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Circadian factors likely influence the occurrence, development, therapy, and prognosis
of cardiovascular diseases (CVDs). To determine the association between the heart
rate (HR) diurnal parameters and CVD risks, we designed an analytical strategy to
detect diurnal rhythms of HR using longitudinal data collected by clinically used Holter
monitors and wearable devices. By combining in-house developed algorithms with
existing analytical tools, we obtained trough phase and nocturnal variation in HR for
different purposes. The analytical strategy is robust and also sensitive enough to identify
variations in HR rhythms influenced by multiple effectors such as jet lag, geological
location and altitude, and age from total 211 volunteers. A total of 10,094 sets of 24-h
Holter ECG data were analyzed by stepwise partial correlation to determine the critical
points of HR trough phase and nocturnal variation. The following HR diurnal patterns
correlate with high CVD risk: arrhythmic pattern, anti-phase pattern, rhythmic patterns
with trough phase less than 0 (extremely advanced diurnal pattern) or more than 5
(extremely delayed diurnal pattern), and nocturnal variation less than 2.75 (extremely low)
or more than 26 (extremely high). In addition, HR trough phases from wearable devices
were nearly identical to those from 24-h Holter monitoring from 12 volunteers by linear
correlation and Bland-Altman analysis. Our analytical system provides useful information
to identify functional diurnal patterns and parameters by monitoring personalized, HR-
based diurnal changes. These findings have important implications for understanding
how a regular heart diurnal pattern benefits cardiac function and raising the possibility
of non-pharmacological intervention against circadian related CVDs. With the rapid
expansion of wearable devices, public cardiovascular health can be promoted if the
analytical strategy is widely applied.
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INTRODUCTION

Human physiological and pathological parameters are tightly
controlled by circadian rhythms (Zhang and Kay, 2010; López-
Otín and Kroemer, 2021). Diurnal variations in physiological
status (e.g., heart rate (HR) and blood pressure) are commonly
observed in the human cardiovascular system. Chronic
disruption of circadian rhythms, such as with shift work, jet
lag, social interaction, feeding patterns, or malfunction of the
circadian clock, can lead to the development of cardiovascular
disease (CVD) [reviewed in (Guo and Stein, 2003; Takeda and
Maemura, 2011; Thosar et al., 2018; Crnko et al., 2019)]. The
incidence of CVD also varies within a 24-h period (Waters et al.,
1984; Jeyaraj et al., 2012) due to the raising and lowering of
HR and blood pressure, early morning alterations in autonomic
nervous system activity, and circadian production of hormones
such as cortisol (Oster et al., 2006). Therefore, identifying
the association between circadian rhythmicity, especially the
rhythmicity of the cardiovascular system, and CVD could
be valuable for CVD risk prediction, diagnostic assays, and
improved treatment.

A number of measurements, such as morningness-
eveningness questionnaires (Horne and Östberg, 1976) and
dim-light melatonin onset (DLMO) (Lewy et al., 1999), have
been used to estimate human circadian time, which was further
defined as chronotypes (Adan and Almirall, 1991; Roenneberg
et al., 2003). After a pioneering study involving transcriptomic
profiling to infer the human circadian phase, various methods
have been developed to establish robust and accurate human
circadian biomarkers (Ueda et al., 2004; Hughey, 2017; Braun
et al., 2018; Ruben et al., 2018; Wittenbrink et al., 2018; Wu et al.,
2018). However, none of these methods directly reflect circadian
rhythmicity in the cardiac system. Twenty-four-hour Holter
monitoring offers continuous and accurate HR recordings, but it
is somewhat inconvenient to use. Notably, the recent explosive
increase in wearable healthcare devices has provided a simpler
method for health monitoring including heart rate (Lu et al.,
2020). The long-term HR tracking enabled by wearable biometric
devices (wristbands) also generates a sufficient amount of data for
circadian analyses of the cardiac system. Furthermore, accuracy
of wearable healthcare devices is well estimated and datasets
recorded by these devices were analyzed to characterize the
relationship between HR diurnal patterns and health problems
(Haghayegh et al., 2019; Zhang et al., 2019; Kalanadhabhatta
et al., 2021).

