong to families IGH, IGK and

IGL) and it includes 19 nodes and 151 interactions; (cluster 3)
includes 19 nodes and 140 interactions and corresponds to an

heterogeneous group of genes strongly clustered with no apparent

common functional theme; (cluster 4) includes 9 nodes and 36

interactions and corresponds to genes related to metal ion

homeostasis (several MT1 and MT2); and (cluster 5) corre-

sponds to genes related to the major histocompatibility complex

(MHC), it includes 17 nodes split in two clusters with 63

interactions, where most of the genes are HLA. There are other

less dense clusters also found by MCODE that have lower score

and significance for this algorithm.

We also applied another cluster algorithm for graphs called

MCL [20] (see Methods). The analysis with MCL provided

similar results to MCODE for the large clusters mentioned,

although it splits the network in more clusters being the smaller

ones more coherent in functional terms that the ones found by

MCODE. For example, MCL algorithm finds another cluster

form by 15 genes, with 7 assigned to RNA binding gene products,

3 to DNA binding gene products (all included in region blue in

Figure 6), other 3 genes members of the gene family HNRP

(heterogeneous nuclear ribonucleoproteins: HNRPA2B1,

HNRPR, HNRPU) and 2 genes translation initiation factors

(EIF3M, EIF4G2).

These results show that the gene clusters obtained with the

graph algorithms from the coexpression network can help to

understand the function of many human genes and the active

relations between them. As expected, we find that stable and

consistent coexpression clusters of genes are involved in specific

functions, at cellular or systemic level. A complete analysis of all

clusters is not possible in just one article but, as indicated above,

the coexpression datasets of this study are open to new studies.

Functional coherence of the coexpressing modules:
finding coregulation and new biological assignments

To show some specific examples about the functional coherence of

the gene coexpressing modules and the adequate correlation of the

genes with common regulatory elements (i.e. transcription factors,

TFs, and corresponding promoters) we analyzed three specific

clusters or modules found in the core coexpression network.

The first module includes 10 genes: 8 forming a full cross-

related octogonal structure plus 2 nodes linked to them. The 8

genes are all metallothioneins: MT1E, MT1F, MT1G, MT1H,

MT1L, MT1M, MT1X, MT2A. The other 2 genes are not

well annotated: DDX42 (that encodes a member of the DEAD

box protein family with unclear function) and LOC645745 (that

has been recently and provisionally identified as a putative

MT1, metallothionein 1 pseudogene 2). The coexpression of

these two genes with a well defined and stable cluster of

metallothioneins allows to infer that they will be genes also

involved in metal ion homeostasis. This module can be seen in

Figure 7.

A further analysis was done to find if these coexpressing genes

have any common transcription factor (TF) that can act on the

promoters and regulation regions of these genes. Two bioinfor-

matic tools were used to find out TFs associated in a significant

way to the coexpressing genes: PAP [21] and FactorY (see

Methods). Using PAP we found that the 10 coexpressing genes of

module 1 are regulated in common by the transcription factor

MTF1 (found with p-value = 0.001). This result could be expected

since MTF1 is a metal-regulatory transcription factor that induces

expression of metallothioneins and other genes involved in metal

homeostasis (such as zinc and copper). In any case, the association

of MTF1 to module 1 provides strong coherence to the data,

showing that this coexpression network is correlated with an

underlying transcription regulatory entity.

The second module shown in Figure 7 includes 4 genes: 3

correspond to interferon-induced transmembrane proteins

(IFITM1, IFITM2, IFITM3) and the fourth is an unknown gene

LOC391020 recently annotated by inference as similar to

interferon-induced transmembrane protein 3. The coexpression

of these four genes in a full related cluster gives support to the

indication that all produce IFITM proteins. The analysis of

transcription factors done with PAP and FactorY (Figure 7B)

indicated that these 4 genes can be significantly correlated with the

transcription factor CRE-BP1 (also called ATF2, activating

transcription factor 2), that is a protein which binds to the

cAMP-responsive element promoter (CRE, an octameric palin-

drome) and forms a homodimer or heterodimer with JUN. The

deduction that IFITM genes can be coregulated by ATF2 makes

biological sense because it has been observed that transcriptional

activation of interferon related genes requires assembly of an

enhanceosome containing the transcription factors ATF2 and

JUN [22,23].

