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Abstract

Information processing can leave distinct footprints on the statistics of neural spiking. For

example, efficient coding minimizes the statistical dependencies on the spiking history,

while temporal integration of information may require the maintenance of information over

different timescales. To investigate these footprints, we developed a novel approach to

quantify history dependence within the spiking of a single neuron, using the mutual informa-

tion between the entire past and current spiking. This measure captures how much past

information is necessary to predict current spiking. In contrast, classical time-lagged mea-

sures of temporal dependence like the autocorrelation capture how long—potentially redun-

dant—past information can still be read out. Strikingly, we find for model neurons that our

method disentangles the strength and timescale of history dependence, whereas the two

are mixed in classical approaches. When applying the method to experimental data, which

are necessarily of limited size, a reliable estimation of mutual information is only possible for

a coarse temporal binning of past spiking, a so-called past embedding. To still account for

the vastly different spiking statistics and potentially long history dependence of living neu-

rons, we developed an embedding-optimization approach that does not only vary the

number and size, but also an exponential stretching of past bins. For extra-cellular spike

recordings, we found that the strength and timescale of history dependence indeed can vary

independently across experimental preparations. While hippocampus indicated strong and

long history dependence, in visual cortex it was weak and short, while in vitro the history

dependence was strong but short. This work enables an information-theoretic characteriza-

tion of history dependence in recorded spike trains, which captures a footprint of information

processing that is beyond time-lagged measures of temporal dependence. To facilitate the

application of the method, we provide practical guidelines and a toolbox.

Author summary

Even with exciting advances in recording techniques of neural spiking activity, experi-

ments only provide a comparably short glimpse into the activity of only a tiny subset of all

neurons. How can we learn from these experiments about the organization of information
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processing in the brain? To that end, we exploit that different properties of information

processing leave distinct footprints on the firing statistics of individual spiking neurons.

In our work, we focus on a particular statistical footprint: We quantify how much a single

neuron’s spiking depends on its own preceding activity, which we call history dependence.

By quantifying history dependence in neural spike recordings, one can, in turn, infer

some of the properties of information processing. Because recording lengths are limited

in practice, a direct estimation of history dependence from experiments is challenging.

The embedding optimization approach that we present in this paper aims at extracting a

maximum of history dependence within the limits set by a reliable estimation. The

approach is highly adaptive and thereby enables a meaningful comparison of history

dependence between neurons with vastly different spiking statistics, which we exemplify

on a diversity of spike recordings. In conjunction with recent, highly parallel spike record-

ing techniques, the approach could yield valuable insights on how hierarchical processing

is organized in the brain.

Introduction

How is information processing organized in the brain, and what are the principles that govern

neural coding? Fortunately, footprints of different information processing and neural coding

strategies can be found in the firing statistics of individual neurons, and in particular in the

history dependence, the statistical dependence of a single neuron’s spiking on its preceding

activity.

In classical, noise-less efficient coding, history dependence should be low to minimize

redundancy and optimize efficiency of neural information transmission [1–3]. In contrast, in

the presence of noise, history dependence and thus redundancy could be higher to increase the

signal-to-noise ratio for a robust code [4]. Moreover, history dependence can be harnessed for

active information storage, i.e. maintaining past input information to combine it with present

input for temporal processing [5–7] and associative learning [8]. In addition to its magnitude,

the timescale of history dependence provides an important footprint of processing at different

processing stages in the brain [9–11]. This is because higher-level processing requires integrat-

ing information on longer timescales than lower-level processing [12]. Therefore, history

dependence in neural spiking should reach further into the past for neurons involved in

higher-level processing [9, 13]. Quantifying history dependence and its timescale could probe

these different footprints and thus yield valuable insights on how neural coding and informa-

tion processing is organized in the brain.

Often, history dependence is characterized by how much spiking is correlated with spiking

with a certain time lag [14, 15]. From the decay time of this lagged correlation, one obtains an

intrinsic timescale of how long past information can still be read out [9–11, 16]. However, to

quantify not only a timescale of statistical dependence, but also its strength, one has to quantify

how much of a neuron’s spiking depends on its entire past. Here, this is done with the mutual

information between the spiking of a neuron and its own past [17], also called active informa-

tion storage [5–7], or predictive information [18, 19].

Estimating this mutual information directly from spike recordings, however, is notoriously

difficult. The reason is that statistical dependencies may reside in precise spike times, extend

far into the past and contain higher-order dependencies. This makes it hard to find a paramet-

ric model, e.g. from the family of generalized linear models [20, 21], that is flexible enough to

account for the variety of spiking statistics encountered in experiments. Therefore, one
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typically infers mutual information directly from observed spike trains [22–26]. The downside

is that this requires a lot of data, otherwise estimates can be severely biased [27, 28]. A lot of

work has been devoted to finding less biased estimates, either by correcting bias [28–31], or by

using Bayesian inference [32–34]. Although these estimators alleviate to some extent the prob-

lem of bias, a reliable estimation is only possible for a much reduced representation of past

spiking, also called past embedding [35]. For example, many studies infer history dependence

and transfer entropy by embedding the past spiking using a single bin [26, 36].

While previously most attention was devoted to a robust estimation given a (potentially

limited) embedding, we argue that a careful embedding of past activity is crucial. In particular,

a past embedding should be well adapted to the spiking statistics of a neuron, but also be low-

dimensional enough to enable a reliable estimation. To that end, we here devise an embedding

optimization scheme that selects the embedding that maximizes the estimated history depen-

dence, while reliable estimation is ensured by two independent regularization methods.

In this paper, we first provide a methods summary where we introduce the measure of his-

tory dependence and the information timescale, as well as the embedding optimization

method employed to estimate history dependence in neural spike trains. A glossary of all the

abbreviations and symbols used in this paper can be found at the beginning of Materials and

methods. In Results, we first compare the measure of history dependence with classical time-

lagged measures of temporal dependence on different models of neural spiking activity. Sec-

ond, we test the embedding optimization approach on a tractable benchmark model, and also

compare it to existing estimation methods on a variety of experimental spike recordings.

Finally, we demonstrate that the approach reveals interesting differences between neural sys-

tems, both in terms of the total history dependence, as well as the information timescale. For

the reader interested in applying the method, we provide practical guidelines in the discussion

and in the end of Materials and methods. The method is readily applicable to highly parallel

spike recordings, and a toolbox for Python3 is available online [37].

Methods summary

Definition of history dependence

First, we define history dependence R(T) in the spiking of a single neuron. We quantify history

dependence based on the mutual information

Iðspiking; pastðTÞÞ ¼ HðspikingÞ � HðspikingjpastðTÞÞ ð1Þ

between current spiking in a time bin [t, t + Δt) and its own past in a past range [t − T, t) (Fig

1B). Here, we assume stationarity and ergodicity, hence the measure is an average over all

times t. This mutual information is also called active information storage [5], and is related to

the predictive information [18, 19]. It quantifies how much of the current spiking information

H(spiking) can be predicted from past spiking. The spiking information is given by the Shan-

non entropy [38]

HðspikingÞ ¼ � pðspikeÞ log
2
pðspikeÞ � ð1 � pðspikeÞÞ log

2
ð1 � pðspikeÞÞ; ð2Þ

where p(spike) = rΔt is the probability to spike within a small time bin Δt for a neuron with

average firing rate r. The Shannon entropy H(spiking) quantifies the average information that

a spiking neuron could transmit within one bin, assuming no statistical dependencies on its

own past. In contrast, the conditional entropy H(spiking|past(T)) (see Materials and methods)

quantifies the average spiking information (in the sense of entropy) that remains when depen-

dencies on past spiking are taken into account. Note that past dependencies can only reduce

the average spiking information, i.e. H(spiking|past(T))�H(spiking). The difference between
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the two then gives the amount of spiking information that is redundant or entirely predictable

from the past. To transform this measure of information into a measure of statistical depen-

dence, we normalize the mutual information by the entropy H(spiking) and define history

dependence R(T) as

RðTÞ �
Iðspiking; pastðTÞÞ

HðspikingÞ
¼ 1 �

HðspikingjpastðTÞÞ
HðspikingÞ

2 ½0; 1�: ð3Þ

While the mutual information quantifies the amount of predictable information, R(T) gives

the proportion of spiking information that is predictable or redundant with past spiking. As

such, it interpolates between the following intuitive extreme cases: R(T) = 0 corresponds to

independent and R(T) = 1 to entirely predictable spiking. Moreover, while the entropy and

thus the mutual information I(spiking;past(T)) increases with the firing rate (see S13 Fig for an

example on real data), the normalized R(T) is comparable across recordings of neurons with

very different firing rates. Finally, all the above measures can depend on the size of the time

bin Δt, which discretizes the current spiking activity in time. Too small a time bin holds the

risk that noise in the spike emission reduces the overall predictability or history dependence,

whereas an overly large time bin holds the risk of destroying coding relevant time information

in the neuron’s spike train. Thus, we chose the smallest time bin Δt = 5 ms that does not yet

show a decrease in history dependence (S16 Fig).

