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Abstract

The laboratory rat has been widely used as an animal model in biomedical research.

There are many strains exhibiting a wide variety of phenotypes. Capturing these pheno-

types in a centralized database provides researchers with an easy method for choosing

the appropriate strains for their studies. Existing resources have provided some prelimi-

nary work in rat phenotype databases. However, existing resources suffer from problems

such as small number of animals, lack of updating, web interface queries limitations

and lack of standardized metadata. The Rat Genome Database (RGD) PhenoMiner tool

has provided the first step in this effort by standardizing and integrating data from

individual studies. Our work, mainly utilizing data curated in RGD, involves the following

key steps: (i) we developed a meta-analysis pipeline to automatically integrate data

from heterogeneous sources and to produce expected ranges (standardized phenotype

ranges) for different strains and phenotypes under different experimental conditions;

(ii) we created tools to visualize expected ranges for individual strains and strain groups.

We developed a meta-analysis pipeline and an interactive web interface that summarizes

and visualizes expected ranges produced from the meta-analysis pipeline. Automation

of the pipeline allows for updates as additional data becomes available. The interactive

web interface provides curators and researchers with a platform for identifying and

validating expected ranges for a variety of quantitative phenotypes. The data analysis

result and visualization tools will promote an understanding of rat disease models,

guide researchers to choose optimal strains for their research needs and encourage

data sharing from different research hubs. Such resources also help to promote research

reproducibility. The interactive platforms created in this project will continue to provide

a valuable resource for translational research efforts.
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Introduction

Model organisms

Model organisms are important tools in biomedical
research. Studies using model organisms have the potential
to reveal the molecular mechanisms underlying disease
(1–5) in human. The large-scale comparative analysis of
phenotype and genotype data in model organisms can
further reveal novel associations between genotypes and
diseases (6–10). Such analysis traditionally has not been
done as extensively in human.

Rattus norvegicus, or the laboratory rat, has been widely
used as an animal model for physiology, immunology, neo-
plasia, pharmacology, toxicology, nutrition and behavior
research for >160 years (11). A large number of rat strains
have been bred to exhibit the phenotypes of common
diseases, either spontaneously or through the application of
dietary, environmental or other conditions. The rat genome
sequence project completed in 2004 (12) has greatly trans-
formed the research paradigm, creating exceptional oppor-
tunities for identifying genes and pathways contributing
to disease phenotypes in rats. Results generated from rat
studies can then be translated to human.

In order to leverage the power of the rat for such
studies, a clear understanding of the phenotypic profiles of
individual rat strains and commonly used control strains is
needed. Phenotype refers to the observable morphological,
physiological and behavioral characteristics of an individ-
ual under certain contexts of a study environment (13).
Many phenotypic characteristics can appear or disappear,
or increase or decrease, in severity throughout the lifespan
of an individual. Phenotypic variation is an expression of
genotype or the sum of an individual’s genetic makeup and
environmental exposure. Thousands of human diseases are
associated with phenotypic and genetic variations. Pheno-
types observed in rats are often similar to those observed
for particular human diseases, and researchers will choose
particular strains as models of the disease based on these
observations. However, these choices are often based on
previous experiments, the researchers’ familiarity with or
access to the strain or the fact that it is commonly seen by
the community as a model for a particular disease. In addi-
tion, due to constraints in resources, individual investigators
often focus on a limited number of phenotypes in a given
strain, recording values for these few without recording a
comprehensive phenotype profile of that strain.

Statistical analysis comparing phenotype values between
strains is commonly done in a single experiment. However,
unlike physicians in the clinic, rat researchers have not

had the benefit of comprehensive expected (normal or
abnormal) ranges for quantitative phenotype measurements
for individual strains or for commonly used control strains
based on multiple studies. The availability of statistically
determined quantitative phenotype profiles for a wide range
of rat strains would provide researchers with the data
necessary for selecting optimal strains for their studies and
help identify strains with profiles that closely mimic that of
humans with particular diseases. The use of diverse panels
of strains, both in phenotype and genotype, is increasing as
a means to represent the diversity of human populations.
Access to comprehensive quantitative phenotype profiles
and comparisons with expected ranges will facilitate the
assembly of such strain panels.

Existing resources

There have been several attempts to integrate quantitative
phenotype data for model organisms such as mouse and rat
to provide researchers with a view of data across experi-
ments. Current resources for rat include (i) the Rat Phenome
Project of the National BioResource Project for Rat in Japan
(NBRP), (ii) the PhysGen and PhysGen Knockout program
and (iii) the Rat Genome Database (RGD) PhenoMiner
Project. The Rat Phenome Project by NBRP in Japan, and
the PhysGen program and PhysGen Knockout program
include some of the most comprehensive rat phenotype
measurement studies that have been conducted.

The NBRP Rat Phenome Project (http://www.anim.med.
kyoto-u.ac.jp/nbr/phenome.aspx) (14) is a good reference
to rat physiology given that the studies construct mea-
surement groups with the same number of animals (six
rats) and on both sexes. Researchers can compare the same
phenotype across strains, and between-study variance can
be controlled by using the same number of animals. In
addition, conclusions about sex differences in phenotypes
will be easier to draw since the measurements were done
under the same conditions and at the same age.