Finally, the third module shown in Figure 7 includes 15

genes: 6 encode for collagen proteins (COL1A1, COL1A2,

COL3A1, COL4A1, COL4A2, COL6A1) that are fibrillar

proteins found in most connective tissues, related to the

extracellular matrix. Other proteins within this module are also

related to cell adhesion and extracellular matrix, like: Fibulin 1

(FBLN1), a secreted glycoprotein that becomes incorporated

into the fibrillar extracellular matrix; Laminin gamma 1

(LAMC1), another extracellular matrix glycoprotein which is

part of the major noncollagenous constituent of basement

membranes; and matrix metalloproteinase 2 (MMP2), that

belongs to a family of proteins involved in the breakdown of

extracellular matrix in normal physiological processes and in

altered disease processes. In fact MMP2 gene encodes an

enzyme which degrades type IV collagen. All these data

indicate functional consistency and proximity for the genes

included in this coexpression module. The analysis, using PAP
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and FactorY, of the regulatory promoters of this 15 genes shows

a significant association with SP1 transcription factor, and

recent experimental data have reported that in fact SP1

transcription factor is involved in the regulation of the collagen

promoters [24–26].

The results presented for three coexpression modules can be

extended to most of the clusters present in the network, and they

indicate that the coexpression network can be correlated with an

underlying regulatory network driven by specific transcription

factors. This observation provides biological and functional

coherence to the human gene pairwise coexpression network

presented in this paper deduced from the analysis of normal-

healthy human samples (whole tissues, glands or organs).

Finally, it is clear that a complete pairwise coexpression network

of human genes will be only obtained using a comprehensive and

systematic set of samples including all different human cell types.

This achievement is at present quite far and difficult, since there

are more than two hundred different cell types in the human body

and that each cell type can be at different development or

differentiation stages. Meanwhile, however, we think that the

present study reports a reliable gene-gene coexpression network

that includes very valuable information about many human genes,

placing them in an integrated transcriptomic context. These

coexpression networks selected at specific levels of confidence

include a lot of information to better understand the complexity of

the human expressing genome.

Materials and Methods

Sample selection: dataset of genome-wide expression
microarrays from human normal whole tissues/glands/
organs

The data used in this work corresponds to a set of human genome-

wide expression microarrays hybridized with mRNA samples coming

from different human tissues, glands or organs from healthy normal

individuals. The complete list of tissues, glands and organs is: adrenal

gland, appendix, blood, bone marrow, brain, kidney, liver, lung, lymph node,

muscle heart, ovary, pancreas, pituitary gland, prostate gland, salivary gland, skin,

spinal cord, testis, thymus gland, thyroid gland, tongue, tonsil gland, trachea and

uterus. These 24 samples where selected from a larger set of 68 human

samples (GEO GSE1133; Su et al. 2004) that also included some cell

specific sources, like: lung bronchial epithelial cells HBEC, blood B-

cells CD19 and T-cells CD4. The samples selection done was driven

under the criteria of including mRNA samples from whole organs,

glands or tissues covering the main parts of the human body and

avoiding samples of very specific cell types within a tissue. This

selection was validated performing global expression analyses of the

samples, using a series of algorithms described bellow. The total

mRNA from these 24 different samples came form a mix of 3

different individuals, that were: two men and one woman or one man

and two women for the samples non sex-associated; three men for

testis and prostate samples and three women for ovary and uterus samples.