Therefore, we developed an analytical strategy to dissect the
HR diurnal parameters. Using the strategy, we tried to address
the association of HR diurnal rhythmicity changes with the risk of
CVD based on population-level clinical Holter data and evaluate
the accuracy of HR diurnal parameters from wristband-data.

MATERIALS AND METHODS

Clinical ECG Data
A total of 10,094 historical Holter data sets were collected
from the Division of Cardiology, the First Affiliated Hospital of

Soochow University, covering the corresponding patients from
Sep 2010 to Jul 2014. Holter data sets were then screened for
data integrity and to exclude patients with artificial pacemakers
for an unbiased analysis of diurnal pattern. A total of 9,922 data
sets were subjected to further analyses. Simplified HR data at 1-
minute frequency as well as diagnostic conclusions were exported
using a customized module of the Holter software, ECG Lab
(Biomedical Instruments, Shenzhen, China). This retrospective
study design was approved by the Ethics Review Board of the
hospital (Application ID: 2019025).

Cardiovascular Diseases Indices
Holter data sets containing diagnostic conclusions were
given by experienced cardiac physicians based on clinical
guidelines (AHA/ACCF/HRS Recommendations for the
standardization and Interpretation of the Electrocardiogram).
Cardiovascular-related pathological indicators noted in the
diagnostic conclusions of the Holter data were defined as CVD
indices for correlation analyses. All indices were extracted using a
Perl script and classified into seven categories with 13 subgroups
(Supplementary Table 1).

Dim-Light Melatonin Onset
Twelve volunteers were gathered in two lightproof rooms from
18:00 to 24:00. Saliva samples were collected every 30 min,
stored in a refrigerator, and analyzed using an ELISA kit
(IBL International, Switzerland). The melatonin onset for each
individual was determined by the hockey stick method in
MATLAB (Danilenko et al., 2014).

Volunteers
The Morningness-eveningness questionnaire (MEQ) was
distributed online via a social network (Liu et al., 2020).
Questionnaire participants were then invited to join the
wristband-based study. Between November 2017 and September
2019, 211 volunteers (72 males, 139 females) were recruited to
wear a smart wristband for at least 1 month. The investigation
conforms with the principles outlined in the Declaration of
Helsinki and was approved by the Ethics Committee of Soochow
University (ECSU-201800098).

Wristband Data Collection and Analysis
The wearable devices were purchased from two independent
vendors, Fitbit and Huawei. HR were continuously recorded by
wristband for at least one week between November 2017 and
September 2019. All the data are only used for research purpose.
All volunteers provided an electronic informed consent for their
data usage when they first registered and initialized their devices.
Data in the wristband are transferred to the vendor cloud server
by smartphone app. Mobile phone application and the vendor
data server also provide sleep stages in the app: awakening, light,
deep, and REM sleep. Then we synchronized these data to our
local server by API docking and performed further analysis.
Night-Day ratio, rhythmicity and critical points of HR data from
wristbands were identified using R. Diurnal parameters, such as
trough phase and nocturnal variation were estimated by “The Key
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analytical algorithm for HR data” in MATLAB (Supplementary
Material). All the diurnal parameters of HR are described in
Supplementary Table 2.

Analytical Algorithm for Heart Rate Data
To avoid interference from daytime activity, nighttime HR data
were searched and selected for analyses. In brief, the key analytical
algorithm for HR data was developed based on Holter data using
exported simplified HR data and then tested with wristband
data and synthetic data to verify its feasibility. We first filtered
the data with a Butterworth filter for denoising. Then, we used
the sliding window approach to automatically distinguish rest
and active periods by labeling the HR falling and rising slopes
instead of fixed nighttime and daytime periods. By comparing
these data with the threshold calculated from the filtered HR
data, the first time point of the sliding window for which all HRs
were below the threshold was considered the starting point of the
night period. A similar treatment was performed to determine
the end of the night. Next, the least squares method was used to
perform cosine fitting with nighttime HR data. The lowest fit HR
value and the trough phase time were automatically identified.
Oscillations with period less than 1 h are removed to exclude the
influence of sleep cycles and other high frequency fluctuation.
The HR nocturnal and diurnal variations during the nighttime
and the whole day/night cycle of each subject were calculated
using the daily average HR, the mean resting HR and the lowest
fit HR. Detailed descriptions of the algorithm are included in
Supplementary Material.