However, there are some drawbacks to NBRP Rat Phe-
nome Project: (i) the number of animals (six rats) they used
was small, resulting in relatively large within study variance;
(ii) the measurement method used by NBRP may not be
available in other laboratories. As a result, NBRP pheno-
type measurements may not be representative and make
it hard for researchers to compare their own results with
NBRP measurements; (iii) their project is a one-time effort
for each strain. However, even inbred rat strains can drift
in their genetic make-up or physiological characteristics

https://rgd.mcw.edu/
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due to environmental influence. This again makes it hard
for researchers to compare their own results with NBRP
measurements. Thus, it is essential to continuously measure
rat phenotypes and then compare or combine old measure-
ment values with new ones.

The PhysGen Program for Genomic Application at the
Medical College of Wisconsin has produced large-scale
phenotype data using a variety of inbred and consomic rat
strains. Comprehensive characterization (434 845 physio-
logical data points) of these consomic strains, each carrying
a chromosome from the sequenced Brown Norway strain,
allowed for immediate mapping of traits to a particular
chromosome without the need for genetic crosses (15).
The addition of mutant strains in the PhysGen Knockout
program allowed in vivo studies to be done to study the role
of genes in pulmonary, cardiovascular, vascular and renal
diseases. The advantage of The PhysGen program is that
it created a federated database with curated measurements
on rats from different laboratories and studies on different
rat strains (inbred, mutant and consomic). The PhysGen
program developed web tools that enable querying of exper-
iments for a specific phenotype. The PhysGen website pro-
vided visualization of individual phenotype results across
multiple strains with statistical analysis. It also provides
strain profiles that summarize both general and phenotype
data for individual strains (16).

However, there are several drawbacks to PhysGen data
presentation: (i) the web interface only enables queries
within a certain protocol or experiment, e.g. BIOCHEM-
ISTRY, CARDIAC, RENAL and RESPIRATORY. However,
some phenotypes were measured in multiple protocols.
For example, because individuals with a high resting heart
rate and a low beat-to-beat heart rate variability have an
increased risk of developing kidney disease (17), ‘heart
rate’ was measured in both CARDIAC and RENAL, which
makes phenotype-based comparison and integration diffi-
cult; (ii) it lacks a visible data standardization process so
that the measurement method, experimental condition and
age of rats used remain unclear behind those data points. A
user needs to refer to the protocol to gain this information.
This again makes it difficult to truly compare data from
various sources and across experiments.

The RGD (rgd.mcw.edu) is the most comprehensive
data repository and informatics platform for the labo-
ratory rat (18). RGD curates and integrates data from
published literature, individual research projects as well
as the PhysGen Program for Genomic Application (19)
and the NBRP Rat Phenome Project in Japan (14).
Data include information on strains, Quantitative Trait
Loci (QTLs) and experimental phenotype measurements
across hundreds of strains. To better curate and query
comprehensive experimental data from heterogeneous

data sources, RGD initiated the PhenoMiner project
(https://rgd.mcw.edu/rgdweb/phenominer/home.jsp) (20).
Video tutorials about how to effectively use this database
are described on RGD website (https://rgd.mcw.edu/wg/
home/rgd_rat_community_videos/rgd-tool-and-website-
videos/), and updates on new tools were described in
the accompanying paper by Wang et al. (20) in this
issue.

The advantages of PhenoMiner are (i) it standardizes
quantitative phenotype records for rat strains, clinical mea-
surements, measurement methods and experimental condi-
tions using ontologies [rat strain ontology (RSO) (21), clin-
ical measurement ontology, measurement method ontology
and experimental condition ontology (22, 23), respectively];
(ii) this standardization allowed for the integration of data
from large scale and small scale phenotype projects; (iii)
users can query and retrieve data from multiple experiments
and visualize results; and (iv) users can also download
retrieved data.

While systematic data integration and visualization in
PhenoMiner enabled comparisons on quantitative pheno-
types across experiments, the drawback of the current
PhenoMiner portal is its limited ability for statistical inte-
gration of data. Further quantitative analysis using a stan-
dardized statistical tool would provide more insights in
understanding rat strains in terms of disease models. More-
over, an integrated analysis of overall strain phenotype mea-
surement is desirable for researchers to better understand
cross strain differences. Currently researchers often choose
strains for use as disease models using data points from
a limited number of experiments or based on availability,
prior use or familiarity. The availability of statistically deter-
mined expected ranges for quantitative phenotypes for mul-
tiple individual strains, for those often used as controls and
for rat in general would improve the ability of investigators
to choose appropriate strains for their studies objective and
assist them in examining potential factors that might cause
measurement variation. The expected range would also
provide a standard interpretation of experimental results
from different laboratories.