Moreover two biological replicates were used in each case, producing

Figure 7. Coexpressed gene modules regulated by specific transcription factors. (A) Graphical enlarged view of three coexpressing
modules selected from the network presented in Figure 6, indicating the name of each gene corresponding to each node and the functional labels:
(Module 1) metal ion homeostasis; (Module 2) response to biotic stimulus; (Module 3) extracellular matrix and adhesion. (B) Table showing the
results of the search for common transcription factors (TFs) most significantly associated to the genes included in each of the three modules
described above. The search was done using the bioinformatic tools PAP and FactorY.
doi:10.1371/journal.pone.0003911.g007
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a total set of 48 microarrays. The microarrays used were high density

oligonucleotide microarrays HGU133A GeneChips from Affymetrix,

that include 22,283 probesets (corresponding to 13,068 human genes

according to Affymetrix annotation).

Genome-wide sample expression profiles and gene
expression signatures

The global expression matrix including the genome-wide

expression profiles of each sample and the expression signature of

each gene-probeset was calculated and evaluated using a set of

algorithms and methods in four consecutive steps: (1st) use of two

different background correction, normalization and signal calculation

methods: MAS5 [8,27] and RMA [28]; (2nd) use of two distance

measuring methods based in the global gene expression profile of

each sample: first, distance based on Spearman correlation coefficient

applied to MAS5 data; second, distance based on Pearson correlation

coefficient applied to RMA data (both methods provided robust non-

parametric distance distributions); (3rd) analysis by hierarchical

clustering with complete linkage of the samples using the tool hclust

from R (http://www.r-project.org/), taking as distance (12r), where

r is the correlation coefficient between sample expression profiles

[29]; (4th) analysis by bootstrapping of the sample hierarchical trees

to assay the stability of the associations, using the tool pvclust from R.

The pvclust algorithm allows to assess the uncertainty in hierarchical

cluster analysis via multiscale bootstrap resampling. This assessment

is provided by two parameters: the approximately unbiased p-value (AU)

and the bootstrap probability value (BP). The maximum and optimum

values of AU and BP are 1 (or 100 in %).

Gene pairs coexpression and cross-validation
As indicated above the global gene to gene (i.e. pair-wise)

coexpression matrix was calculated using two different and

independent methods: MAS5-Spearman and RMA-Pearson.

Furtherly, cross-validation was used to discriminate stable and

significant correlations. The cross-validation strategy applied was a

1000 times random selection of a 25% subset sampling (that are 12

samples, corresponding to 6 duplicates out of 24 duplicated

samples) and calculation of the r correlation coefficient for each

gene-probeset pair in such 1000 samplings. Only when the r
correlation coefficient for a given time was higher than |0.70|,

such was considered a positive event (positive cross-validation) and

counted for the corresponding gene-probeset pair. In this way, for

example, a given gene pair with N = 620 means that it gave 620

positive times out of the 1000 samplings. Therefore N can be

considered a cross-validation coefficient or cross-validation factor

(N = 620 is equivalent to 620/1000 = 0.62).

Gene filtering method
In order to get rid of genes with low information content a

combined filter based on between-sample variability and gene

minimal signal was used. The filter leaves out only those gene

probesets that fulfilled both of the two following conditions: 1st.-

Genes which have an expression difference or variability between

samples (DExpgi
highest-lowest) lower than the median of all the

expression differences calculated for each gene (DExpgi
highest-

lowest,median DExphighest-lowest); 2nd.- Genes which have a mean

expression signal between samples (meanExpsamples) lower than the

median of all the expression signals calculated for each gene.

Statistical estimation of accuracy and coverage of the
coexpression datasets

The accuracy measured as ‘‘Positive Predictive Value’’

(PPV) in statistical terms is defined as the ratio TP/(TP+FP),

where TP is the number of true positives and FP is the number of

false positives [30,31]. This parameter is related to ‘‘error type I’’,

and it is the inverse to the ratio of ‘‘false positives’’ (i.e. FP/

(TP+FP), percentage of false positives within all the positives). The

coverage (sometimes also named recall) can be measured as the

proportion of true positives that remain in a given subset selected,

with respect to an initial reference set of positives. We consider

that both the accuracy and coverage are critical statistical

parameters to evaluate the error and validity of a method. They

are directly related to specificity = TN/(TN+FP), 2where

(TN+FP) are all the ‘‘false’’2, and sensitivity = TP/(TP+FN)

2where (TP+FN) are all the ‘‘true’’2 [30], though these can only

be applied when the real true and real false data of a test are

known; while the accuracy defined as ‘‘positive predictive value’’

and the defined coverage can be applied when it is only possible to

know or estimate the ‘‘positive data’’.

