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Abstract
Nonlinear optical materials have been investigated recently due to their potential technological applications in information 
storage and communications. In this context, semi-organic crystals can effectively combine the desired nonlinear optical 
properties of amino acids with the promising mechanical and thermal properties of inorganic materials. In this work, we 
have synthesized and characterized a semi-organic crystal of the amino acid l-histidine and hydrofluoric acid and investi-
gated the chemical interactions between the organic and inorganic moieties. The crystal of l-histidine bis(fluoride) has been 
produced by slow solvent evaporation and characterized by X-ray diffraction (XRD) crystallography and thermogravimetric 
and differential thermal analyses. The XRD conducted using the Rietveld method shows that the unit cell is orthorhom-
bic with the  P21212 space group and contains four l-histidine bis(fluoride) units. Both differential thermal analysis and 
temperature-dependent XRD show that the crystals are thermally stable up to 191°C and do not undergo phase transition. 
The computational Hirshfeld surface analysis of the crystal structure reveals the main intermolecular interactions. Density 
functional theory has been employed to calculate the ionic interaction energy and electrostatic potential maps and confirm 
the spontaneity of ionic association at 191°C. The combined experimental and computational results show that the thermal 
stability of the semi-organic l-histidine bis(fluoride) crystal makes it suitable for nonlinear optical applications in optical 
sensing and communication systems.
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Introduction

Second-order nonlinear optical materials (NLOs) have been 
the subject of several studies in recent decades due to their 
potential technological applications in optical communica-
tions, integrated optical systems, and information optical 
storage [1–3]. Currently, organic or inorganic optical crystals 
are being synthesized with a remarkable crystalline perfec-
tion [4]. However, each crystal class has certain advantages 
and disadvantages. On one hand, the purely organic crystals 
feature excellent NLO properties and a great birefringence, 
though they have a low thermal and mechanical stability [5]. 
On the other hand, inorganic materials have a high melt-
ing point, mechanical resistance, and chemical inertia; they 
have a low optical nonlinearity [6, 7]. In this context, new 
semi-organic compounds with properties of organic and 
inorganic crystals are being extensively explored, as they 
tend to combine the desired properties [8, 9]. In addition, a 
major advantage of most semi-organic materials is that upon 
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forming ionic bonds, the resulting crystals acquire a higher 
probability of growth, greater thermal and mechanical resist-
ance, and an increased chemical stability [6, 10–13].

Amino acids are bifunctional organic molecules that con-
tain a carboxylic group (–COOH) and an amino group (–NH2). 
In α-amino acids, the characteristic side chain (R) of each 
amino acid is bonded to the same C atom (called alpha carbon, 
 Cα) as the amino and carboxylic groups. As a result of being 
bonded to four different groups, the  Cα of all α-amino acids 
except glycine is chiral [14, 15]. Thus, α-amino acids acquire 
active optical properties due to being chiral species and direct-
ing the crystallization to non-centrosymmetric spatial groups. 
Moreover, the dipolar nature of amino acids provides unique 
physical and chemical properties, making them promising can-
didates for NLO applications [16, 17]. That is, the presence of 
the –COO− and –NH3

+ groups promotes the increase of the 
asymmetric polarizability of the organic material, providing 
asymmetry in the ground-state charge of the molecule, neces-
sary for the development of second-order optical nonlinearity 
[12, 18–20].

Histidine is an essential α-amino acid, which can exist 
as two optical isomers, l-histidine and d-histidine. Only the 
l-isomer is bioactive. The l-histidine plays a vital role in 
several biological mechanisms, including the formation of 
hemoglobin and neurotransmitters in the brain and nervous 
system, and is essential for tissue growth and repair and glu-
cose supply to the liver [21]. The l-histidine has a pKa close 
to neutrality and contains an imidazole side group [22–25].