Motivation and aims

Therefore, the motivation for our work is to take advan-
tage of the substantial volume of quantitative phenotype
data in the RGD to establish expected ranges for different
rat strains. To achieve this goal, our work involved the
following key steps: (i) establish a standardized pheno-
type range for different rat strains using the meta-analysis
method and (ii) create tools to mine and visualize data for
individual strains and across strains. In the first step, we
conducted a meta-analysis to effectively synthesize archived
phenotype data in the PhenoMiner database; stratify each

rgd.mcw.edu
https://rgd.mcw.edu/rgdweb/phenominer/home.jsp
https://rgd.mcw.edu/wg/home/rgd_rat_community_videos/rgd-tool-and-website-videos/
https://rgd.mcw.edu/wg/home/rgd_rat_community_videos/rgd-tool-and-website-videos/
https://rgd.mcw.edu/wg/home/rgd_rat_community_videos/rgd-tool-and-website-videos/
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population based on strain (inbred/outbred/congenic/trans-
genic/mutant), gender, age, etc.; and produce compara-
ble expected ranges of important physiological phenotypes
(such as heart weight and systolic blood pressure). Statisti-
cal tests will also be performed to assess differences between
different strains of certain phenotypes. The result from this
work will greatly benefit researchers using rat models in
determining a proper strain, age, gender and all relevant
parameters for their studies.

Materials and methods

Meta-analysis is a powerful tool for determining expected
ranges for particular phenotype measurements across mul-
tiple experiments. This approach involves statistical tech-
niques for combining measurements or findings from inde-
pendent studies to draw insights on a specific research
question. It is often used to assess the effectiveness of clinical
treatments by combining data from several randomized
control trials. It provides a precise estimate of treatment
effect, overcoming biases that could occur when examining
a single study and it offers a systematic synthesis of the
experimental data. A recent research study revealed that
single-laboratory studies with large sample size produce
results that are more precise but less accurate and therefore
less reproducible (24). By contrast, multi-laboratory designs
including as few as two to four laboratories increased
coverage probability by up to 42 percentage points without
a need for larger sample sizes. They also demonstrated
that within-study standardization is a major cause of poor
reproducibility between studies (24).

A systematic review methodology is essential as the first
step of meta-analysis. The objective of a systematic review
is to present a balanced and impartial summary of the
existing research, enabling synthesis of all relevant studies
of adequate quality (25). This stresses the need to take great
effort and care to find all the relevant studies (published
and unpublished) and to assess the methodological quality
of the design and execution of each study (26). The stan-
dardized and integrated data at RGD is a good resource of
systematically managed experimental phenotype measure-
ments. It includes both data from published studies from
current biomedical literature as well as large-scale data
from rat community repositories such as PhysGen (19) and
the Rat Phenome Project (14).

Meta-analysis is not just a single statistical analysis; it
involves a pipeline of preliminary stratification, exploratory
decision-making (publication bias and sensitivity analysis)
before the final statistical meta-analysis can be performed.
The pipeline for analyzing RGD PhenoMiner data consists
of four major components (Figure 1). In the following
sections, we will introduce the methods for each step in the

Figure 1. System pipeline for meta-analysis. (1) Preliminary stratifi-

cation: Choose a subset of phenotype measurements based on pre-

liminary stratification, which included strain (including similar strains

inbred at different locations and substrains), sex, age group and phe-

notype measurement methods. (2) Publication bias: One key concern

is publication bias, which arises because experiments with negative

findings are less likely to be published than those that highlight results

which support hypotheses. We used funnel plot to examine any pub-

lication bias. (3) Sensitivity analysis: Data with poor quality for non-

systematic reasons are often an issue in meta-analysis so selection,

inclusion and integration (or population stratification) of data are an

important factors for consideration, which can be completed through

sensitivity analysis. (4) Meta-analysis result summary: Results will be

displayed in a forest plot. The x-axis is the value of measurement or

effect size. Each datum is shown as a blob or square. The size of the

blob or square is proportional to the sample size. A horizontal line

representing 95% confidence interval is drawn through the center of

each study’s square to represent the uncertainty of the measurement.

pipeline followed by its corresponding results since results
from each step are useful in deciding the method used in the
next step. In addition to developing the algorithms for each
component, a user interface was created to facilitate deter-
mination of appropriate parameters and to dynamically
implement the workflow needed for the analyses (described
in further detail below).

Preliminary stratification

First it was necessary to choose a subset of phenotype
measurements based on preliminary stratification, which
included strain (including similar strains inbred at different
locations and substrains), sex, age group and phenotype
measurement methods. Figure 2 shows the interface created
to dynamically conduct the preliminary stratification step.
Options for strain and phenotype measurement methods
depend on the major phenotype under analysis. Age group
divisions were decided by expert heuristic definitions of
young, adult and old rats. However, for different pheno-
types, young and adult rat age group can have very different
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Figure 2. PhenoMiner preliminary stratification for body weight. Interface was created to dynamically conduct the preliminary stratification step.

Options for strain and phenotype measurement methods depend on the major phenotype under analysis. Age group divisions were decided by

expert heuristic definitions of young, adult and old rats. Age group division can be different. For example, for body weight, 20–79 and 80–99 days

might be a good way to divide young and adult rats, but for other cardiovascular phenotypes, 20–69 and 70–99 days are a good way to divide young

and adult rats.

phenotype measurement values that always lead to high
heterogeneity and affects meta-analysis quality. As a result,
age group division is a data-driven heuristic score with
expert input provided prior definition.