Synthetic “Heart Rate Data” Generation
To verify reliability, we conducted a test using synthetic data sets.
We defined a periodic signal consisting of the trough of the sine
curve (night time) and peaks of three bell-shaped curves (day
time) with a known period (24 h) and phase. A standard normal
random perturbation was used to simulate noise. The script was
repeated 1,000 times to generate the synthetic data with values
of phase chosen uniformly at random from 2 p.m. to 2 p.m.
on the next day. A standard normal random perturbation was
used to simulate measurement error and experimental noise. Our
algorithm was then applied to the data collection for analyses.

Jonckheere-Terpstra-Kendall
Rhythmicity Analysis (JTK_CYCLE)
To analyze the rhythmicity of the 24-h heart rate of each sample,
JTK_CYCLEv3.1 was used to process hourly binned HR data.
Then, the ratio of the average nighttime HR to daytime HR
(N/D) was calculated to determine the in-phase or antiphase. For
all data sets, permutation-based P-values (ADJ.P) were applied.
JTK_CYCLE analyses with a two-sided P-value less than 0.05
were considered statistically significant (Hughes et al., 2010).

Heatmap
To better illustrate the amplitude and phase patterns of daily
heart rate, each HR time series was normalized on a [0,1] scale.
A heatmap was plotted using “pheatmap” in the R package (R

version 3.6.1). In the rhythmic cluster, HR time series were
ordered according to trough phases.

Critical Point Determination
Considering that two key parameters for the HR diurnal
rhythm, trough phase and nocturnal variation, are continuously
distributed in the population, we built a model with R language
to perform stepwise partial correlation analyses. Stepwise partial
correlation analyses for CVD indices were carried out with
gradually narrowed parameters from either direction. A typical
value level for step size was 0.01 to obtain enough subjects, while
age and sex were adjusted with the R package “ppcor.” Range
boundaries with a correlation coefficient greater than 0.1 and a
significant P value were considered to indicate the critical point
beyond which individuals were considered to have a significantly
higher risk of CVD. Partial correlation analyses with a two-sided
P value less than 0.05 were considered statistically significant.

Statistics
Linear regression was used to evaluate continuous relationships
between the HR trough phase from Holter and wristband
data. Linear regressions were also used to evaluate continuous
relationships between HR trough phase from wristband data
and MEQ scores and between HR trough phase from wristband
data and predicted DLMO. Partial correlation analyses were
conducted to determine the correlation between HR diurnal
parameters and CVD indices. Using GraphPad Prism 8, one-
way ANOVA with Bonferroni post hoc testing was used to
evaluate the association between disease occurrence and HR
diurnal patterns by inputting the baseline characteristics of CVD
indices from ECG data and the following patterns: arrhythmic
pattern, antiphase pattern and rhythmic pattern. All statistical
analyses with a two-sided P value less than 0.05 were considered
statistically significant.