Fig 1. Illustration of history dependence and related measures in a neural spike train. (A) For the analysis, spiking is represented by 0 or 1 in a small time bin Δt
(grey box). Autocorrelation C(Ti) or the lagged mutual information L(Ti) quantify the statistical dependence of spiking on past spiking in a single past bin with time

lag Ti (green box). (B) In contrast, history dependence R(Ti) quantifies the dependence of spiking on the entire spiking history in a past range Ti. The gain in history

dependence ΔR(Ti) = R(Ti) − R(Ti−1) quantifies the increase in history dependence by increasing the past range from Ti−1 to Ti, and is defined in analogy to the

lagged measures. (C) Autocorrelation C(T) and lagged mutual information L(T) for a typical example neuron (mouse, primary visual cortex). Both measures decay

with increasing T, where L(T) decays slightly faster due to the non-linearity of the mutual information. Timescales τC and τL (vertical dashed lines) can be computed

either by fitting an exponential decay (autocorrelation) or by using the generalized timescale (lagged mutual information). (D) In contrast, history dependence R(T)

increases monotonically for systematically increasing past range T, until it saturates at the total history dependence Rtot. From R(T), the gain ΔR(Ti) can be computed

between increasing past ranges Ti−1 and Ti (grey dashed lines). The gain ΔR(T) decays to zero like the time-lagged measures, with information timescale τR (dashed

line).

https://doi.org/10.1371/journal.pcbi.1008927.g001
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Total history dependence and the information timescale

Here, we introduce measures to quantify the strength and the timescale of history dependence

independently. First, note that the history dependence R(T) monotonically increases with the

past range T (Fig 1D), until it converges to the total history dependence

Rtot � lim
T!1

RðTÞ: ð4Þ

The total history dependence Rtot quantifies the proportion of predictable spiking information

once the entire past is taken into account.

While the history dependence R(T) is monotonously increasing, the gain in history depen-

dence ΔR(Ti)� R(Ti) − R(Ti−1) between two past ranges Ti> Ti−1 tends to decrease, and even-

tually decreases to zero for Ti, Ti−1!1 (Fig 1D). This is in analogy to time-lagged measures

of temporal dependence such as the autocorrelation C(T) or lagged mutual information L(T)

(Fig 1A and 1C). Moreover, because R(T) is monotonically increasing, the gain cannot be neg-

ative, i.e. ΔR(Ti)� 0. From ΔR(Ti), we quantify a characteristic timescale τR of history depen-

dence similar to an autocorrelation time. In analogy to the integrated autocorrelation time

[39], we define the generalized timescale

tR �
Xn

i¼1

�Ti
DRðTiÞPn
j¼1
DRðTjÞ

� T0: ð5Þ

as the average of past ranges �Ti ¼ ðTi þ Ti� 1Þ=2, weighted with their gain ΔR(Ti) = R(Ti) −
R(Ti−1). Here, steps between two past ranges Ti−1 and Ti should be chosen small enough, and

summing the middle points �Ti of the steps further reduces the error of discretization. T0 is the

starting point, i.e. is the first past range for which R(T) is computed, and was set to T0 = 10 ms

to exclude short-term past dependencies like refractoriness (see Materials and methods for

details). Moreover, the last past range Tn has to be high enough such that R(Tn) has converged,

i.e. R(Tn) = Rtot. Here, we set Tn = 5 s unless stated otherwise.

To illustrate the analogy to the autocorrelation time, we note that if the gain decays expo-

nentially, i.e. DRðTiÞ / exp � Ti
tauto

� �
with decay constant τauto, then τR = τauto for n!1 and

sufficiently small steps Ti − Ti−1. The advantage of τR is that it also generalizes to cases where

the decay is not exponential. Furthermore, it can be applied to any other measure of temporal

dependence (e.g. the lagged mutual information) as long as the sum in Eq (5) remains finite,

and the coefficients are non-negative. Note that estimates of ΔR(Ti) can also be negative, so we

included corrections to allow a sensible estimation of τR (Materials and methods). Finally,

since τR quantifies the timescale over which unique predictive information is accumulated, we

refer to it as the information timescale.

Binary past embedding of spiking activity

In practice, estimating history dependence R from spike recordings is extremely challenging.

In fact, if data is limited, a reliable estimation of history dependence is only possible for a

reduced representation of past spiking, also called past embedding [35]. Here, we outline how

we embed past spiking activity to estimate history dependence from neural spike recordings.

First, we choose a past range T, which defines the time span of the past embedding. For

each point in time t, we partition the immediate past window [t − T, t) into d bins and count

the number of spikes in each bin. The number of bins d sets the temporal resolution of the

embedding. In addition, we let bin sizes scale exponentially with the bin index j = 1, . . ., d as

τj = τ110(j−1)κ (Fig 2A). A scaling exponent of κ = 0 translates into equal bin sizes, whereas for
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κ> 0 bin sizes increase. For fixed d, this allows to obtain a higher temporal resolution on

recent past spikes by decreasing the resolution on distant past spikes.

The past window [t − T, t) of the embedding is slid forward in steps of Δt through the whole

recording with recording length Trec, starting at t = T. This gives rise to N = (Trec − T)/Δt mea-

surements of current spiking in [t, t + Δt), and of the number of spikes in each of the d past

Fig 2. Illustration of embedding optimization to estimate history dependence and the information timescale. (A) History dependence R is estimated from the

observed joint statistics of current spiking in a small time bin [t + Δt) (dark grey) and the embedded past, i.e. a binary sequence representing past spiking in a past

window [t − T, t). We systematically vary the number of bins d and bin sizes for fixed past range T. Bin sizes scale exponentially with bin index and a scaling exponent

κ to reduce resolution for spikes farther into the past. (B) The joint statistics of current and past spiking are obtained by shifting the past range in steps of Δt and

counting the resulting binary sequences. (C) Finding a good choice of embedding parameters (e.g. embedding dimension d) is challenging: When d is chosen too

small, the true history dependence R(T) (dashed line) is not captured appropriately (insufficient embedding) and underestimated by estimates R̂ðT; dÞ (blue solid

line). When d is chosen too high, estimates R̂ðT; dÞ are severely biased and R(T, d), as well as R(T), are overestimated (biased regime). Past-embedding optimization

finds the optimal embedding parameter d� that maximizes the estimated history dependence R̂ðT; dÞ subject to regularization. This yields a best estimate R̂ðTÞ of R(T)

(blue diamond). (D) Estimation of history dependence R(T) as a function of past range T. For each past range T, embedding parameters d and κ are optimized to yield

an embedding-optimized estimate R̂ðTÞ. From estimates R̂ðTÞ, we obtain estimates t̂R and R̂ tot of the information timescale τR and total history dependence Rtot

(vertical and horizontal dashed lines). To compute R̂ tot we average estimates R̂ðTÞ in an interval [TD, Tmax], for which estimates R̂ðTÞ reach a plateau (vertical blue

bars, see Materials and methods). For high past ranges T, estimates R̂ðTÞmay decrease because a reliable estimation requires past embeddings with reduced temporal

resolution.

https://doi.org/10.1371/journal.pcbi.1008927.g002
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bins (Fig 2B). We chose to use only binary sequences of spike counts to estimate history depen-

dence. To that end, a count of 1 was chosen for a spike count larger than the median spike

count over the N measurements in the respective past bin. A binary representation drastically

reduces the number of possible past sequences for given number of bins d, thus enabling an

estimation of history dependence even from short recordings.

Estimation of history dependence with binary past embeddings

To estimate history dependence R, one has to estimate the probability of a spike occurring

together with different past sequences. The probabilities πi of these different joint events i can

be directly inferred from the frequencies ni with which the events occurred during the record-

ing. Without any additional assumptions, the simplest way to estimate the probabilities is to

compute the relative frequencies p̂i ¼ ni=N, where N is the total number of observed joint

events. This estimate is the maximum likelihood (ML) estimate of joint probabilities πi for a

multinomial likelihood, and the corresponding estimate of history dependence will also be

denoted by ML. This direct estimate of history dependence is known to be strongly biased

when data is too limited [28, 30]. The bias is typically positive, because, under limited data,

probabilities of observed joint events are given too much weight. Therefore, statistical depen-

dencies are overestimated. Even worse, the overestimation becomes more severe the higher

the number of possible past sequences K. Since K increases exponentially with the dimension

of the past embedding d, i.e. K = 2d for binary spike sequences, history dependence is severely

overestimated for high d (Fig 2C). The potential overestimation makes it hard to choose

embeddings that represent past spiking sufficiently well. In the following, we outline how one

can optimally choose embeddings if appropriate regularization is applied.