Publication bias with funnel plot

Because much of the data included in this study arise from
published research, one key concern is publication bias,
which arises because experiments with negative findings
are less likely to be published than those that highlight
results that support hypotheses (27). Funnel plots can be
used to assess the presence of publication bias (28) by
displaying the studies included in the meta-analysis in a
plot of measurement value or effect size (explained in detail
in the statistical analysis section) against sample size or
another measure of precision (29, 30). The expected picture
should be a symmetrical inverted funnel (31). This is in
accordance with the assumption that smaller studies have
more chance of variability than larger studies. Figures 1 and
2 in (32) are examples of symmetrical and asymmetrical
funnels. An asymmetric plot suggests (i) smaller studies
showing no effect might be missing or (ii) small studies
tend to have larger effect sizes (33). The first reveals a true
publication bias while the second does not. There are also
controversies over the use of funnel plots due to disputes
over appropriate interpretation of asymmetry (34–36). For
example, true heterogeneity in study population (due to
subgroups with a different intervention effect) will lead
to funnel plot asymmetry (36). In addition, chance is also
critical for interpretation of funnel plot asymmetry since
most meta-analyses in the biomedical field contain few
studies (37). Therefore, we need to examine closely before
reaching a conclusion of publication bias (38).

In 1997, Egger et al. (28) proposed an estimator for
visualizing asymmetry in the funnel plot. In addition to
the simple visualization of asymmetry, they also used a
regression test to measuring asymmetry quantitatively. The
regression test is a linear regression of normalized effect size
estimate (value/SD) against precision (1/SD). The assump-
tion of the regression test is that a homogeneous set of
trials (without publication bias) will regress toward a line
that runs through the origin (intercept,0), with the slope
indicating the size and direction of effect (39). When the
regression line runs through the origin, it indicates a sym-
metrical funnel plot. However, the Egger test has a relatively
high false positive rate (higher type I error rate).

An asymmetry score is calculated as the ratio of
intercept for the regression line to average value for the
measurements in the group under analysis (Figure 3):
Asy = intercept

average_value .

Optimal number of experiments for

meta-analysis quality control

To assure the quality of meta-analysis, we need to assign
a confidence level to our meta-analysis model (here
we used a binary parameter with value ‘confident’ and
‘low confidence’) and results given a specific set of
phenotype measurement data (in a single meta-analysis).
While each meta-analysis is based on a unique phenotype–
strain pair, for different phenotype–strain pairs, the total
number of experiments can vary significantly. Hence,
we examined the relationship between asymmetry score
(Asy) from publication bias analysis and total number of
experiments (in a single meta-analysis) to identify potential
biases in our analysis. The example below used body weight
data (Figure 4). The result shows that the asymmetry
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Figure 3. Publication bias examination demonstrations for body weight. The regression test is a linear regression of normalized effect size estimate

(value/SD) against precision(1/SD). When the regression line runs through the origin, it indicates a symmetrical funnel plot. An asymmetry score is

calculated as the ratio of intercept for the regression line to average value for the measurements in the group under analysis.

Figure 4. Relationship between asymmetry score and total number of

experiments for body weight. While each meta-analysis is based on a

unique phenotype-strain pair, for different phenotype-strain pairs, the

total number of experiments can vary significantly. The result above

shows that the asymmetry score (Asy) was reduced significantly with

four or more experiments in one meta-analysis.

score (Asy) was reduced significantly with four or more
experiments in one meta-analysis.

We also examined range distribution and its relation-
ship with the total number of experiments (in a single
meta-analysis). Figure 4 shows that data range for different
meta-analysis datasets also varies with total number of
experiments for each meta-analysis. The range is defined as
the difference between maximum value among all studies
and minimum value among all studies. For a meta-analysis
with fewer experiments, the range between studies can
be falsely small. This indicates that meta-analysis without
enough experiments might have false negative heterogeneity
representations (heterogeneity not revealed) and thus the

meta-analysis model choice might be wrong (fixed-effect or
random-effect).

Sensitivity analyses with forest plot

Data with poor quality for non-systematic reasons is often
an issue in meta-analysis so selection, inclusion and integra-
tion (or population stratification) of data are an important
factors for consideration. Those decisions may affect major
findings, so researchers usually carry out some sensitivity
analysis prior to integration of data. The usual way of
displaying data for sensitivity analysis is by a forest plot.
This displays the findings from each individual study using
a blob or square (40); the x-axis is the value of measurement
or effect size. The size of the blob or square is proportional
to the sample size. A horizontal line representing 95% con-
fidence interval is drawn through the center of each study’s
square to represent the uncertainty of the measurement. The
meta-analysis result is displayed as a diamond.

After exploring the forest plot of the study cohort, the
main findings can be changed by varying the approach
to integration (or population stratification). An effective
sensitivity analysis will explore the effect of excluding var-
ious categories of studies, such as outlier data (outliers
need to be excluded for justifiable reasons), data with-
out specified sex information or data from unpublished
studies. It may also examine how consistent the results
are across various subgroups (perhaps defined by subject
population stratification, type of measurement method or
condition).