RESULTS

Analytical Strategy and Algorithm
Development
Our study includes the synergistic evaluation of HR data from
volunteers and clinical patients by using the strategy illustrated
in Figure 1A. HR data were subjected to analysis using an in-
house developed algorithm consisting of data pre-processing
and curve fitting analysis (Figure 1A). The diurnal parameters
included trough phase which is the timing of the lowest point in
the fitted curve, and nocturnal variation which is the difference
between the resting average HR (RHR) and the fitted minimum
HR (Figure 1B and Supplementary Figure 1A). To test the
reliability and accuracy of our algorithm, synthetic “HR data”
were generated with a variable trough phase. The result showed
that the estimated trough phase was in agreement with the actual
trough phase of synthetic “HR data” (Figure 1C), indicating that
our algorithm is reliable. Furthermore, the inter-day coefficient
of variances of the trough phase, nocturnal variation and other
parameters were very low between three workdays for each of
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FIGURE 1 | Analytical strategy and algorithm development. (A) Schematic illustration of the analytical strategy. Heart rate (HR) data from both volunteers and clinic
patients were collected and subjected to analysis by an in-house developed algorithm. HR diurnal parameters were generated by the algorithm and further tested by
analyses of geological locations and altitude; traveling across time zone; chronotype questionnaire comparison; and DLMO. Finally, HR diurnal parameters were used
for CVD risk prediction. (B) Representative HR data showing the algorithm development. Purple line: filtered HR data; red dashed line: fitted HR curve during resting
time; RHR: resting mean HR. (C) Algorithm reliably estimates trough phase of synthetic daily HR data. A test set of 1,000 daily HR data was generated with trough
phases uniformly chosen from 2 p.m. to 2 p.m. on the next day and nocturnal variation ranging from 30 to 60. Estimated phase is plotted as a function of the actual
phase showing a strong linear correlation (r = 0.997). (D) The interday coefficient of variation (CV) of HR trough phase and nocturnal variation was analyzed using
data of the first three workdays retrieved from all 211 volunteers. The box plot shows the distribution of SD values for each parameter.
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FIGURE 2 | HR rhythmic changes in the different time zones. (A–H) Representative HR actograms of different volunteers who experienced jetlag of 12 h (A,B), 7 h
(C–G) and 6 h (H). The period from an average low-level transition to a relatively high-level and then back to low-level was marked as black bar, and the time of the
trough phase of HR (red dot) were well-aligned before traveling. The sleep scores generated by the wristband were labeled as green bars. After flying to a new time
zone, the watch time is synchronized (delay or advance) with the local time, which will lead to overlapping or missing time, resulting in wristband data overwritten or
loss. Blank regions are that the real-time data was overwritten when wristbands were synchronized to the new time zone. The yellow and orange rectangles
represent daytime (8:00 to 20:00) in different time zones. (I) Illustration of geological locations selected for comparison. West: Kashi in Xinjiang province (76E/39.5N);
East: Hunchun in Heilongjiang Province (130E/42N); North: Genhe in Inner Mongolia (121E/50N); South: Sanya in Hainan province (110E/18N); Plateau: Lasa in
Tibet (91E/30N); Basin: Leshan and Neijiang in Sichuan province (∼104E/29.5N). HR data collected in an entire month (January) were used for comparison.
(J) Quantification of HR trough phase values in different locations. (K) Quantification of nocturnal HR variation in different locations. (L) Quantification of peak sunlight
hours in different locations. (M) Quantification of temperature variation in different variation. Daily results of individual volunteers are considered as single data points
for quantification due to limited numbers of volunteers in different regions. The numbers of volunteers are: West: 12 volunteers (N = 140), East: 19 volunteers
(N = 230), South: 16 volunteers (N = 136), North: 17 volunteers (N = 171), Plateau: 9 volunteers (N = 94), Basin: 12 volunteers (N = 107). Error bars indicate the
mean ± SD *p < 0.05; **p < 0.01; ****p < 0.0001.

211 participants, except for the falling onset time and the offset
time (Figure 1D and Supplementary Figure 1B), which suggests
that diurnal parameters were robust for each individual within

a certain period. We thus excluded the falling onset/offset time
as robust parameters, which are likely interfered by variations of
sleep time and activity.
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FIGURE 3 | HR diurnal parameters highly correlate with other timing parameters. (A,B) Comparison of HR trough phase values and MEQ chronotypes (A) and
scores (B) of volunteers (N = 211). (C) Linear regression of HR trough phase values and DLMO results from 9 volunteers. (D) HR curves of volunteer #11588.
(E) DLMO prediction curves of volunteer #11588. (F) HR curves of volunteer #13700. (G) DLMO prediction curves of volunteer #13700. Red asterisks in HR curves
indicate the trough. Dotted lines indicate predicted DLMO timepoints.