Estimating history dependence with past-embedding optimization

Due to systematic overestimation, high-dimensional past embeddings are prohibitive for a

reliable estimation of history dependence from limited data. Yet, high-dimensional past

embeddings might be required to capture all history dependence. The reason is that history

dependence may reside in precise spike times, but also may extend far into the past.

To illustrate this trade-off, we consider a discrete past embedding of spiking activity in a

past range T, where the past spikes are assigned to d equally large bins (κ = 0). We would like

to obtain an estimate R̂ðTÞ of the maximum possible history dependence R(T) for the given

past range T, with R(T)� R(T, d!1) (Fig 2C). The number of bins d can go to infinity only

in theory, though. In practice, we have estimates R̂ðT; dÞ of the history dependence R(T, d) for

finite d. On the one hand, one would like to choose a high number of bins d, such that R(T, d)

approximates R(T) well for the given past range T. Too few bins d otherwise reduce the tempo-

ral resolution, such that R(T, d) is substantially less than R(T) (Fig 2C). On the other hand, one

would like to choose d not too large in order to enable a reliable estimation from limited data.

If d is too high, estimates R̂ðT; dÞ strongly overestimate the true history dependence R(T, d)

(Fig 2C).

Therefore, if the past embedding is not chosen carefully, history dependence is either over-

estimated due to strong estimation bias, or underestimated because the chosen past embed-

ding was too simple.

Here, we thus propose the following past-embedding optimization approach: For a given

past range T, select embedding parameters d�, κ� that maximize the estimated history depen-

dence R̂ðT; d; kÞ, while overestimation is avoided by an appropriate regularization. This yields

an embedding-optimized estimate R̂ðTÞ ¼ R̂ðT; d�; k�Þ of the true history dependence R(T).
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In terms of the above example, past-embedding optimization selects the optimal embedding

dimension d�, which provides the best lower bound R̂ðTÞ ¼ R̂ðT; d�Þ to R(T) (Fig 2C).

Since we can anyways provide only a lower bound, regularization only has to ensure that

estimates R̂ðT; d; kÞ are either unbiased, or a lower bound to the observable history depen-

dence R(T, d, κ). For that purpose, in this paper we introduce a Bayesian bias criterion (BBC)

that selects only unbiased estimates. In addition, we use an established bias correction, the so-

called Shuffling estimator [31] that, within leading order of the sample size, is guaranteed to

provide a lower bound to the observable history dependence (see Materials and methods for

details).

Together with these regularization methods, the embedding optimization approach enables

complex embeddings of past activity while minimizing the risk of overestimation. See Materi-

als and methods for details on how we used embedding-optimized estimates R̂ðTÞ to compute

estimates R̂tot and t̂R of the total history dependence and information timescale (Fig 2D, blue

dashed lines).

Results

In the first part, we demonstrate the differences between history dependence and time-lagged

measures of temporal dependence for several models of neural spiking activity. We then

benchmark the estimation of history dependence using embedding optimization on a tractable

neuron model with long-lasting spike adaptation. Moreover, we compare the embedding opti-

mization approach to existing estimation methods on a variety of extra-cellular spike record-

ings. In the last part, we apply this to analyze history dependence for a variety of neural

systems, and compare the results to the autocorrelation and other statistical measures on the

data.

Differences between history dependence and time-lagged measures of

temporal dependence

The history dependence R(T) quantifies how predictable neural spiking is, given activity in a

certain past range T. In contrast, time-lagged measures of temporal dependence like the auto-

correlation C(T) [40] or lagged mutual information L(T) [41, 42] quantify the dependence of

spiking on activity in a single past bin with time lag T (Fig 1A and 1C; Materials and methods).

In the following, we showcase the main differences between the two approaches.

History dependence disentangles the effects of input activation, reactivation and tem-

poral depth of a binary autoregressive process. To show the behavior of the measures in a

well controlled setup, we analyzed a simple binary autoregressive process with varying tempo-

ral depth l (Fig 3A). The process evolves in discrete time steps, and has an active (1) or inactive

(0) state. Active states are evoked either by external input with probability h, or by internal

reactivations that are triggered by activity within the past l steps. Each past activation increases

the reactivation probability by m, which regulates the strength of history dependence in the

process. In the following, we describe how the measures behave as we vary each of the different

model parameters, and then summarize the key difference between the measures.

The input strength h increases the firing rate and thus the spiking entropy H(spiking). This

leads to a strong increase in the total mutual information Itot � lim
T!1

Iðspiking; pastðTÞÞ,

whereas the total history dependence Rtot is normalized by the entropy and does slightly

decrease (Fig 3B). This slight decrease is expected from a sensible measure of history depen-

dence, because the input is random and has no temporal dependence. In addition, input
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activations may fall together with internal activations, which slightly reduces the total history

dependence.

In contrast, the total history dependence Rtot increases with the reactivation probability m,

as expected (Fig 3D). For the autocorrelation, the reactivation probability m not only influ-

ences the magnitude of the correlation coefficients, but also the decay of the coefficients. For

autoregressive processes (and l = 1), autocorrelation coefficients C(T) decay exponentially [14]

(Fig 3C), where the autocorrelation time τC = −Δt/log(m) increases with m and diverges as

m! 1 (Fig 3D). The lagged mutual information L(T) is a non-linear measure of time-lagged

dependence, and has a very similar behavior as the autocorrelation, with a slightly faster decay

and thus smaller generalized timescale τL (Fig 3C and 3D). Note that we normalized L(T) by

the spiking entropy H to make it directly comparable to ΔR(T). In contrast to the time-lagged

measures, the gain in history dependence ΔR(T) is only non-zero for T smaller or equal to the

true temporal depth l of the process (Fig 3C). As a consequence, the information timescale τR
does not increase with m for fixed l (Fig 3D).

Fig 3. History dependence disentangles the effects of input activation, reactivation and temporal depth of a binary autoregressive process. (A) In the binary

autoregressive process, the state of the next time step (grey box) is active (one) either because of an input activation with probability h, or because of an internal

reactivation. The internal activation is triggered by activity in the past l time steps (green), where each active state increases the activation probability by m. (B)

Increasing the input activation probability h increases the total mutual information Itot, although input activations are random and therefore not predictable.

Normalizing the total mutual information by the entropy yields the total history dependence Rtot, which decreases mildly with h. (C) Autocorrelation C(T), lagged

mutual information L(T) and gain in history dependence ΔR(T) decay differently with the time lag T. For l = 1 and m = 0.8 (top), autocorrelation C(T) decays

exponentially with autocorrelation time τC, whereas L(T) decays faster due to the non-linearity of the mutual information. For l = 5 (bottom), C(T) and L(T) plateau

over the temporal depth, and then decay much slower than for l = 1. In contrast, ΔR(T) is non-zero only for T shorter or equal to the temporal depth of the process,

with much shorter timescale τR. Parameters m and h were adapted to match the firing rate and total history dependence between l = 1 and l = 5. (D) When increasing

the reactivation probability m for l = 1, timescales of time-lagged measures τC and τL increase. For history dependence, the information timescale τR remains constant,

but the total history dependence Rtot increases. (E) When varying the temporal depth l, all timescales increased. Parameters h and m were adapted to hold the firing

rate and Rtot constant.

https://doi.org/10.1371/journal.pcbi.1008927.g003
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Finally, the temporal depth l controls how far into the past activations depend on their pre-

ceding activity. Indeed, we find that the information timescale τR increases with l as expected

(Fig 3C and 3E). Similarly, the timescales of the time-lagged measures τC and τL increase with

the temporal depth l. Note that parameters m and h were adapted for each l to keep the firing

rate and total history dependence Rtot constant, hence differences in the timescale can be

unambiguously attributed to the increase in l.
To conclude, history dependence disentangles the effects of input activation, reactivation

and temporal depth, which provides a comprehensive characterization of past dependencies in

the autoregressive model. This is different from the total mutual information, which lacks the

entropy normalization and is sensitive to the firing rate. This is also different from time-lagged

measures, whose timescales are sensitive to both, the reactivation probability m and the tempo-

ral depth l. The confusion of effects in the timescales is rooted in the time-lagged nature of the

measures—by quantifying past dependencies out of context, C(T) and L(T) also capture indi-
rect, redundant dependencies onto past events. Indirect, redundant dependencies arise from

unique dependencies, because past states that are uniquely predictive of future activities were

in turn uniquely dependent on their own past. The stronger the unique dependence, the longer

the indirect dependencies reach into the past, which increases the timescale of time-lagged

measures. In contrast, indirect dependencies do not contribute to the history dependence,

because they add no predictive information once more-recent past is taken into account.