A useful sensitivity analysis is a series of repeated
meta-analyses, usually omitting one study at a time. A
heterogeneity score is calculated and the meta-analysis
model (fixed-effect or random-effect) is chosen based on
the heterogeneity score. Such an ‘exclusion sensitivity plot’
by Bax et al. (41) reveals any study/observation that has
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a particularly large influence (outlier) on the result of the
meta-analysis. An interactive interface in our tools provides
users with the ability to decide on inclusion/exclusion of any
study/observation in the meta-analysis before proceeding
with the next step in the analysis. Additionally, users of
the pipeline may identify subgroups in their data and
may decide to adopt a modified sensitivity analysis by
excluding a group of studies/observations and creating
new stratification criteria. For example, users may find
substrains A/X and A/Y to have different measurements
for phenotype T. Instead of analyzing phenotype T using
all data for strain A, users may want to further stratify
the population using substrain characteristics. After initial
analysis, we found that the large value of the outlier is due
to sample age. Sixty-five days might not be a homogenous
group member for young rat group in terms of body weight
although it might be acceptable for another phenotype.

Statistical meta-analysis

Cochrane’s Q for heterogeneity. In the meta-analysis, we needed
to evaluate whether the results from different studies can
be ‘combinable’. This involved examining heterogeneity.
Statistics commonly used for testing heterogeneity include
Cochrane’s Q, a statistic based on the χ 2 test and the I2

statistic. Cochrane’s Q test aims to offer a standardized
heterogeneity comparison among different measurements,
similar to the idea behind the t-test. But it was unsatisfac-
tory as it depends heavily on the scale of measurement and
has no absolute interpretation for comparison. Thus the I2

statistic was more attractive because it scores heterogeneity
between 0% and 100%, with 25% corresponding to low
heterogeneity, 50% to moderate and 75% to high (42). It
interprets the percent of the total variance that is due to
between-study heterogeneity. However, both methods may
sometimes fail to detect heterogeneity when it is actually
present (43). In addition, meta-analysis parameters are very
data dependent; we proposed a visual method to find the
optimized cut-off threshold for our specific dataset.

If the study results for a sub-population are relatively
homogenous, we can integrate the results using a general
meta-analysis method (fixed-effect model). If heterogeneity
exists, we can further stratify the current sub-population
based on a conceptual stratification method (e.g. stratify
based on age and sex) or use random-effect model meta-
analysis. If the heterogeneity was caused purely from sys-
tematic variations between studies, then we would need
to define special statistical parameters (inter-study variance
used in random-effect model) to interpret the systematic
heterogeneity of the results.

I 2 statistics cut-off threshold. In the previous step, we decided to
exclude or take a lower confidence in meta-analysis when

the total number of experiments was below four. In this step,
we needed to decide the cut-off threshold for the I2 statistic
to decide the model choice for each meta-analysis. In the
example in Figure 5, we can see that I2 = 0.85 (represented
by the red line) is an optimal cut-off threshold to separate
high- and low-heterogeneity datasets. The four quadrants
in Figure 5 represent different characteristics of datasets for
each meta-analysis task. Quadrant 1 (top right) represents
a high asymmetry score and high heterogeneity, which may
be caused by publication bias or true heterogeneity (e.g.
extreme outliers). Quadrant 2 represents a high asymme-
try score and low heterogeneity, which may indicate true
publication bias. Quadrant 3 represents a low asymmetry
score and low heterogeneity, which indicates that we should
choose the fixed-effect model. Quadrant 4 represents a low
asymmetry score and high heterogeneity, which indicates
that we should choose the random-effect model. From this
summary plot, we can determine model choice for data in
Quadrants 3 and 4. For data in Quadrants 1 and 2, we need
to further confirm the existence of publication bias before
any conclusions can be made.

Fixed-effect model versus random-effect model. The presence
or absence of heterogeneity influences the subsequent
method of analysis. If heterogeneity is absent, then the
analysis employs a fixed-effect model. This assumes the
size of the system effect is fixed across all studies and
the variation seen between studies is completely random.
However, as studies generally vary in size and variance,
each study is considered to have different precision. In
meta-analysis, the key concept is to assign a weight to
each study while synthesizing results. Generally believed
by statisticians, a study based on 100 subjects is assumed
to provide a more ‘precise’ estimate than a study based on
10 subjects. Therefore, larger studies should carry more
‘weight’ in the analyses than smaller studies. This sample
size-based approach is a simple one. A better approach
is to assign weight by the inverse variance (wi = 1

si
2 ).

Thus, the meta-analysis mean is mw =
∑

i wiyi
/

∑
i wi

and

variance var
(
mw

)
= 1

/
√∑

i wi
.

Ideally, population stratification should be sufficient for
removing heterogeneity, and we should be able to construct
our meta-analysis model with the fixed-effect model as
mentioned above with inverse variance.

Another more commonly used way is to adopt a random-
effect model. Random-effect models assume that the treat-
ment effect varies between studies. The observed measure-
ment yi, from the i-th study is made up of two additive
components: the true measurement, θi, and the sampling
error, ei. That is, yi=θi+ei for i = 1, . . ., k. The variance of ei,
can be estimated by si

2. Additionally, inter-study variance
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Figure 5. Scatter plot of asymmetry score and I2 statistics for different meta-analysis results for body weight data (x: asymmetry score; y : I2 statistics).