Characterization of Heart Rate Diurnal
Parameters Derived From Wearable
Devices
To test the sensitivity of the method, we evaluated the
corresponding changes in responses to well-known two-step jet
lag. As shown in Figures 2A,B, the HR trough phases (red dots)
of volunteer #10610 and #10668 graphically displayed a similar
entrainment to westward time-zone (12-h time difference), which
did not completely correspond to the adjustment rate of sleep

onset, while they had distinct re-entrainment in response to
eastward time-zone transition (Figures 2A,B). Other volunteers’
HR trough phases can also be found to entrain to the new time
zone (Figures 2C-H).

To further examine to what extent HR can reflect
cardiovascular circadian changes in response to environmental
cues, most importantly, to visible light and external temperature
cues (Egg et al., 2013; Wu et al., 2017), we retrieved 85 wristband-
based HR data from representative areas in January, 2019
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(Figure 2I). The mean HR trough phase of 12 wristbands with
a total of 140 daily measurements (age: 36.68 ± 9.6 years) from
Kashi (76E/39.5N) was significantly delayed compared with
that of 19 wristbands with a total of 230 daily measurements
(age: 39.38 ± 8.6 years) from Hunchun (130E/42N) (Figure 2J).
This difference corresponds to a delayed sunrise time in
west regions in spite of the unified Beijing Time, which is
consistent with previous reports (Roenneberg and Merrow,
2007; Roenneberg et al., 2007, 2013; Fischer and Lombardi,
2021). Interestingly, by comparing HR data of 17 wristbands
with total 171 daily measurements (age: 39.27 ± 13.7 years)
from Genhe (121E/50N) and 26 wristbands with 232 daily
measurements (age: 36.32 ± 9.7 years) from Sanya (110E/18N),
we found that the average nocturnal variation was higher among
those in northern regions (Figure 2K). When we compared 9
wristbands with 94 daily measurements (age: 33 ± 8.5 years)
from Lasa (Plateau, 3,684 meters above sea level, 91E/30N)
with 21 wristbands with a total of 178 daily measurements (age:
32.78 ± 9.8 years) from Leshan and Neijiang (Basin, 500 meters
above sea level, ∼104E/29.5N), unexpectedly, we found that the
average nocturnal variation of Lasa individuals was higher than
that of Sichuan individuals. Then we estimated two dominant
environmental cues: the peak sunlight hours (irradiance of 1,000
w/m2) (Refinetti, 2019) and the daily temperature variation
(delta temperature) in the above indicated area in January,
2019. As shown in Figure 2L, the duration of peak sunlight
is not a direct factor for increased nocturnal variations in the
Lasa or northern areas because it was long in Lasa and short
in the northern and basin areas (Figure 2K). Furthermore, we
observed significantly greater daily temperature variation in the
Lasa and northern areas compared with the southern and basin
areas, indicating a possible link between ambient temperature
variation and cardiovascular circadian changes (Figure 2M).
Altogether, our data here proves that the algorithm can track
an individual’s circadian state, and heart diurnal paraments can
reflect circadian entrainment.

HR Diurnal Parameters Highly Correlate
With Other Timing Parameters
To address whether the circadian phase of HR can be evaluated
by other circadian output markers, we first administered
the chronotype questionnaire (MEQ) to 211 volunteers with
wristbands and applied our in-house algorithm to their HR data.
We found a strong correlation between the HR trough phase and
MEQ chronotypes (Figure 3A) or MEQ scores (Figure 3B), but
HR trough phases were not always concordant with the MEQ
chronotypes or MEQ scores.

Next, to study the relationship between the HR trough phase
and melatonin phase, salivary samples were collected from
11 participants and calculated their DLMO (Supplementary
Figure 2) as described previously (Danilenko et al., 2014).
Following exclusion of two outliers from the analysis, the
agreement of HR trough phase with DLMO was significant
and robust when estimated by linear regression (r = 0.89,
p < 0.05) (Figure 3C). This suggested that most participants’
HR trough phases were aligned with the DLMO. We then

considered the two apparent outliers, participants #11588 and
#13700, which were excluded from the above analysis. When
their DLMO and HR trough phases were further analyzed, the
HR trough phase was approximately 05:10 (Figure 3D) and
matched the MEQ score as a definitely delayed HR pattern.
However, we observed that participant #11588 experienced an
early surge in melatonin at approximately 19:30 (Figure 3E).
This participant had a nap during this short time and
was then unable to fall asleep until approximately 04:00. In
addition, the peak of melatonin in participate #13700 was not
detected, while the trough phase occurred at approximately
02:30 (Figures 3F,G). Altogether, our results showed that the
phase of HR is unable to be evaluated using a simply MEQ or
DLMO substitution, but there is a stable relationship between
them as reported in previous work (Roenneberg and Merrow,
2016).