The salts of l-histidine have attracted attention as promising 
materials for application in NLO after the verification that l-his-
tidine tetrafluoroborate has better NLO properties than l-arginine 
phosphate monohydrate [19, 20, 26]. Since then, many research-
ers have synthesized and studied the properties of various crystals 
derived from this α-amino acid and proposed them as potential 
candidates for NLO applications [27, 28].

The l-histidine salt LHis·2HF has been synthesized for the 
first time in 1968 by Schmid using the reaction of l-histidine 
with hydrofluoric acid (HF) and water [29]. The synthesis of a 
semi-organic crystal of l-histidine hydrofluoric dihydrate and its 
NLO properties and the structure of a l-histidine bis(fluoride) 
crystal have also been reported [19, 26, 30]. The last salt con-
tains delocalized π-electrons, electron donor, and acceptor 
groups in addition to fluoride ions strongly bonded to hydrogens 
in the organic moiety, conferring to its crystals high optical non-
linearity and rapid optical response characteristics [30].

Electronic structure calculations have been widely used to 
study molecular systems and ionic associates with the aim of 
exploring their structural and thermodynamic properties [31]. 
Density functional theory (DFT) [32–34] is among the most 
extensively used model to explore NLO properties. For exam-
ple, DFT has been used to investigate second-order NLO in 
l-histidine crystals, by determining the electrical dipole (μ), 
polarization (α), and hyperpolarization (β) of the crystal [35]. 

In addition, DFT has been employed to study chemical structure 
of crystals and for vibrational analysis [36–41].

A computational technique widely used to explore the 
intermolecular interactions between molecules in crystals is 
the Hirshfeld surface analysis [42]. Based on the description 
of atom-to-atom contacts, the Hirshfeld surface analysis pro-
vides an in-depth picture of how molecules come together 
in a crystalline structure [43, 44]. The Hirshfeld surface is a 
function of the sum of the electron density of atoms in a spe-
cies divided by the sum of their closest neighbors, resulting 
in an isosurface that provides information about intermo-
lecular interactions [45–47].

In this work, we synthesized l-histidine bis(fluoride) crys-
tals by the slow evaporation method and characterized their 
structural and thermal properties by X-ray diffraction, ther-
mogravimetric, and differential thermal analysis. The study 
is directed towards investigating the crystal’s structural and 
thermal stability at high temperatures, since these charac-
terizations are important for the possible use of this material 
in NLO devices. In addition, computational studies using 
the DFT and Hirshfeld surface methods were conducted to 
understand the intermolecular interactions in the sample.

Materials and methods

LHis·2HF crystal synthesis

The crystals were synthesized by the slow evaporation method. 
Initially, a saturated aqueous solution of l-histidine (Sigma-
Aldrich, purity ≤ 99%) and hydrofluoric acid (Impex, purity ≤ 
48%) was prepared in a 1:2 mole ratio using deionized water. 
The solution was rotated on a shaker at 360 rpm for 2 h until 
complete homogenization and was then filtered through a filter 
paper with 25-μm pore. Subsequently, the solution was placed 
in a 50-mL beaker and covered with a plastic film, where several 
holes were drilled. Then, the covered beaker was placed in an 
oven with a controlled temperature of 35°C, favoring the slow 
evaporation of water and causing the supersaturation of the solu-
tion. The crystals were obtained after 37 days of storage.

Characterization

The X-ray diffraction (XRD) measurements were performed 
with the crystals pulverized using an Empyrean PANana-
lytical diffractometer aligned with Bragg-Brentano reflec-
tion geometry (θ-θ), using Cu Kα radiation (λ = 1.5418 Å), 
operating at a voltage of 40 kV, and a current of 30 mA. The 
patterns were obtained at a step size of 0.02° for 3 s, and 2θ 
interval range from 5° to 45°. The high-temperature XRD 
measurements were performed using an Anton-Paar TTK 
450 chamber coupled with the diffractometer. The sample 
diffraction pattern was measured in the temperature range 
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from 30 to 190 °C. Rietveld refinement using the GSAS-
EXPGUI interface [48] was used to analyze the crystal XRD 
data. From the obtained values of the lattice parameters at 
various temperatures, it was possible to calculate the linear 
coefficients of thermal expansion for each crystallographic 
direction using the following linear functions:

where �[100] , �[010] , and �[001] are the coefficients of thermal 
expansion; da, db, and dc are the variations of the lattice 
parameters, and dT is the temperature variation [49].