The four quadrants represent different characteristics of datasets for each meta-analysis task. Quadrant 1 (top right) represents a high asymmetry

score and high heterogeneity, which may be caused by publication bias or true heterogeneity (e.g. extreme outliers). Quadrant 2 represents a

high asymmetry score and low heterogeneity, which may indicate true publication bias. Quadrant 3 represents a low asymmetry score and low

heterogeneity, which indicates that we should choose the fixed-effect model. Quadrant 4 represents a low asymmetry score and high heterogeneity,

which indicates that we should choose the random-effect model. From this summary plot, we can determine that I2 = 0. 85 (represented by the red

line) is an optimal cut-off threshold to separate high and low heterogeneity datasets.

has to be considered in the formula. The first and most
widely adopted random-effect models for meta-analysis
was proposed by DerSimonian and Laird in 1986 (44).
This method is now considered the ‘standard approach’
for meta-analysis in medical and clinical research. In their
model, they also adopted inverse variance weight. The total
variance, however, is the sum of within-study variance
(si

2) and inter-study variance (τ2), leading to weight as
wi = 1

τ2+si
2 . τ2 used in our analysis was derived from

DerSimonian and Laird’s (44) non-iterative estimator.

Meta-analysis workflow

The previous sections described the analysis methods we
used to determine parameters in the meta-analysis work-
flow. A decision tree of the workflow is shown in Figure 6.

In summary, our workflow is composed of the following
key steps:

i. Perform preliminary stratification by age, sex,
method and experimental condition (Figure 6a).

ii. Perform exploratory analysis (Figure 6b) to examine
publication bias and total number of experiments.
For examination of publication bias, we used the
original Egger test considering the trade-off between
power and type I error rates. |Asymmetry score| > 1.5
or total number of experiments <4 is a sign of a
potentially biased sample. Thus, conclusions from the
meta-analysis might not be trustworthy. We will need

to acquire more data in order to proceed with the
analysis.

iii. Perform exploratory analysis (Figure 6c) to deter-
mine inclusion/exclusion of individual study/observa-
tion in the meta-analysis.

iv. Examination of heterogeneity (Figure 6d) using
Cochrane’s Q, a statistic based on the χ 2 test and
the I2 statistic. For each set of experiments qualified
for meta-analysis, we calculated Q and I2, which were
used to determine model selection in the next step.

v. Choosing meta-analysis model (fixed effect or
random effect). The fixed-effect and random-effect
model choice threshold is set to I2 = 0.85, which
is considered the optimal threshold to distinguish
heterogeneity caused by a limited number of records
or true inter-study variance.

vi. All the summary values for the phenotype under anal-
ysis are displayed in a summary forest plot (for exam-
ple, see Figure 7). The center of the box represents
the meta-analysis mean and the range determined by
one standard deviation above and below the meta-
analysis value. The color of the boxes showed the
total number of experiments that made up of the
meta-analysis range. It is a sign of confidence for
the resulting phenotype range. On the right side, the
legend shows the strain and sex of which the range is
representing. In the bracket, we also noted the confi-
dence level of analysis considering the total number
of experiments (<4, low confidence; ≥4, confident).
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Figure 6. Meta-analysis workflow. In summary, our workflow is composed of the following key steps: (a) Preliminary stratification by age, sex,

method and experimental condition. (b) Perform exploratory analysis to examine publication bias and total number of experiments. (c) Perform

exploratory analysis to determine inclusion/exclusion of individual study/observation in the meta-analysis. (d) Examination of heterogeneity using

Cochrane’s Q, a statistic based on the χ2 test and the I2 statistic. (e) The fixed-effect and random-effect model choice threshold is set to I2 = 0.85,

which is considered the optimal threshold to distinguish heterogeneity caused by a limited number of records or true inter-study variance. (f) All the

summary values for the phenotype under analysis are displayed in a summary forest plot.

Results

The analysis pipeline serves as a curation tool, thus was not
publicly available. The Expected Ranges tool (https://rgd.
mcw.edu/rgdweb/phenominer/phenominerExpectedRanges/
views/home.html) can be accessed from the Phenotypes
and Models icon on the RGD homepage. We decided to
focus on a use case in cardiovascular area because rat is
mostly used in cardiovascular research. Our meta-analysis
provided expected ranges for 24 cardiovascular-related
phenotypes. We analyzed all the available strains for which
whole genome sequence is available for each phenotype. In
terms of non-sequenced strains, we focused on MWF since
most non-sequenced strains had limited data available for
these phenotype areas.

In the first step, our meta-analysis used only experi-
ment records under control conditions for inbred stains.
In this way, the meta-analysis range can be regarded as an
‘Expected Range’ for a specific strain or strain group. One
type of strain group was created by grouping all substrains
under a certain parent strain name according to the RSO.
In accordance with official standards, a strain is given a
substrain designation when it is bred for 20 generations or
more in a different facility or laboratory. For example, strain
group ‘ACI’ includes the substrains ‘ACI/Eur’, ‘ACI/Kun’,
‘ACI/N’, ‘ACI/SegHsd’, ‘ACI/Ti’ and ‘ACI/Ztm’. Control
strain groups were also created based on their widespread
use as control animals and acceptance as exhibiting ‘normal
measurements. For example, the ‘Normal Systolic Blood

Pressure Strain Group’ consists of strains that are consid-
ered commonly used as controls in blood pressure exper-
iments and to exhibit ‘normal systolic blood pressure’.