Patients With Abnormal Heart Rate
Diurnal Pattern Have Higher
Cardiovascular Disease Risk
To investigate the ability of HR diurnal patterns to facilitate
disease risk prediction, we collected 10,094 Holter HR data sets
from clinical patients. After excluding patients with artificial
pacemakers, 9922 data sets were used to analyze. The age of the
patients ranged from 8 to 97 years old, with a majority of the
population (25 - 75% percentile) between 48 and 68 years of
age (Supplementary Figure 3). We exported the cardiovascular
pathological indicators from the Holter diagnostics and classified
them into seven categories with 13 groups as CVD indices
(Supplementary Table 1). Based on the rhythmicity analysis
of JTK_CYCLE, the diurnal patterns of Holter patients were
divided into arrhythmic (3,228 out of 9,922 patients, 32.5%)
and rhythmic (6,694 out of 9,922 patients, 67.5%) clusters
(Figure 4A). The rhythmic group was further clustered into the
antiphase group (nighttime average HR/daytime average HR ≥ 1)
and in-phase group (Figure 4A). We found that the arrhythmic
and antiphase groups had higher risks of the indicated CVD
indices than the in-phase rhythmic group by the Bonferroni
test (Table 1).

To further dissect the HR diurnal parameters to facilitate
disease risk prediction, we employed the in-house algorithm to
identify trough phase and nocturnal variation during resting
time. When analyzing 5-year age intervals, age correlated strongly
with HR trough phase (Figure 4B) and nocturnal variations
(Figure 4C). Interestingly, the decrease in nocturnal HR variation
decelerated after age 50 and rebounded after age 80, although
the mechanisms are undetermined (Figure 4C). We noticed that
both the resting mean HR and the fitted minimal HR rebounded
after age 80, which may be the reason for the elevated nocturnal
HR variation (Figure 4D).

Extreme HR Diurnal Patterns Correlate
With Cardiovascular Disease Indices
To determine the correlation between HR diurnal parameters and
CVD indices, age- and sex-adjusted stepwise partial correlation
analyses were performed to determine the critical point of HR
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FIGURE 4 | HR diurnal parameters are identified from Holter. (A) Cluster of the HR data from Holter patients based on the statistical p-value from JTK. Antiphase:
p ≤ 0.05, N/D ≥ 1; Arrhy: arrhythmic, p > 0.05; Rhy: rhythmic, p ≤ 0.05, N/D < 1. Numbers in parentheses are the N for each group. (B) The mean trough phase of
HR decreases with increasing age (N = 10094). (C) The mean nocturnal variation in HR shows similar age-dependent decreases (N = 10094). (D) The resting mean
HR and fitted minimal HR decreases with increasing age (N = 10094).

TABLE 1 | Confidence interval analysis (Bonferroni test) of the possibility of disease occurrence in different clusters.

Category Rhythmic (n = 6540) Arrhythmic (n = 3228) Antiphase (n = 154) Rhy vs. Arr Rhy vs Anti

Mean (95% CI) Mean (95% CI) Mean (95% CI) Diff P Diff P

Atrial Events (yes or no) 0.19 (0.18, 0.20) 0.24 (0.23, 0.26) 0.48 (0.4,0.6) 0.05 < 0.001 0.29 < 0.001

Ventricular Events (yes or no) 0.25 (0.23, 0.26) 0.26 (0.24, 0.27) 0.36 (0.29, 0.44) 0.01 0.87 0.12 0.0024

Sinus Tachycardia (yes or no) 0.006 (0.004, 0.007) 0.008 (0.005, 0.01) 0.039 (0.008, 0.07) 0.002 0.72 0.033 < 0.001