History dependence dismisses redundant past dependencies and captures synergistic

effects. A key property of history dependence is that it evaluates past dependencies in the

light of more-recent past. This allows the measure to dismiss indirect, redundant past depen-

dencies and to capture synergistic effects. In three common models of neural spiking activity,

we demonstrate how this leads to a substantially different characterization of past dependen-

cies compared to time-lagged measures of temporal dependence.

First, we simulated a subsampled branching process [14], which is a minimal model for

activity propagation in neural networks and captures key properties of spiking dynamics in

cortex [15]. Similar to the binary autoregressive process, active neurons activate neurons in the

next time step with probability m, the so-called branching parameter, and are activated exter-

nally with some probability h. The process was simulated in time steps of Δt = 4 ms with a pop-

ulation activity of 500 Hz, which was subsampled to obtain a single spike train with a firing

rate of 5 Hz (Fig 4A). Similar to the binary autoregressive process, the autocorrelation decays

exponentially with autocorrelation time τC = −Δt/log(m) = 198 ms, and the lagged mutual

information decays slightly faster (Fig 4B). In comparison, the gain in history dependence ΔR
decays much faster. When increasing the branching parameter m (for fixed firing rate), the

total history dependence increased, as in the autoregressive process (S11 Fig). Strikingly, the

timescale τR remained constant or even decreased for larger m> 0.967 and thus higher auto-

correlation time τC> 120 ms (S11 Fig), which is different from the binary autoregressive pro-

cess. The reason is that the branching process evolves at the population level, whereas history

dependence is quantified at the single neuron level. Thereby, history dependence also captures

indirect dependencies, because the own spiking history reflects the population activity. The

higher the branching parameter m, the more informative past spikes are about the population

activity, and the shorter is the timescale τR over which all the relevant information about the

population activity can be collected. Thus, for the branching process, the total history depen-

dence Rtot captures the influence of the branching parameter, whereas the information time-

scale τR behaves very differently from the timescales of time-lagged measures.

Second, we demonstrate the difference of history dependence to time-lagged measures on

an Izhikevich neuron, which is a flexible model that can produce different neural firing pat-

terns similar to those observed for real neurons [44]. Here, parameters were chosen according
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Fig 4. History dependence dismisses redundant past dependencies and captures synergistic effects. (A,B) Analysis of a subsampled branching process.

(A) The population activity was simulated as a branching process (m = 0.98) and subsampled to yield the spike train of a single neuron (Materials and

methods). (B) Autocorrelation C(T) and lagged mutual information L(T) include redundant dependencies and decay much slower than the gain ΔR(T),

with much longer timescales (vertical dashed lines). (C,D) Analysis of an Izhikevich neuron in chattering mode with constant input and small voltage

fluctuations. The neuron fires in regular bursts of activity. (D) Time-lagged measures C(T) and L(T) measure both, intra- (T< 10 ms) and inter-burst

(T> 10 ms) dependencies, which decay very slowly due to regularity of the firing. The gain ΔR(T) reflects that most spiking can already be predicted from

intra-burst dependencies, whereas inter-burst dependencies are highly redundant. In this case, only ΔR(T) yields a sensible time scale (blue dashed line). (E,

F) Analysis of a generalized leaky integrate-and-fire neuron with long-lasting adaptation filter ξ [3, 43] and constant input. (F) Here, ΔR(T) decays slower to

zero than the autocorrelation C(T), and is higher than L(T) for long T. Therefore, the dependence on past spikes is stronger when taking more-recent past

spikes into account (ΔR(T)), as when considering them independently (L(T)). Due to these synergistic past dependencies, ΔR(T) is the only measure that

captures the long-range nature of the spike adaptation.

https://doi.org/10.1371/journal.pcbi.1008927.g004
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to the “chattering mode” [44], with constant input and small voltage fluctuations (Materials

and methods). The neuron fires in regular bursts of activity, with consistent timing between

spikes within and between bursts (Fig 4C). While time-lagged measures capture all the regular-

ities in spiking and oscillate with the bursts of activity, history dependence correctly captures

that spiking can almost be entirely predicted from intra-burst dependencies alone (Fig 4D).

History dependence dismisses the redundant inter-burst dependencies and thereby yields a

sensible measure of a timescale (blue dashed line).

Finally, we analyzed a generalized leaky integrate-and-fire neuron with long-range spike

adaptation (22 seconds) (Fig 4E), which reproduces spike-frequency adaptation as observed

for somatosensory pyramidal neurons [3, 43]. For this model, time-lagged measures C(T) and

L(T) actually decay to zero much faster than the gain in history dependence ΔR(T), which is

the only measure that captures the long-range adaptation effects of the model (Fig 4F). This

shows that past dependencies in this model include synergistic effects, where the dependence

is stronger in the context of more-recent spikes. This is most likely due to the non-linearity of

the model, where past spikes cause a different adaptation when taken together as when consid-

ered as the sum of their contributions.

Thus, due to its ability to dismiss redundant past dependencies and to capture synergistic

effects, history dependence really provides a complementary characterization of past depen-

dencies compared to time-lagged measures. Importantly, because the approach better disen-

tangles the effects of timescale and total history dependence, the results remain interpretable

for very different models, and provide a more comprehensive view on past dependencies.

Embedding optimization captures history dependence for a neuron model

with long-lasting spike adaptation

On a benchmark spiking neuron model, we first demonstrate that without optimization and

proper regularization, past embeddings are likely to capture much less history dependence, or

lead to estimates that severely overestimate the true history dependence. Readers that are

familiar with the bias problem of mutual information estimation might want to jump to the

next part, where we validate that embedding-optimized estimates indeed capture the model’s

true history dependence, while being robust to systematic overestimation. As a model we

chose a generalized leaky integrate-and-fire (GLIF) model with spike frequency adaptation,

whose parameters were fitted to experimental data [3, 43]. The model was chosen, because it is

equipped with a long-lasting spike adaptation mechanism, and its total history dependence

Rtot can be directly computed from sufficiently long simulations (Materials and methods). For

demonstration, we show results on a variant of the model where adaptation reaches one sec-

ond into the past, and show results on the original model with a 22 second kernel in S1, S2 and

S5 Figs. For simulation, the neuron was driven with a constant input current to achieve an

average firing rate of 4 Hz. In the following, estimates R̂ðTÞ are shown for a simulated record-

ing of 90 minutes, whereas the true values R(T) were computed on a 900 minute recording

(Materials and methods).

Without regularization, history dependence is severely overestimated for high-dimen-

sional embeddings. For demonstration, we estimated the history dependence R(τ, d) for

varying numbers of bins d and a constant bin size τ = 20 ms (i.e. κ = 0 and T = d � τ). We com-

pared estimates R̂ðt; dÞ obtained by maximum likelihood (ML) estimation [28], or Bayesian

estimation using the NSB estimator [33], with the model’s true R(τ, d) (Fig 5A). Both estima-

tors accurately estimate R(τ, d) for up to d� 20 past bins. As expected, the NSB estimator starts

to be biased at higher d than the ML estimator. For embedding dimensions d> 30, both esti-

mators severely overestimate R(τ, d). Note that ± two standard deviations are plotted as shaded
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areas, but are too small to be visible. Therefore, any deviation of estimates from the model’s

true history dependence R(τ, d) can be attributed to positive estimation bias, i.e. a systematic

overestimation of the true history dependence due to limited data.

The aim is now to identify the largest embedding dimension d� for which the estimate of

R(τ, d) is not yet biased. A biased estimate is expected as soon as the two estimates ML and

Fig 5. Embedding optimization captures history dependence for a neuron model with long-lasting spike adaptation. Results are shown for a generalized leaky

integrate-and-fire (GLIF) model with long-lasting spike frequency adaptation [3, 43] with a temporal depth of one second (Methods and material). (A) For

illustration, history dependence R(τ, d) was estimated on a simulated 90 minute recording for different embedding dimensions d and a fixed bin width τ = 20 ms.