The ‘Normal Systolic Blood Pressure Strain Group’ was
created in an iterative process using a domain expert with
extensive experience in large scale phenotyping projects: (i)
Strains commonly used as controls were identified based on
experience and prior knowledge and designated as ‘founder
control strains’, e.g. BN and WKY that have long been
used as control models. (ii) An initial ‘Expected Range’ was
constructed based on phenotype ranges of those ‘founder’
strains using the highest and lowest values of the previously
determined expected ranges for each strain. (iii) The overlap
of previously determined expected ranges of other strains
with this initial ‘Control Expected Range’ was examined
to determine whether additional strains could be included
in the normal phenotype strain group. (iv) An updated
‘Control Expected Range’ was constructed using all strains
added to the normal phenotype strain group.

In addition to constructing a general ‘Expected Range’,
we stratified our analysis by age, sex and measurement

method when data were available for different ages, sexes
or methods. We then constructed age-, sex- and method-
specific ‘Expected Ranges’ using the same workflow. The
results of constructing phenotype ‘Expected Ranges’ are
discussed in the first section below.

After the initial ‘Expected Ranges’ for 24 phenotypes

using inbred strains were constructed, we also performed

https://rgd.mcw.edu/rgdweb/phenominer/phenominerExpectedRanges/views/home.html
https://rgd.mcw.edu/rgdweb/phenominer/phenominerExpectedRanges/views/home.html
https://rgd.mcw.edu/rgdweb/phenominer/phenominerExpectedRanges/views/home.html
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Figure 7. (a) Forest plot of meta-analysis summary for ‘Systolic Blood Pressure’. The center of the box represents the meta-analysis mean and

the range determined by one standard deviation above and below the meta-analysis value. The color of the boxes showed the total number of

experiments that made up of the meta-analysis range. It is a sign of confidence for the resulting phenotype range. On the right side, the legend

shows the strain and sex of which the range is representing. In the bracket, we also noted the confidence level of analysis considering the total

number of experiments (<4, low confidence; ≥, 4 confident). (b) Forest plot with different indicator shapes for different genders. Users will have the

option to choose display between (a) and (b).

meta-analysis for outbred and mutant strains, when suf-
ficient data existed. We also evaluated the applicability
of the analysis under non-control conditions using inbred
strains in which a measured salt diet was the experimental
condition. Creating such expected ranges for particular
experimental conditions will further assist researchers in
choosing model strains for particular experiments and pro-
vide data for developing tools and statistical processes that
would allow them to analyze their own data.

Phenotype data were available for inbred, outbred, con-
somic, congenic, mutant and transgenic strains. However,
for this study, initial development of the algorithms and
workflows and expected ranges of phenotypes were estab-
lished using only inbred strains. In addition, phenotype
records in which experimental conditions equivalent to
‘naïve control’ were used whereas those involving exper-
imental diets, exercise, application of drugs or chemicals
or other manipulated conditions were not initially used
in this study. Figure 7 shows an example of a forest plot
summary produced for ‘systolic blood pressure’ for dif-
ferent age groups. We were then able to identify strains
with expected ranges within or overlapping the previously
constructed ‘Control Expected Range’ (ACI, BN, BUF, DA,
F344, GK, LE, LEW, LN, M520, MNS, MR, MWF, and
WKY) and strains with expected ranges outside of the con-

structed ‘Control Expected Range’ (GH, LH, MHS, SHR,
and SHRSP) from the graph. Figure 9 shows phenotype
expected ranges for ‘systolic blood pressure’ for outbred
and mutant strains under naïve control conditions.

Supplementary Information I includes all the meta-
analysis summaries for 24 cardiovascular phenotypes
(blood hemoglobin level, diastolic blood pressure, heart left
ventricle weight-to-body weight ratio, heart left ventricle
wet weight, heart rate, heart right ventricle weight-
to-left ventricle weight ratio, heart right ventricle wet
weight, heart weight as percentage of body weight, heart
weight-to-body weight ratio, heart wet weight, hematocrit,
mean arterial blood pressure, mean corpuscular volume,
plasma total cholesterol level, plasma triglyceride level,
red blood cell count, serum aspartate aminotransferase
activity level, serum calcium level, serum chloride level,
serum free fatty acids level, serum potassium level, serum
total cholesterol level, serum triglyceride level, systolic
blood pressure). Information about abnormal, normal and
naïve control strains for 24 phenotypes is available in
Supplementary Information II.

We also created separate summaries for different age
groups (age1: <70 days, age2: 70–99 days, age3: 100+
days) and gender groups if significant age or gender differ-
ence was observed in the ‘all age’ analysis. For example, in

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz037#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz037#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz037#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz037#supplementary-data
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Figure 8. RGD phenotype expected ranges for ‘Systolic Blood Pressure’ for outbred and mutant strains under naïve control conditions. The dotted

lines represent the expected range for the ‘Control Strain Group’ based on 14 inbred strains used as controls for this phenotype.