Sinus Bradycardia (yes or no) 0.12 (0.11, 0.13) 0.16 (0.15, 0.18) 0.11 (0.06, 0.16) 0.04 < 0.001 −0.01 0.99

Conduction Block (yes or no) 0.11 (0.11, 0.12) 0.13 (0.12, 0.14) 0.18 (0.12, 0.24) 0.017 0.055 0.07 0.03

QRS (yes or no) 0.02 (0.02, 0.03) 0.04 (0.03, 0.05) 0.12 (0.07, 0.18) 0.02 < 0.001 0.10 < 0.001

QRS: Q, R, and S waves.

trough phase and nocturnal variation in the rhythmic group. We
found that patients with an HR trough phase between −0.05
and 5.06 (5,866 out of 6,540 patients, 89.7% in the in-phase
group) and nocturnal variation between 2.75 and 25.98 (6,008
out of 6,540 patients, 91.9% in the in-phase group) had low

risk of CVD indices by Spearman rank correlation (Figures 5A-
D and Supplementary Figures 4, 5). Thus, the normal ranges
with low risk of CVD indices were defined according to the
above critical points (Figures 5E,F). Then, age- and sex- adjusted
spearman rank correlation was used to further investigate the
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FIGURE 5 | HR diurnal parameters correlate with CVD indices. (A) Partial correlation analysis between HR trough phase and atrial events in different parameter
ranges earlier than different HR trough phase critical points (x axis). (B) Partial correlation analysis between HR trough phase and atrial events in different parameter
ranges later than different HR trough phase critical points (x axis). (C) Partial correlation analysis between nocturnal variation and sinus tachycardia in different
parameter ranges lower than different nocturnal variation critical points (x axis). (D) Partial correlation analysis between nocturnal variation and atrial events in
different parameter ranges higher than different nocturnal variation critical points (x axis). (E) Distribution of HR trough phase values of Holter patients (blue: HR
trough phase between –0.05 and 5.06) with the number of patients in each group labeled. (F) Distribution of nocturnal variation in Holter patients (blue: nocturnal
variation between 2.75 and 25.98) with the number of patients in each group labeled. (G) Correlations between HR trough phase and CVD indices in the in-phase
population with phases greater than 5.06 (Rhy, ϕ ≥ 5.06) (N = 221) and smaller than –0.05 (Rhy, ϕ ≤ –0.05) (N = 453) were calculated by spearman rank correlation.
(H) Correlations between HR diurnal parameters (nocturnal variation) and CVD indices in the antiphase population (Antiphase) were calculated by spearman rank
correlation (N = 154). (I) Correlation between nocturnal variation and CVD indices in the in-phase population with nocturnal variation, A, greater than 25.98 (Rhy,
A ≥ 25.98) (N = 184) and lower than 2.75 (Rhy, A ≤ 2.75) (N = 346) were calculated by spearman rank correlation.

associations between various CVD indices and trough phase or
nocturnal variation in outlier rank deviating from the critical
points. HR trough phase (ϕ ≤ −0.05) or (ϕ ≥ 5.06) had a greatly
increased association with atrial events (Figure 5G). Taken
together, these data suggested that extreme HR diurnal patterns
were significantly associated with cardiovascular outcomes. In
the antiphase group, the nocturnal variation in HR showed
the strongest correlation with sinus bradycardia (Figure 5H).
Nocturnal variation (A ≥ 25.98) was significantly associated with
atrial events and conduction block (Figure 2I). When nocturnal
variation was lower than 2.75, it showed a clear correlation with
QRS (Figure 5I). Further analysis of antiphase patients indicated

that the use of BETALOC or other cardiac-related drugs did not
change the HR phase, nocturnal variation, or the night/day HR
ratio (Supplementary Figure 6).