Maximum likelihood (ML) [28] and Bayesian (NSB) [33] estimators display the insufficient embedding versus estimation bias trade-off: For small embedding

dimensions d, the estimated history dependence is much smaller, but agrees well with the true history dependence R(τ, d) for the given embedding. For larger d, the

estimated history dependence R̂ðt; dÞ increases, but when d is too high (d> 20), it severely overestimates the true R(τ, d). The Bayesian bias criterion (BBC) selects

NSB estimates R̂ðt; dÞ for which the difference between ML and NSB estimate is small (red solid line). All selected estimates are unbiased and agree well with the true

R(τ, d) (grey line). Embedding optimization selects the highest, yet unbiased estimate (red diamond). (B) The Shuffling estimator (blue solid line) subtracts

estimation bias on surrogate data (yellow dashed line) from the ML estimator (blue dashed line). Since the surrogate bias is higher than the systematic overestimation

in the ML estimator (difference between grey and blue dashed lines), the Shuffling estimator is a lower bound to R(τ, d). Embedding optimization selects the highest

estimate, which is still a lower bound (blue diamond). For A and B, shaded areas indicate ± two standard deviations obtained from 50 repeated simulations, which

are very small and thus hardly visible. (C) Embedding-optimized BBC estimates R̂ðTÞ (red line) yield accurate estimates of the model neuron’s true history

dependence R(T), total history dependence Rtot and information timescale τR (horizontal and vertical dashed lines). The zoom-in (right panel) shows robustness of

both regularization methods: For all T the model neuron’s R(T, d�, κ�) lies within errorbars (BBC), or consistently above the Shuffling estimator that provides a lower

bound. Here, the model’s R(T, d�, κ�) was computed for the optimized embedding parameters d�, κ� that were selected via BBC or Shuffling, respectively (dashed

lines). Shaded areas indicate ± two standard deviations obtained by bootstrapping, and colored vertical bars indicate past ranges over which estimates R̂ðTÞ were

averaged to compute R̂ tot (Materials and methods).

https://doi.org/10.1371/journal.pcbi.1008927.g005
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NSB start to differ significantly from each other (Fig 5A, red diamond), which is formalized by

the Bayesian bias criterion (BBC) (Materials and methods). According to the BBC, all NSB esti-

mates R̂ðt; dÞ with d lower or equal to d� are unbiased (solid red line). We find that indeed all

BBC estimates agree well with the true R(τ, d) (grey line), but d� yields the largest unbiased

estimate.

The problem of estimation bias has also been addressed previously by the so-called Shuf-

fling estimator [31]. The Shuffling estimator is based on the ML estimator and applies a bias

correction term (Fig 5B). In detail, one approximates the estimation bias using surrogate data,

which are obtained by shuffling of the embedded spiking history. The surrogate estimation

bias (yellow dashed line) is proven to be larger than the actual estimation bias (difference

between grey solid and blue dashed line). Therefore, Shuffling estimates R̂ðt; dÞ provide lower

bounds to the true history dependence R(τ, d). As with the BBC, one can safely maximize Shuf-

fling estimates R̂ðt; dÞ over d to find the embedding dimension d� that provides the largest

lower bound to the model’s total history dependence Rtot (Fig 5B, blue diamond).

Thus, using a model neuron, we illustrated that history dependence can be severely overes-

timated if the embedding is chosen too complex. Only when overestimation is tamed by one of

the two regularization methods, BBC or Shuffling, embedding parameters can be safely opti-

mized to yield better estimates of history dependence.

Optimized embeddings capture the model’s true history dependence. In the previous

part, we demonstrated how embedding parameters are optimized for the example of fixed κ
and τ. Now, we optimize all embedding parameters for fixed past range T to obtain embed-

ding-optimized estimates R̂ðTÞ of R(T). We find that embedding-optimized BBC estimates

R̂ðTÞ agree well with the true R(T), hence the model’s total history dependence Rtot and

information timescale τR are well estimated (Fig 5C, vertical and horizontal dashed lines). In

contrast, the Shuffling estimator underestimates the true R(T) for past ranges T> 200 ms,

hence the model’s Rtot and τR are underestimated (blue dashed lines). For large past ranges

T> 1000 ms, estimates R̂ðTÞ of both estimators decrease again, because no additional history

dependence is uncovered, whereas the constraint of an unbiased estimation decreases the tem-

poral resolution of the embedding.

Embedding-optimized estimates are robust to overestimation despite maximization

over complex embeddings. In the previous part, we investigated how much of the true his-

tory dependence for different past ranges T (grey solid line) we miss by embedding the spiking

history. An additional source of error is the estimation of history dependence from limited

data. In particular, estimates are prone to overestimate history dependence systematically (Fig

5A and 5B).

To test explicitly for overestimation, we computed the true history dependence R(T, d�, κ�)
for exactly the same sets of embedding parameters T, d�, κ� that were found during embedding

optimization with BBC (grey dash-dotted line), and the Shuffling estimator (grey dotted line,

Fig 5C, zoom-in). We expect that BBC estimates are unbiased, i.e. the true history dependence

should lie within errorbars of the BBC estimates (red shaded area) for a given T. In contrast,

Shuffling estimates are a lower bound, i.e. estimates should lie below the true history depen-

dence (given the same T, d�, κ�). We find that this is indeed the case for all T. Note that this is

a strong result, because it requires that the regularization methods work reliably for every sin-

gle set of embedding parameters used for optimization—otherwise, parameters that cause

overestimation would be selected.

Thus, we can confirm that the embedding-optimized estimates do not systematically over-

estimate the model neuron’s history dependence, and are on average lower bounds to the true

history dependence. This is important for the interpretation of the results.
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Mild overfitting can occur during embedding optimization on short recordings, but can

be overcome with cross-validation. We also tested whether the recording length affects the

reliability of embedding-optimized estimates, and found very mild overestimation (1–3%) of

history dependence for BBC for recordings as short as 3 minutes (S1 and S4 Figs). The overes-

timation is a consequence of overfitting during embedding optimization: Variance in the esti-

mates increases for shorter recordings, hence maximizing over estimates selects embedding

parameters that have high history dependence by chance. Therefore, the overestimation can be

overcome by cross-validation, e.g. by optimizing embedding parameters on the first half, and

computing estimates on the second half of the data (S1 Fig). In contrast, we found that for the

model neuron, Shuffling estimates do not overestimate the true history dependence even for

recordings as short as 3 minutes (S1 Fig). This is because the effect of overfitting was small

compared to the systematic underestimation of Shuffling estimates. Here, all experimental

recordings where we apply BBC are long enough (� 90 minutes), thus no cross-validation was

applied on the experimental data.

Estimates of the information timescale are sensitive to the recording length. Finally,

we also tested the impact of the recording length on estimates R̂tot of the total history depen-

dence as well as estimates t̂R of the information timescale. While on recordings of 3 minutes

embedding optimization still estimated� 95% of the true Rtot, estimates t̂R were only� 75%

of the true τR (S2 Fig). Thus, estimates of the information timescale τR are more sensitive to

the recording length, because they depend on the small additional contributions to R(T) for

high past ranges T, which are hard to estimate for short recordings. Therefore, we advice to

analyze recordings of similar length to make results on τR comparable across experiments. In

the following, we explicitly shorten some recordings such that all recordings have approxi-

mately the same recording length.

In conclusion, embedding optimization accurately estimated the model neuron’s true his-

tory dependence. Moreover, for all past ranges, embedding-optimized estimates were robust

to systematic overestimation. Embedding optimization is thus a promising approach to quan-

tify history dependence and the information timescale in experimental spike recordings.

Embedding optimization is key to estimate long-lasting history dependence

in extra-cellular spike recordings

Here, we apply embedding optimization to long spike recordings (� 90 minutes) from rat dor-

sal hippocampus layer CA1 [45, 46], salamander retina [47, 48] and in vitro recordings of rat

cortical culture [49]. In particular, we compare embedding optimization to other popular esti-

mation approaches, and demonstrate that an exponential past embedding is necessary to esti-

mate history dependence for long past ranges.

Embedding optimization reveals history dependence that is not captured by a general-

ized linear model or a single past bin. We use embedding optimization to estimate history

dependence R(T) as a function of the past range T (see Fig 6B for an example single unit from

hippocampus layer CA1, and S6, S7 and S8 Figs for all analyzed sorted units). In this example,

BBC and Shuffling with a maximum of dmax = 20 past bins led to very similar estimates for all

T. Notably, embedding optimization with both regularization methods estimated high total

history dependence of almost Rtot� 40% with a temporal depth of almost a second, and an

information timescale of τR� 100 ms (Fig 6B). This indicates that embedding-optimized esti-

mates capture a substantial part of history dependence also in experimental spike recordings.

Importantly, other common estimation approaches fail to capture the same amount of his-

tory dependence (Fig 6B and 6D). To compare how well the different estimation approaches

could capture the total history dependence, we plotted for each sorted unit the different
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estimates of Rtot relative to the corresponding BBC estimate (Fig 6D). Embedding optimization

with Shuffling yields estimates that agree well with BBC estimates. The Shuffling estimator

even yields slightly higher values on the experimental data. Interestingly, embedding optimiza-

tion with the Shuffling estimator and as little as dmax = 5 past bins captures almost the same

history dependence as BBC with dmax = 20, with a median above 95% for all neural systems.