Figure 7, systolic blood pressure between male and female
differs from each other and shows an obvious pattern
(usually female has lower blood pressure). After analysis,
we decided that we should produce a separate summary for
both gender and for each age group as well. The same situa-
tion applies to phenotypes such as diastolic blood pressure,
heart weight as percentage of body weight, heart weight-to-
body weight ratio, heart rate, heart wet weight and mean
arterial blood pressure. Those phenotypes have enough
data for age and gender stratification while still produc-
ing meaningful meta-analysis results. Phenotypes related to
ventricle weight and blood metabolite measurement suffer
from lack of data for stratification (i.e. heart right ventricle
weight-to-left ventricle weight ratio, heart right ventricle
wet weight, plasma total cholesterol level, plasma triglyc-
eride level, serum aspartate aminotransferase activity level,
serum calcium level, serum chloride level, serum free fatty
acids level and serum potassium level only have data for one
age group).

Results from the meta-analysis were reviewed by a
domain expert who previously had classified strains

potentially within the predicted reference ranges of
‘normal’ and outside of ‘normal’ based on widespread
use and characterization as control and non-control
strains. Disagreements between the meta-analysis results
and the domain expert’s classification were marked
out. Disagreements were decided by comparing expert
classification (‘normal’ and outside of ‘normal’) and the
classification results provided by our tool. The percentage
of cases in which there was consistent agreement were
calculated at 98% (Supplementary Information III). Some
possible causes of disagreement might be (i) lack of data for
certain strains, (ii) publication bias (e.g. measurements for
traditionally hypertensive strains might be reported with
bias toward higher blood pressure) and (iii) inherent for
certain strains (strain’s phenotypes drift through multiple
generations of inbreeding).

We also found that for some strains considered to exhibit
‘normal’ phenotypes, although the meta-analysis mean
value was within the overall expected range, the upper
bound or the lower bound of its individual range was
beyond the overall expected range for ‘normal’, perhaps

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz037#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz037#supplementary-data
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Figure 9. Summary for ‘Systolic Blood Pressure’ shows sex pattern does not always hold true: the sex specific pattern for SHRSP is opposite of the

common pattern as female SHRSP rates have higher blood pressure. On the other hand, SHR exhibits the common pattern.

indicating (i) more data are needed from more institutes
for more confident conclusions about individual expected
ranges or (ii) variability for those strain groups may be due
to potential genetic drift so that the genotypes of substrains
have become more diverse or (iii) certain strains could be
more susceptible to outside influences such as housing,
handlers and other environmental factors on phenotypes.
Good examples would be ACI Female, BUF Male and
WAG Female/Male/Both in Figure 7. We also found that
the usual pattern between male and female (i.e. that female
has lower blood pressure) sometimes did not hold true. For
example, in Figure 9, the sex-specific pattern for SHRSP is
opposite of the common pattern as female SHRSP rates
have higher blood pressure. On the other hand, SHR
exhibits the common pattern.

Summary data that stretched beyond the overall
expected ranges or exhibited odd patterns generally came
from meta-analyses with a limited number of experiments
(usually <5). This is evidence of low confidence for the
meta-analysis result, which indicates more experimental

data are needed to establish a trustworthy range. This is
also evidence that for meta-analysis, the number of studies
included is vital to eliminate random experimental error
and generate trustworthy results. The number of studies in
general was more important than the number of animals in
each study. Our analysis method demonstrated its potential
to be used (i) to provide expected ranges for rat phenotypes
and (ii) to facilitate research planning by visualizing current
gaps and suggesting potential research directions to fill
in the gaps. In addition, our tool can be potentially used
for (i) data curation quality control (through sensitivity
analysis from a forest plot result summary in Figure 7,
curators could identify obviously erroneous result) and (ii)
publication bias examination, which can promote better
research conduct and ensure protocol consistency.

One use case resources created from this pipeline will
be in the study of hypertension. Because hypertension has
several subtypes, researchers might be only interested in
hypertension with elevated systolic blood pressure but nor-
mal diastolic blood pressure. Researchers could refer to two
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expected range tables in RGD website and find that among
all hypertensive strains (GH, LH, MHS, SHR and SHRSP)
MHS has diastolic blood pressure close to normal range, so
MHS would be a better choice in this scenario.

Conclusion

We successfully implemented an analysis pipeline with user
interface to generate expected ranges for phenotypes. The
pipeline and interface provides the means to (i) identify
expected ranges with customized user request, (ii) iden-
tify phenotypes without sufficient data to determine an
expected range to prioritize these for acquisition through
direct contact with researchers or extraction from published
literature and (iii) alert RGD staff of new phenotype data
in PhenoMiner and potential changes in expected range so
the pipeline can be run to update the expected ranges with
latest available data.

Based on the success of this project, the RGD will further
develop a Precision Models Portal to present these data and
link to others to provide a rich resource for investigators.
The results of this study will be used to target phenotype
areas for data acquisition and analysis. The goal will be
to provide comprehensive profiles based on the expected
ranges for phenotypes across all major physiological sys-
tems. The availability of sequence and variant data for a
number of the strains will offer the opportunity to provide a
complementary genotype profile with the phenotype profile
to enhance the ability of researchers to choose models based
on both genotype and phenotype.

Supplementary data
Supplementary data are available at Database Online.
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