Heart Rate Diurnal Parameters From
Wrist Wearables Are Nearly Identical to
Those From Holter Monitors
A Holter monitor is a precise medical grade device, but it is
inconvenient for daily HR monitoring. Currently, wrist wearables
are becoming popular and are easy to be used as HR recording.
We wondered whether HR parameters obtained from wrist
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FIGURE 6 | HR diurnal parameters from wrist wearables accurately reflect
heart diurnal patterns. (A) Linear regression of trough phase values derived
from wristband and Holter HR monitoring on the same day. Black dots
indicate data from each individual, and the red line represents the linear
regression curve. N = 12, r = 0.9758, p < 0.0001. (B) Bland-Altman plot for
comparison of trough phase from wristband and Holter, with the
representation of mean biases (solid line) and the limits of agreement (dotted
lines), from Mean-2SD to Mean + 2SD. (C) Cluster of the HR data from
wristband volunteers based on the JTK value and the mean night-to-day HR
ratio (N = 211). Numbers in parentheses are the N for each group.

wearables are close to that from Holter. First, we sought to
assess the accuracy of wristband-based HR data relative to Holter
monitoring. We recruited 12 volunteers who were equipped
with both a Holter monitor and wristband on the same day
and compared the device performances by linear correlation
of trough phase results. We found that the trough phases
estimated from these two devices were well correlated (Figure 6A,
r = 0.9758, p < 0.0001, Supplementary Figure 7). Bland-Altman

plots demonstrated that the 95% limits of agreement were within
−0.0058 ± 0.06 h (Figure 6B), indicating that wristband-based
HR tracking is feasible for HR diurnal pattern determination.

We found that 182 individuals showed rhythmicity (182
out of 211 participants, 86.3%), and 27 individuals showed
arrhythmicity (27 out of 211 participants, 12.8%) (Figure 6C),
which was lower than the 32.5% in the Holter patient population.
In addition, two volunteers were clustered into the antiphase
pattern (2 out of 211 participants, 1%), which was also lower than
that in Holter patients (2.3%). When we further queried the two
antiphase participants, one reported temporary sleep deprivation,
while the other complained of tachycardia, implying a potential
risk of heart function.

DISCUSSION

In this study, we developed a comprehensive analytical strategy
to classify diurnal patterns and extract HR diurnal parameters
for the cardiovascular system. We also validated that this
analytical strategy can be applied to long-term HR data collected
from wearable devices (wristbands) to depict the longitudinal
trajectories of personalized circadian function. Given the growing
popularity of wearable health care devices, the classification and
analysis of HR data will be helpful.

When comparing our results with other circadian
measurements, we noticed deviations between HR trough
phase and DLMO, which suggests that different circadian output
markers have distinct features despite the overall correlation.
The HR diurnal parameters directly reflect the dynamic change
in cardiac function in day-night cycles. Therefore, our strategy
could provide a better reference to guide time-sensitive cardiac
treatment but is limited to HR diurnal parameters. We didn’t
validate the HR diurnal parameters against results generated
from skin or blood samples. Further comparative studies
may be needed to dissect the timing differences between
various methods.

Under limited conditions, we studied the simplified
relationship between HR diurnal parameters and CVD risks. We
identified two population clusters, antiphase and arrhythmic
groups, associated with CVD indices. The major finding was
that extreme heart diurnal patterns (extremely advanced,
extremely late, and antiphase) correlated with a higher risk of
CVD, especially atrial events such as atrial fibrillation/flutter,
atrial load, and atrial tachycardia. These results persisted after
adjustment for age and sex, which is consistent with the increased
disease occurrence among shift workers (Knutsson et al., 1986).
We thus suggest that misalignment between the central clock,
the cardiovascular clock, and environmental cues may play
an important role in heart physiology and pathology. This
enables us to consider heart diurnal patterns to be a modifiable
risk factor with an available preventive target. Extreme heart
diurnal patterns are attributes of cardiovascular diseases and
can potentially be used to guide intervention. Circadian biology
is becoming a critical element in precision and personalized
medicine (Cederroth et al., 2019; Ruben et al., 2019; Ju and
Zhang, 2020; Wu et al., 2020; López-Otín and Kroemer, 2021).
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Progress in this field has encouraged efficient and reliable
methods that are inexpensive and non-invasive for predicting
circadian rhythm. Our method and results provide a roadmap
for future direction. Extreme HR phase and nocturnal variation
are highly associated with specific CVDs. Wrist wearables
can generate comparable HR diurnal parameters for CVD
risk prediction.
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