In contrast, we find that a single past bin only accounts for 70% to 80% of the total history

Fig 6. Embedding optimization is key to estimate long-lasting history dependence in extra-cellular spike recordings. (A) Example of recorded spiking activity in

rat dorsal hippocampus layer CA1. (B) Estimates of history dependence R(T) for various estimators, as well as estimates of the total history dependence Rtot and

information timescale τR (dashed lines) (example single unit from CA1). Embedding optimization with BBC (red) and Shuffling (blue) for dmax = 20 yields consistent

estimates. Embedding-optimized Shuffling estimates with a maximum of dmax = 5 past bins (green) are very similar to estimates obtained with dmax = 20 (blue). In

contrast, using a single past bin (dmax = 1, yellow), or fitting a GLM for the temporal depth found with BBC (violet dot), estimates much lower total history

dependence. Shaded areas indicate ± two standard deviations obtained by bootstrapping, and small vertical bars indicate past ranges over which estimates of R(T)

were averaged to estimate Rtot (Materials and methods). (C) An exponential past embedding is crucial to capture history dependence for high past ranges T. For

T> 100 ms, uniform embeddings strongly underestimate history dependence. Shown is the median of embedding-optimized estimates of R(T) with uniform

embeddings, relative to estimates obtained by optimizing exponential embeddings, for BBC with dmax = 20 (red) and Shuffling with dmax = 20 (blue) and dmax = 5

(green). Shaded areas show 95% percentiles. Median and percentiles were computed over analyzed sorted units in CA1 (n = 28). (D) Comparison of total history

dependence Rtot for different estimation and embedding techniques for three different experimental recordings. For each sorted unit (grey dots), estimates are plotted

relative to embedding-optimized estimates for BBC and dmax = 20. Embedding optimization with Shuffling and dmax = 20 yields consistent but slightly higher

estimates than BBC. Strikingly, Shuffling estimates for as little as dmax = 5 past bins (green) capture more than 95% of the estimates for dmax = 20 (BBC). In contrast,

estimates obtained by optimizing a single past bin, or fitting a GLM, are considerably lower. Bars indicate the median and lines indicate 95% bootstrap confidence

intervals on the median over analyzed sorted units (CA1: n = 28; retina: n = 111; culture: n = 48).

https://doi.org/10.1371/journal.pcbi.1008927.g006
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dependence. A GLM bears little additional advantage with a slightly higher median of� 85%.

To save computation time, GLM estimates were only computed for the temporal depth that

was estimated using BBC (Fig 6B, violet square). The remaining embedding parameters d and

κ of the GLM’s history kernel were separately optimized using the Bayesian information crite-

rion (Materials and methods). Since parameters were optimized, we argue that the GLM

underestimates history dependence because of its specific model assumptions, i.e. no interac-

tions between past spikes. Moreover, we found that the GLM performs worse than embedding

optimization with only five past bins. Therefore, we conclude that for typical experimental

spike trains, interactions between past spikes are important, but do not require very high tem-

poral resolution. In the remainder of this paper we use the reduced approach (Shuffling dmax =

5) to compare history dependence among different neural systems.

Increasing bin sizes exponentially is crucial to estimate long-lasting history depen-

dence. To demonstrate this, we plotted embedding-optimized BBC estimates of R(T) using a

uniform embedding, i.e. equal bin sizes, relative to estimates obtained with exponential

embedding (Fig 6C), both for BBC with dmax = 20 (red) and Shuffling with dmax = 20 (blue) or

dmax = 5 (green). For past ranges T> 100 ms, estimates using a uniform embedding miss con-

siderable history dependence, which becomes more severe the longer the past range. In the

case of dmax = 5, a uniform embedding captures around 80% for T = 1 s, and only around 60%

for T = 5 s (median over analyzed sorted units in CA1). Therefore, we argue that an exponen-

tial embedding is crucial for estimating long-lasting history dependence.

Together, total history dependence and the information timescale show

clear differences between neural systems

In addition to recordings from rat dorsal hippocampus layer CA1, salamander retina and rat

cortical culture, we analyzed sorted units in a recording of mouse primary visual cortex using

the novel Neuropixels probe [50]. Recordings from primary visual cortex were approximately

40 minutes long. Thus, to make results comparable, we analyzed only the first 40 minutes of all

recordings.

We find clear differences between the neural systems, both in terms of the total history

dependence, as well as the information timescale (Fig 7A). Sorted units in cortical culture and

hippocampus layer CA1 have high total history dependence Rtot with median over sorted units

of� 24% and� 25%, whereas sorted units in retina and primary visual cortex have typically

low Rtot of� 11% and� 8%. In terms of the information timescale τR, sorted units in hippo-

campus layer CA1 display much higher τR, with a median of� 96 ms, than units in cortical

culture, with median τR of� 12 ms. Similarly, sorted units in primary visual cortex have higher

τR, with median of� 37 ms, than units in retina, with median of� 23 ms. These differences

could reflect differences between early visual processing (retina, primary visual cortex) and

high level processing and memory formation in hippocampus, or likewise, between neural net-

works that are mainly input driven (retina) or exclusively driven by recurrent input (culture).

Notably, total history dependence and the information timescale varied independently among

neural systems, and studying them in isolation would miss differences, whereas considering

them jointly allows to distinguish the different systems. Moreover, no clear differentiation

between cortical culture, retina and primary visual cortex is possible using the autocorrelation

time τC (Fig 7B), with medians τC� 68 ms (culture), τC� 60 ms (retina) and τC� 80 ms (pri-

mary visual cortex), respectively.

To better understand how other well-established statistical measures relate to the total his-

tory dependence Rtot and the information timescale τR, we show Rtot and τR versus the median

interspike interval (ISI), the coefficient of variation CV = σISI/μISI of the ISI distribution, and
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the autocorrelation time τC in S14 Fig. Estimates of the total history dependence Rtot tend to

decrease with the median ISI, and to increase with the coefficient of variation CV. This result is

expected for a measure of history dependence, because a shorter median ISI indicates that

spikes tend to occur together, and a higher CV indicates a deviation from independent Poisson

spiking. In contrast, the information timescale τR tends to increase with the autocorrelation

time, as expected, with no clear relation to the median ISI or the coefficient of variation CV.

However, the correlation between the measures depends on the neural system. For example in

retina (n = 111), Rtot is significantly anti-correlated with the median ISI (Pearson correlation

coefficient: r = −0.69, p< 10−5) and strongly correlated with the coefficient of variation CV

(r = 0.90, p< 10−5), and τR is significantly correlated with the autocorrelation time τC
(r = 0.75, p< 10−5). In contrast, for mouse primary visual cortex (n = 142), we found no signif-

icant correlations between any of these measures. Thus, the relation between Rtot or τR and the

established measures is not systematic, and therefore one cannot replace the history depen-

dence by any of them.

In addition to differences between neural systems, we also find strong heterogeneity of his-

tory dependence within a single system. Here, we demonstrate this for three different sorted

units in primary visual cortex (Fig 8, see S9 Fig for all analyzed sorted units in primary visual

Fig 7. Together, total history dependence and the information timescale show clear differences between neural systems. (A) Embedding-optimized Shuffling

estimates (dmax = 5) of the total history dependence Rtot are plotted against the information timescale τR for individual sorted units (dots) from four different neural

systems (raster plots show spike trains of different sorted units). No clear relationship between the two quantities is visible. The analysis shows systematic differences

between the systems: sorted units in rat cortical culture (n = 48) and rat dorsal hippocampus layer CA1 (n = 28) have higher median total history dependence than

units in salamander retina (n = 111) and mouse primary visual cortex (n = 142). At the same time, sorted units in cortical culture and retina show smaller timescale

than units in primary visual cortex, and much smaller timescale than units in hippocampus layer CA1. Overall, neural systems are clearly distinguishable when jointly

considering the total history dependence and information timescale. (B) Total history dependence Rtot versus the autocorrelation time τC shows no clear relation

between the two quantities, similar to the information timescale τR. Also, the autocorrelation time gives the same relation in timescale between retina, primary visual

cortex and CA1, whereas the cortical culture has a higher timescale (different order of medians on the x-axis). In general, neural systems are harder to differentiate in

terms of the autocorrelation time τC compared to τR. Errorbars indicate median over sorted units and 95% bootstrap confidence intervals on the median.

https://doi.org/10.1371/journal.pcbi.1008927.g007
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cortex). In particular, sorted units display different signatures of history dependence R(T) as a

function of the past range T. For some units, history dependence builds up on short past

ranges T (e.g. Fig 8A), for some it only shows for higher T (e.g. Fig 8B), and for some it already

saturates for very short T (e.g. Fig 8C). A similar behavior is captured by the autocorrelation

C(T) (Fig 8, second row). The rapid saturation in Fig 8C indicates history dependence due to

bursty firing, which can also be seen by strong positive correlation with past spikes for short T
(Fig 8C, bottom). To exclude the effects of different firing modes or refractoriness on the infor-

mation timescale, we only considered past ranges T> T0 = 10 ms when estimating τR, or time

lags T> T0 = 10 ms when fitting an exponential decay to C(T) to estimate τC. The reason is

that differences in the integration of past information are expected to show for larger T. This

agrees with the observation that timescales among neural systems were much more similar if

one instead sets T0 = 0 ms, whereas they showed clear differences for T0 = 10 ms or T0 = 20 ms

(S15 Fig).