Thermal analysis

Thermal gravimetric analysis (TGA) and differential thermal 
analysis (DTA) were used to observe the variation in mass and 
differential thermal flow, respectively, of the sample when 
exposed to a controlled temperature increase, to identify events 
such as melting point, structural phase transition, and decom-
position. The TGA and DTA measurements were carried out 
simultaneously in a Shimadzu DTG-60 thermogravimetric ana-
lyzer with an α-alumina open crucible in a nitrogen atmosphere 
at a flow rate of 100 mL∙min−1, in the temperature range from 
30 to 500 °C, with a heating rate of 10 °C∙min−1.

DFT study

The DFT calculations were performed using the hybrid func-
tional ωB97x-D with both dispersion and long-range interac-
tion corrections, the 6-311++G(d,p) basis set, and the inte-
gral equation formalism version of the polarizable continuum 
model (IEF-PCM) of solvation, using water as the solvent (Ɛ 
= 78.4), as implemented in the Gaussian 16 software [50–52]. 
The DFT calculations include full geometry optimization, fol-
lowed by vibrational analysis to confirm the optimized geom-
etries as minima on the potential energy surface. The initial 
geometry of the main ionic associate containing 3 protonated 
histidine cations, connected by hydrogen bond to a fluoride 
anion, was taken from the XRD structure published by Pet-
rosyan et al. [26]. This ionic associate was used as a repre-
sentative block of the crystal. The charge and multiplicity for 
the whole associated system of  [3LHisH2·F]5+ were defined as 
5 and 1, respectively. Finally, the DFT results were analyzed 
with the Chemcraft software to visualize the optimized geom-
etry and properties of the systems [53, 54].
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The fluoride and protonated histidine ions were also stud-
ied individually. Then, variation of Gibbs free energy (ΔG), 
enthalpy (ΔH), entropy (ΔS), and total electronic energy cor-
rected with ZPVE (ΔE) associated to the ionic association 
were calculated based on Eqs. 4, 5, 6, 7:

where G
T
 , G

H
 , and G

F
 denoted the Gibbs free energies 

of the ionic associate, protonated histidine, and fluoride 
anion, respectively; H

T
 , H

H
 , and H

F
 denoted the enthalp-

ies of the ionic associate, protonated histidine, and fluoride 
anion, respectively; ET, EH, and EF were the total electronic 
energies corrected with the zero-point vibrational energy 
(ZVPE) of the ionic associate, protonated histidine, and fluo-
ride anion, respectively. All thermodynamic quantities were 
calculated at 298.15 K and 464.15 K, both at 1 atm. Basis set 
superposition error (BSSE) was included in the calculation 
of the ionic association energies.

Hirshfeld surface

The Hirshfeld surfaces and two-dimensional (2D) fingerprint 
graphics were obtained using the Crystal Explorer 17 software 
[55], to enable a detailed analysis of the interactions between 
the chemical species in the crystal. The Hirshfeld surfaces were 
mapped as a function of normalized distance (dnorm), to pro-
vide three-dimensional (3D) representations of close contacts, 
defined in terms of distances from a given point on the surface 
to the nearest external (de) and internal (di) atom, and van der 
Waals radius (rvdW). The mapped Hirshfeld surfaces were ren-
dered through a red-white-blue color scheme, where red was 
used for close contacts, white was used for contacts near the van 
der Waals radius, and blue was used for long distance contacts 
[45, 47]. The 2D graphs, given as functions of de and di, cover 
all intermolecular contacts, quantify specific interactions, and 
summarize the frequency of each combination [43, 44].