Therefore, in this study if the true data are not known (i.e. if we do

not know a priori which are true gene coexpressing pairs) a proper

calculation of the sensitivity and specificity is not possible. This is the

most common situation in many biological and biomolecular studies

where many of the true occurring relations between molecules are

not yet known. Therefore, we need to design a way to at least

estimate the percentage or ratio of ‘‘true positives’’ of the method,

and so estimate the accuracy and coverage. These parameters will

provide a good indication of how valuable is the method that we

have applied to find human coexpressing gene pairs. The estimation

was done considering the idea that genes that work together in the

same biological pathway are much more likely to coexpress than

genes that are not involved in a common biological reaction or

pathway. This biomolecular axioma in our case was tested

annotating all the genes of the microarrays to the KEGG pathway

database (www.genome.jp/kegg/), that is one of the most complete

and expert curated repository of human genes involved in biological

reactions or pathways [32]. Therefore, selecting only the subset of

the genes annotated to KEGGs, a gene coexpression pair was

considered a ‘‘true positive’’ when both genes of the pair were

included in a common KEGG human pathway. This strategy allows

to calculate the statistical parameters accuracy and coverage
defined above, and therefore to explore how the values of the r and

N coefficients change such parameters.

Analytic algorithms to find groups and modules in the
coexpression networks

The gene to gene coexpression networks obtained were

analyzed using a graph theoretic clustering algorithm called

MCODE (Molecular Complex Detection) [19] that allows to

detect densely connected regions in large interaction networks

which may represent molecular associations. This algorithm

follows a vertex weighting by local neighbourhood density and

outward traversal from locally dense seed nodes to isolate the

dense regions. Furthermore, the networks were also analyzed using

another cluster algorithm for graphs called MCL (Markov Cluster

algorithm, http://micans.org/mcl/) [20] that finds cluster struc-

ture in graphs by a mathematical bootstrapping procedure. MCL

has been shown very robust to find relevant modules in protein

interaction networks [33].

Mapping transcription factors associated to gene
coexpressing modules

Two bioinformatic tools were used to find out transcription

factors that can be associated in a significant way to groups or

modules of coexpressing genes: Promoter Analysis Pipeline (PAP)

and Transcription Factor Enrichment Analysis (FactorY).

Human Gene Coexpression Map
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PAP is based in a systematic, statistical model of mammalian

transcriptional regulatory sequence analysis and it is suitable for

the identification of the potential transcriptional regulators of co-

expressed genes and the identification of the potential regulatory

targets of transcription factors. A typical PAP analysis includes

input of a co-expressed gene cluster, identification of several high

scoring transcription factors and visualization of the predicted

transcription factor binding sites [21]. The bioinformatic tool is at:

http://bioinformatics.wustl.edu/webTools/portalModule/Pro-

moterSearch.do.

FactorY is another bioinformatic tool that explores the 1000 bp

upstream sequence signature of co-expressed genes to find

homology with transcription factor binding sites (TFBs) based on

JASPAR and TRANSFAC databases. The tool calculates the

significant enrichment in known given TFBs for a group of genes

and it was used at the web site: http://www.garban.org/factory/.

Supporting Information

File S1 Human Gene Coexpression Network. Network that

corresponds to the core with the most confident human gene

pairwise coexpression data and includes 615 gene-nodes and 2190

coexpression-links. This network is provided in Cytoscape format

(.cys file compressed as .zip) with full annotations about the genes.

The file to be run in Cytoscape should have .cys extension:

S1_HumanCoexpNtw_615g.cys

Found at: doi:10.1371/journal.pone.0003911.s001 (0.30 MB ZIP)
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