We also observed that history dependence can build up on all timescales up to seconds, and

that it shows characteristic increases at particular past ranges, e.g. T� 100 ms and T� 200 ms

in CA1 (Fig 6B), possibly reflecting phase information in the theta cycles [45, 46]. Thus, the

analysis does not only serve to investigate differences in history dependence between neural

systems, but also resolves clear differences between sorted units. This could be used to investi-

gate differences in information processing between different cortical layers, different neuron

types or neurons with different receptive field properties. Importantly, because units are so

Fig 8. Distinct signatures of history dependence for different sorted units within mouse primary visual cortex. (Top) Embedding-optimized estimates of R(T)

reveal distinct signatures of history dependence for three different sorted units (A,B,C) within a single neural system (mouse primary visual cortex). In particular,

sorted units have similar total history dependence Rtot, but differ vastly in the information timescale τR (horizontal and vertical dashed lines). Note that for unit C,

τR is smaller than 5 ms and thus doesn’t appear in the plot. Shaded areas indicate ± two standard deviations obtained by bootstrapping, and vertical bars indicate the

interval over which estimates of R(T) were averaged to estimate Rtot (Materials and methods). Estimates were computed with the Shuffling estimator and dmax = 5.

(Bottom) Autocorrelograms for the same sorted units (A,B, and C, respectively) roughly show an exponential decay, which was fitted (solid grey line) to estimate the

autocorrelation time τC (grey dashed line). Similar to the information timescale τR, only coefficients for T larger than T0 = 10 ms were considered during fitting.

https://doi.org/10.1371/journal.pcbi.1008927.g008
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different, ad hoc embedding schemes with a fixed number of bins or fixed bin width will miss

considerable history dependence.

Discussion

To estimate history dependence in experimental data, we developed a method where the embed-

ding of past spiking is optimized for each individual spike train. Thereby, it can estimate a maxi-

mum of history dependence, given what is possible for the limited amount of data. We found

that embedding optimization is a robust and flexible estimation tool for neural spike trains with

vastly different spiking statistics, where ad hoc embedding strategies would estimate substantially

less history dependence. Based on our results, we arrived at practical guidelines that are summa-

rized in Fig 9. In the following, we contrast history dependence R(T) with time-lagged measures

such as the autocorrelation in more detail, clearly discussing the advantages—but also the limita-

tions of the approach. We then discuss how one can relate estimated history dependence to neu-

ral coding and information processing based on the example data sets analyzed in this paper.

Advantages and limitations of history dependence in comparison to the

autocorrelation and lagged mutual information

A key difference between history dependence R(T) and the autocorrelation or lagged mutual

information is that R(T) quantifies statistical dependencies between current spiking and the

entire past spiking in a past range T (Fig 1B). This has the following advantages as a measure of

statistical dependence, and as a footprint of information processing in single neuron spiking.

First, R(T) allows to compute the total history dependence, which, from a coding perspective,

represents the redundancy of neural spiking with all past spikes; or how much of the past

information is also represented when emitting a spike. Second, because past spikes are consid-

ered jointly, R(T) captures synergistic effects and dismisses redundant past information (Fig

4). Finally, we found that this enables R(T) to disentangle the strength and timescale of history

dependence for the binary autoregressive process (Fig 3). In contrast, autocorrelation C(T) or

lagged mutual information L(T) quantify the statistical dependence of neural spiking on a sin-

gle past bin with time lag T, without considering any of the other bins (Fig 1A). Thereby, they

miss synergistic effects; and they quantify redundant past dependencies that vanish once spik-

ing activity in more-recent past is taken into account (Fig 4). As a consequence, the timescales

Fig 9. Practical guidelines for the estimation of history dependence in single neuron spiking activity. More details

regarding the individual points can be found at the end of Materials and methods.

https://doi.org/10.1371/journal.pcbi.1008927.g009
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of these measures reflect both, the strength and the temporal depth of history dependence in

the binary autoregressive process (Fig 3).

Moreover, technically, the autocorrelation time τC depends on fitting an exponential decay

to coefficients C(T). Computing the autocorrelation time with the generalized timescale is dif-

ficult, because coefficients C(T) can be negative, and are too noisy for large T. While model fit-

ting is in general more data efficient than the model-free estimation presented here, it can also

produce biased and unreliable estimates [16]. Furthermore, when the coefficients do not decay

exponentially, a more complex model has to be fitted [52], or the analysis simply cannot be

applied. In contrast, the generalized timescale can be directly applied to estimates of the history

dependence R(T) to yield the information timescale τR without any further assumptions or fit-

ting models. However, we found that estimates of τR can depend strongly on the estimation

method and embedding dimension (S12 Fig) and the size of the data set (S2 and S3 Figs). The

dependence on data size is less strong for the practical approach of optimizing up to dmax = 5

past bins, but still we recommend to use data sets of similar length when aiming for compara-

bility across experiments. Moreover, there might be cases where a model-free estimation of the

true timescale might be infeasible because of the complexity of past dependencies (S2 Fig, neu-

ron with a 22 seconds past kernel). In this case, only� 80% of the true timescale could be esti-

mated on a 90 minute recording.

Another downside of quantifying the history dependence R(T) is that its estimation

requires more data than fitting the autocorrelation time τC. To make best use of the limited

data, we here devised the embedding optimization approach that allows to find the most effi-

cient representation of past spiking for the estimation of history dependence. Even so, we

found empirically that a minimum of 10 minutes of recorded spiking activity are advisable to

achieve a meaningful quantification of history dependence and its timescale (S2 and S3 Figs).

In addition, for shorter recordings, the analysis can lead to mild overestimation due to opti-

mizing and overfitting embedding parameters on noisy estimates (S2 Fig). This overestimation

can, however, be avoided by cross-validation, which we find to be particularly relevant for the

Bayesian bias criterion (BBC) estimator. Finally, our approach uses an embedding model that

ranges from uniform embedding to an embedding with exponentially stretching past bins—

assuming that past information farther into the past requires less temporal resolution [53].

This embedding model might be inappropriate if, for example, spiking depends on the exact

timing of distant past spikes, with gaps in time where past spikes are irrelevant. In such a case,

embedding optimization could be used to optimize more complex embedding models that can

also account for this kind of spiking statistics.

Differences in total history dependence and information timescale between

data sets agree with ideas from neural coding and hierarchical information

processing

First, we found that the total history dependence Rtot clearly differs among the experimental

data sets. Notably, Rtot was low for recordings of early visual processing areas such as retina

and primary visual cortex, which is in line with the theory of efficient coding [1, 54] and neural

adaptation for temporal whitening as observed in experiments [3, 55]. In contrast, Rtot was

high for neurons in dorsal hippocampus (layer CA1) and cortical culture. In CA1, the original

study [46] found that the temporal structure of neural activity within the temporal windows

set by the theta cycles was beyond of what one would expect from integration of feed-forward

excitatory inputs. The authors concluded that this could be due to local circuit computations.

The high values of Rtot support this idea, and suggest that local circuit computations could

serve the integration of past information, either for the formation of a path integration–based
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neural map [56], or to recognize statistical structure for associative learning [8]. In cortical cul-

ture, neurons are exclusively driven by recurrent input and exhibit strong bursts in the popula-

tion activity [57]. This leads to strong history dependence also at the single-neuron level.

To summarize, history dependence was low for early sensory processing and high for high

level processing or past dependencies that are induced by strong recurrent feedback in a neural

network. We thus conclude that estimated total history dependence Rtot does indeed provide a

footprint of neural coding and information processing.

Second, we observed that the information timescale τR increases from retina (� 23 ms) to

primary visual cortex (� 37 ms) to CA1 (� 96 ms), in agreement with the idea of a temporal

hierarchy in neural information processing [12]. These results qualitatively agree with similar

results obtained for the autocorrelation time of spontaneous activity [9], although the informa-

tion timescales are overall much smaller than the autocorrelation times. Our results suggest

that the hierarchy of intrinsic timescales could also show in the history dependence of single

neurons measured by the mutual information.

Conclusion

Embedding optimization enables to estimate history dependence in a diversity of spiking neu-

ral systems, both in terms of its strength, as well as its timescale. The approach could be used

in future experimental studies to quantify history dependence across a diversity of brain areas,

e.g. using the novel Neuropixels probe [58], or even across cortical layers within a single area.

To this end we provide a toolbox for Python3 [37]. These analyses might yield a more complete

picture of hierarchical processing in terms of the timescale and a footprint of information pro-

cessing and coding principles, i.e. information integration versus redundancy reduction.