Results and discussion

X‑ray diffractometry

Figure 1(a) shows the Rietveld refinement of the LHis·2HF 
XRD pattern at room temperature. The Rietveld refinement 
R-factors for the weighted profile (RWP) and residual of 
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least-squares refinement (RP) are 5.27% and 3.98%, respec-
tively. The goodness of the fit indicator S is 1.65. These 
values indicate that the Rietveld refinement results obtained 
for the crystal have a high reliability [56].

The LHis·2HF at room temperature crystallizes in an 
orthorhombic phase  (P21212-space group) with four mol-
ecules per unit cell (Fig. 1(b)) and has the following refined 
lattice parameters: a = 13,123(1) Å, b = 6.5810(0) Å, c = 
9.651(5) Å, α = β = γ = 90°, and V = 833.499 Å3. These 
parameters are in agreement with those reported by Pet-
rosyan et al. [26], with a percentage difference of less than 
0.5%.

Figure 1(c) shows the LHis·2HF structure with its hydrogen 
bonds that are essential to maintain the material’s structural sta-
bility. According to Petrosyan et al. [26], LHis·2HF has a differ-
ent hydrogen bonding scheme from LHis·2HCl and LHis·2HBr. 
There is a strong hydrogen bond between the acidic hydrogen 
atom of the carboxylic group of the α-amino acid and one of the 
fluoride ions: O2–H1···F1. Hydrogen bonds also form between 
the N–H proton of imidazole (when protonated) and the second 
fluoride ion: N2–H9···F2 and N3–H11···F2. When protonated (as 
–NH3

+), the amino group also forms two hydrogen bonds with 
F1 and F2, namely N1–H3···F1, N1–H5···F1, and N1–H4···F2. 
Thus, each –NH3

+ cation forms three hydrogen bonds.

Thermal analysis (TGA‑DTA)

The LHis·2HF crystal thermogram is shown in Fig. 2. Ana-
lyzing the DTA curve, an endothermic peak is observed 
between 125 and 230 °C that was associated to the first 
weight loss (I) of approximately 20.70% in the TGA curve, 
equivalent to 0.861 mg of the initial crystal mass. This event 
is followed by two more stages of mass loss, i.e., (II) 231 to 
320 °C, where an endothermic peak appears at 264 °C on 
the DTA curve, with a weight loss of 20.37% (0.847 mg) in 

Fig. 1  a XRD Rietveld refinement of LHis·2HF crystal at room temperature; (b) unit cell of LHis·2HF; and (c) molecular structure of LHis·2HF, 
showing the hydrogen bonds as red sticks

Fig. 2  TGA-DTA curves of the LHis·2HF crystal
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the TG curve, and (III) 320 to 500 ºC, shows a weight loss 
of 14.43% (0.600 mg). These events are attributed to the 
decomposition of the LHis·2HF crystal.

From the TGA-DTA curve, it was observed that the 
LHis·2HF crystal is thermally stable up to 191 °C, without 
any transformation or transition in this temperature range 
(Fig. 2). Dhanuskodi and Ramajothi (2004) have performed 
a thermal and optical study of the crystal of l-histidine tetra-
fluoroborate [57] and also observed a good thermal stabil-
ity up to its melting point of 235 °C. On the other hand, 
Madhavan et al. [19] have carried out DTA studies of the 
l-histidine hydrofluoride dihydrate crystal and revealed that 
the material showed thermal stability only up to 108 °C, due 
to the loss of lattice water. The value found by Madhavan 
et al. is lower than the one observed in our work. Thus, the 
good thermal stability of the LHis·2HF crystal can be attrib-
uted to the hydrogen bonding scheme, in conjunction with 
the anhydrous structure of the material, as rationalized by 
Faria et al. for LHis·HCl·H2O [24]. Thus, based on its ther-
mal stability, LHis·2HF can be utilized for optoelectronic 
applications up to 191 °C.

XRD at high temperatures

The TGA-DTA results for LHis·2HF crystal show no evi-
dence of the physical phenomenon of phase transition in the 
studied temperature range. To confirm the stability of the 
crystal, its thermal and structural behavior were also ana-
lyzed by using XRD at high temperatures. The crystal was 
subjected to XRD in the range from 30 to 190 °C, where the 

first decomposition event was detected by thermal analysis. 
The diffraction patterns are shown in Fig. 3.

The diffraction patterns obtained between 30 and 190 
°C show the LHis·2HF crystal only in an orthorhombic 
phase. In the diffractograms in Fig. 3(a), only small per-
ceptible changes associated with the minimal structural 
changes in the crystal as a function of the temperature 
change are observed. In Fig. 3(b), it is possible to notice 
that some of the crystallographic axes undergo expansion 
or contraction with the sample’s gradual heating. The dif-
fraction pattern undergoes a small displacement of the 
Bragg peaks to the left or to the right, accompanied by 
intensity loss at higher temperatures. This can be seen 
when following the dotted lines in Fig. 3(b) in the diffrac-
tion peaks with 2θ of 17.52°, 19.46°, 26.94°, and 31.60°.

After obtaining the lattice parameters as a function of 
the temperature, it was possible to estimate the crystal 
thermal expansion coefficients at temperature between 30 
and 120 °C, using Eqs. 1, 2, and 3. Figure 4 shows the 
variation of the lattice parameters (ΔL/L0) as a function of 
the temperature, where the thermal expansion coefficient is 
calculated from the slope of each line, obtained as a result 
of a linear fit of all points. The calculated slopes are �[100] 
= –3.80(7) ×  10–6  C−1, �[010] = 27.20(6) ×  10–6  C−1, and  
�[001] = 7.13(3) ×  10–6  C−1. These results show that the 
thermal expansion is negative along axis a and positive 
along axes b and c. Thus, the LHis·2HF crystal clearly 
exhibits anisotropic behavior, which may be related to the 
spatial orientation of the hydrogen bonds in the lattice, as 
reported for LHis·HBr·H2O [58].

Fig. 3  Diffraction patterns of 
the LHis·2HF crystal as a func-
tion of temperature (a) 15° and 
40°, (b) 17° and 18°; 18.5° and 
20°; 26° and 27.5°; 31° and 32°
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DFT study

The geometries of the main ionic associate present in the 
crystal have been fully optimized by the means of DFT, 
using the ωB97x-D functional, 6-311++G(d, p) basis set, 
and IEF-PCM solvation method. The optimized geometries 

are confirmed as true minima on the potential energy sur-
faces by calculating the vibrational frequencies (confirmed 
by the presence of positive values only). Selected optimized 
structures are shown in Fig. 5(a). In the ionic associate, 
hydrogen bonds between the hydrogen atoms of the  NH2 
groups and the fluoride anion  (F–) are observed in different 
regions of the protonated histidine. The results show that 
angles and interatomic distances converged to values close 
to those found experimentally in the crystal. Petrosyan et al. 
[26] reported that the N(imidazole)–F(fluoride) distances 
are 2.5421(16) Å and 2.5269(15) Å, and that the dihedral 
angle between the main chain carbon atoms of imidazole 
is −171.85(12)°. These values compare favorably with the 
optimized N(imidazole)–F(fluoride) distances of 2.5721 Å 
and 2.5685 Å and the imidazole dihedral angle of −179.09°.

The analysis based on Eqs. 4–7 yields the ionic asso-
ciation Gibbs free energy, enthalpy, entropy, and electronic 
energy corrected with ZPVE values of −20.34 kcal∙mol−1, 
−52.59 kcal∙mol−1, −0.11 kcal∙mol−1∙K−1, and −52.98 
kcal∙mol−1, respectively, at 298.15 K. After BSSE cor-
rection, the ionic association electronic energy corrected 
with ZPVE is −48.21 kcal∙mol−1. The values of Gibbs free 
energy, enthalpy, and electronic energy corrected with ZPVE 
and BSSE are negative. These parameters indicate that the 

Fig. 4  Thermal expansion coefficient of the LHis·2HF crystal up to 
100 °C.

Fig. 5  a Optimized structure of the  [3LHisH2·F]5+ associate; (b) experimental structure collected from the crystallographic database; (c) electro-
static potential of  [3LHisH2·F]5+ mapped on the electron density surface; (d) electrostatic potential map
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formation of the ionic associate is exothermic and sponta-
neous, at room temperature. The spontaneous association 
is attributed to the formation of a network of strong hydro-
gen bonds between the protonated histidine and the fluoride 
anion [31, 59, 60].

The thermochemical analysis is also conducted at a 
temperature of 464.15 K. The calculated values of Gibbs 
free energy, enthalpy, and entropy are −2.63 kcal∙mol−1, 
−51.56 kcal∙mol−1, and 0.11 kcal∙mol−1∙K−1, respectively. 
When comparing the thermochemical results, it is observed 
that the Gibbs free energy undergoes a significant increase, 
as the temperature is increased from 298.15 to 464.15 K, 
but remains negative. The enthalpy and entropy undergo 
less significant changes. Our results also indicate that the 
increase in temperature favors an increase in the entropy of 
the system, which is related to an increase in the Gibbs free 
energy. The negative value of the Gibbs free energy of ionic 
association at 464.15 K (191°C) corroborate the experimen-
tal TGA-DTA findings that the material would be stable at 
this higher temperature.

The electrostatic potential of the ionic associate was 
mapped on the electron density isosurface (shown in 
Fig. 5(c)). The largest localization of negative charges, 
shown in red, are localized near the fluoride anion and the 
oxygen atoms of the carboxylate groups. The electrostatic 
potential map of the protonated l-histidine (Fig. 5(d)) shows 
the regions of positive electrostatic potential (in blue), which 
indicate favorable positions for nucleophilic attack, as well 

as regions with negative electrostatic potentials (in red), 
which indicate areas more favorable to electrophilic attack. 
In this case, the most positive potential is found near the 
–NH3

+ groups, and the most negative potential near the car-
boxylic oxygen atoms.

Hirshfeld surface analysis

To better understand the intermolecular interactions in the 
LHis·2HF crystal, Hirshfeld surfaces were produced and 
analyzed with respect to the protonated histidine molecule, 
shown in Fig. 6(a). The strongest interactions can be seen in 
Fig. 6(b and c)  as red regions, corresponding to the strong-
est hydrogen bonding sites. The interactions labeled as I, II, 
and VII correspond to the hydrogen bonds with F1 and F2, 
i.e., N1–H3···F1, N1–H5···F1 and N1–H4···F2 of the amino 
group, when protonated as –NH3

+. Interactions IV and IX 
are those with the hydrogen bonds involving the imidazole 
N–H group through bonds N2–H9···F2 and N3–H11···F2 
(atom labels are according to the notation of Fig. 1(c)). 
The hydrogen bond with the carboxylic group of the amino 
acid with one of the fluorine ions (O2–H1···F1) is shown in 
interaction VI. All the interactions mentioned agree with 
the XRD measurements, shown in Fig. 1(c). Interactions III, 
V, and VIII, indicated by white shading, are related to con-
tacts with another protonated histidine in the neighborhood. 
When the crystalline lattice is expanded, a “beehive” struc-
ture is observed when seeing along the ab plane (Fig. 6(d)). 

Fig. 6  a Structure of l-histidine protonated in the –NH3
+ group; 

b Hirshfeld surface of protonated l-histidine mapped according to 
dnorm; c Hirshfeld surface rotated by 180º relative to a around the hor-

izontal axis; d expanded LHis·2HF crystal structure along the a and 
b axes; and e expanded LHis·2HF crystal structure along the a and c 
axes
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When the crystal structure is rotated 90°, the orthorhom-
bic structure is observed along the ac plane (see Fig. 6(e)). 
It is important to note that these Hirshfeld surfaces show 
intermolecular interactions that have not previously been 
reported in the literature.

The 2D fingerprint plot provides a histogram as a func-
tion of the colored surface points fraction, in which the blue 
color represents few points and the red color represents 
many points, accounting for specific close contacts [43, 44, 
47]. The calculation provides a quantitative information on 
the intermolecular interactions, which makes clearer the 
analysis of the interactions between the chemical species 
in the crystal.

The cumulative 2D fingerprint graph is shown in 
Fig. 7(a). The decomposed graphs of the H···F, H···H, H···O/
O···H, H···C/C···H, and H···N/N···H interactions, with their 
respective percentage contributions, are shown in Fig. 7(b, c, 
d, e, and f) , respectively. The fingerprint graphs (Fig. 7(b–f)) 
correspond to the most important interactions, contributing 
to 93.3% to the total Hirshfeld surface. The remaining per-
centages are related to less significant interactions. In 2D 
fingerprint graphics, the presence of long, thin peaks in the 
regions of lower de + di values indicates the presence of 

strong interactions on the surfaces [61]. Long, thin peaks 
are seen in Fig. 7(b and d) , corresponding to the H···F and 
H···O/O···H interactions, confirming these as the strongest 
interactions in the crystal (Fig. 7(c)). Additionally, the H···H 
interaction is the most representative in terms of percentage 
contribution to interactions between atoms.

Figure 8 shows a more detailed model of the intermo-
lecular contacts, showing the three most significant interac-
tions of the analyzed Hirshfeld surfaces of the LHis·2HF 
crystal. The dashed orange, red, and green lines show the 
H···F, H···O/O···H, and H···H contacts, respectively. Thus, 
Fig. 8 corroborates the findings presented in Fig. 6(b and c) , 
showing that the main intermolecular interactions involve 
hydrogen bonding, confirming their substantial contributions 
to the stability of the crystal.

Conclusions

In this work, LHis·2HF crystals were successfully synthe-
sized by the slow evaporation technique and their thermal 
stability was investigated by using high-temperature XRD 
and thermal analysis with simultaneous TGA and DTA 

Fig. 7  a Full 2D fingerprint graph of l-histidine protonated in –NH3
+ and interaction-specific fingerprint graphs b H···F, c H···H, d H···O/O···H, 

e H···C/C···H and H···N/N···H
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measurements. The TGA-DTA analyses showed that the 
l-histidine bis(fluoride) crystal was thermally stable up to 
the range of 191 °C. No events were observed in the DTA 
curve related to phase transitions, what was confirmed by 
the XRD analysis as a function of temperature. The effect 
of temperature on the crystallographic axes of the unit cell 
was verified in the orthorhombic phase, where a markedly 
anisotropic behavior was observed. These studies made it 
possible to estimate the thermal expansion coefficients of 
the crystal. The thermal stability of the crystal can be related 
to the hydrogen bonding and the lack of water in its matrix.

Moreover, DFT computational studies and Hirshfeld 
surface analysis were conducted to investigate the intermo-
lecular hydrogen bonding interactions. In the DFT study, we 
obtained the optimized geometry of the main ionic associ-
ate in the crystal. The thermodynamic results confirmed the 
spontaneous formation of the ionic associate at temperature 
as high as 191°C, as a consequence of the occurrence of a 
strong attraction between the ions in this system, even in 
water. In the solid state, strong attraction between the ions 
can also be expected, which justifies the high stability of 
the solid.

The Hirshfeld surfaces identified the main points of inter-
molecular interactions in the structure. The Hirshfeld finger-
print graphs provided quantitative insights on the frequency 
of the occurrence of the different close contacts. The main 
points of intermolecular interactions match with the interac-
tions indicated in the DFT study.

Taken together, the crystal characterization, thermal sta-
bility, and computational studies show that LHis·2HF crystal 
exhibits the thermal properties and possesses the intermo-
lecular hydrogen bonding interactions that make it suit-
able for NLO applications. Also, these results contribute to 

developing a comprehensive understanding of the stabiliza-
tion of semi-organic crystals with attractive NLO properties.
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