Materials and methods

In this section, we provide all mathematical details required to reproduce the results of this

paper. We first provide the basic definitions of history dependence, time-lagged measures and

the past embedding. We then describe the embedding optimization approach that is used to

estimate history dependence from neural spike recordings, and provide a description of the

workflow. Next, we delineate the estimators of history dependence considered in this paper,

and present the novel Bayesian bias criterion. Finally, we provide details on the benchmark

model and how we approximated its history dependence for given past range and embedding

parameters. All code for Python3 that was used to analyze the data and to generate the figures

is available online at https://github.com/Priesemann-Group/historydependence.

Ethics statement

Data from salamander retina were recorded in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health,

and the protocol was approved by the Institutional Animal Care and Use Committee (IACUC)

of Princeton University (Protocol Number: 1828). The rat dorsal hippocampus experimental

protocols were approved by the Institutional Animal Care and Use Committee of Rutgers Uni-

versity. Data from mouse primary visual cortex were recorded according to the UK Animals

Scientific Procedures Act (1986).

Glossary

Terms

• Past embedding: discrete, reduced representation of past spiking through temporal binning
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• Past-embedding optimization: Optimization of temporal binning for better estimation of his-

tory dependence

• Embedding-optimized estimate: Estimate of history dependence for optimized embedding

Abbreviations

• GLM: generalized linear model

• ML: Maximum likelihood

• BBC: Bayesian bias criterion

• Shuffling: Shuffling estimator based on a bias correction for the ML estimator

Symbols

• Δt: bin size of the time bin for current spiking

• T: past range of the past embedding

• [t − T, t): embedded past window

• d: embedding dimension or number of bins

• κ: scaling exponent for exponential embedding

• Trec: recording length

• N = (Trec − T)/Δt: number of measurements, i.e. number of observed joint events of current

and past spiking

• X: random variable with binary outcomes x 2 [0, 1], which indicate the presence of a spike

in a time bin Δt

• X−T: random variable whose outcomes are binary sequences X−T 2 {0, 1}d, which represent

past spiking activity in a past range T

Information-theoretic quantities

• H(spiking)�H(X): average spiking information

• H(spiking|past(T))�H(X|X−T): average spiking information for given past spiking in a past

range T

• I(spiking;past(T))� I(X; X−T): mutual information between current spiking and past spiking

in a past range T

• R(T)� I(X;X−T)/H(X): history dependence for given past range T

• RðT; d; kÞ � IðX;X� Td;kÞ=HðXÞ: history dependence for given past range T and past embed-

ding d, κ

• Rtot � lim
T!1

RðTÞ: total history dependence

• ΔR(Ti)�R(Ti) − R(Ti−1): gain in history dependence

• τR: information timescale or generalized timescale of history dependence R(T)

• L(T)� I(X; X−T): lagged mutual information with time lag T

• τL: generalized timescale of lagged mutual information L(T)
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Estimated quantities

• R̂ðT; d; kÞ: estimated history dependence for given past range T and past embedding d, κ

• R̂ðTÞ: embedding-optimized estimate of R(T) for optimal embedding parameters d�, κ�

• R̂tot: estimated total history dependence, i.e. average R̂ðTÞ for T 2 [TD, Tmax], with interval of

saturated estimates [TD, Tmax]

• t̂R: estimated information timescale

Basic definitions

Definition of history dependence. We quantify history dependence R(T) as the mutual

information I(X, X−T) between present and past spiking X and X−T, normalized by the binary

Shannon information of spiking H(X), i.e.

RðTÞ �
IðX;X� TÞ
HðXÞ

¼ 1 �
HðXjX� TÞ

HðXÞ
: ð6Þ

Under the assumption of stationarity and ergodicity the mutual information can be computed

either as the average over the stationary distribution p(x, x−T), or the time average [21, 58], i.e.

IðX;X� TÞ ¼ HðXÞ � HðXjX� TÞ ð7Þ

¼
X

x2f0;1g

pðxÞlog
2

1

pðxÞ
�
X

x2f0;1g

X

x� T2f0;1gd

pðx;x� TÞlog
2

1

pðxjx� TÞ
ð8Þ

¼
X

x2f0;1g

X

x� T2f0;1gd

pðx;x� TÞlog
2

pðxjx� TÞ
pðxÞ

ð9Þ

¼ limN!1
1

N

XN

n¼1

log
2

pðxtn
jx� Ttn
Þ

pðxtn
Þ

: ð10Þ

Here, xtn
2 f0; 1g indicates the presence of a spike in a small interval [tn, tn + Δt) with Δt = 5

ms throughout the paper, and x� Ttn
encodes the spiking history in a time window [tn − T, tn) at

times tn = nΔt that are shifted by Δt.
Definition of lagged mutual information. The lagged mutual information L(T) [41] for a

stationary neural spike trains is defined as the mutual information between present spiking X
and past spiking X−T with time lag T, i.e.

LðTÞ � IðX;X� TÞ ð11Þ

¼
X

x2f0;1g

X

x� T2f0;1g

pðx; x� TÞ log2

pðxjx� TÞ
pðxÞ ð12Þ

¼ lim
N!1

1

N

XN

n¼1

log
2

pðxtn
jxtn � T

Þ

pðxtn
Þ

: ð13Þ

Here, xtn
2 f0; 1g indicates the presence of a spike in a time bin [tn, tn + Δt) and xtn � T

2 f0; 1g

the presence of a spike in a single past bin [tn − T, tn − T + Δt) at times tn = nΔt that are shifted

by Δt. In analogy to R(T), one can apply the generalized timescale to the lagged mutual
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information to obtain a timescale τL with

tL �
Xn

i¼1

�Ti
LðTiÞPn
j¼1 LðTjÞ

� T0: ð14Þ

Definition of autocorrelation. The autocorrelation C(T) for a stationary neural spike

train is defined as

CðTÞ ¼
Cov½xtn

; xtn � T
�

Var½xtn
�
¼
hxtn

xtn � T
i � hxtn

i
2

hx2
tn
i � hxtn

i
2

ð15Þ

with time lag T and xtn
and xtn � T

as above. For an exponentially decaying autocorrelation

CðTÞ / exp � T
tC

� �
, τC is called autocorrelation time.

Past embedding. Here, we encode the spiking history in a finite time window [t − T, t) as

a binary sequence x� Tt ¼ ðx
� T
t;i Þ

d
i¼1

of binary spike counts x� Tt;i 2 f0; 1g in d past bins (Fig 2).

When more than one spike can occur in a single bin, x� Tt;i ¼ 1 is chosen for spike counts larger

than the median activity in the ith bin. This type of temporal binning is more generally

referred to as past embedding. It is formally defined as a mapping

GTðyÞ : F T ! Sd ð16Þ

from the set of all possible spiking histories FT ¼ sðX t : t 2 ½t � T; tÞÞ, i.e. the sigma algebra

generated by the point process X (neural spiking) in the time interval [t − T, t), to the set of d-

dimensional binary sequences Sd. We can drop the dependence on the time t because we

assume stationarity of the point process. Here, T is the embedded past range, d the embedding
dimension, and θ denotes all the embedding parameters that govern the mapping, i.e. θ = (d,

. . .). The resulting binary sequence at time t for given embedding θ and past range T will be

denoted by x� Tt;y : In this paper, we consider the following two embeddings for the estimation of

history dependence.

Uniform embedding. If all bins have the same bin width τ = T/d, the embedding is called

uniform. The main drawback of the uniform embedding is that higher past ranges T enforce a

uniform decrease in resolution when d is fixed.

Exponential embedding. One can generalize the uniform embedding by letting bin

widths increase exponentially with bin index j = 1, . . ., d according to τj = τ110(j−1)κ. Here, τ1

gives the bin size of the first past bin, and is uniquely determined when T, d and κ are specified.

Note that κ = 0 yields a uniform embedding, whereas κ> 0 decreases resolution on distant

past spikes. For fixed embedding dimension d and past range T, this allows to retain a higher

resolution on spikes in the more-recent past.

Sufficient embedding. Ideally, the past embedding preserves all the information that the

spiking history in the past range T has about the present spiking dynamics. In that case, no

additional past information has an influence on the probability for xt once the embedded spik-

ing history x� Tt;y is given, i.e.

pðxtjx� Tt;y ; x
� T
t;n Þ ¼ pðxtjx� Tt;y Þ ð17Þ

for any other past embedding x� Tt;n . If Eq (17) holds for all times t, the embedding ΓT(θ) is called

a sufficient embedding. For the remainder of this paper, the sequences of sufficient embed-

dings are denoted by x� Tt .
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Insufficient embeddings cause underestimation of history dependence. The past

embedding is essential when inferring history dependence from recordings, because an insuffi-

cient embedding causes underestimation of history dependence. To show this, we note that for

any embedding parameters θ and past range T the Kullback-Leibler divergence between the

spiking probability for the sufficient embedding pðxtjx� Tt Þ and pðxtjx� Tt;y Þ cannot be negative

[60], i.e.

DKL pðxtjx� Tt Þkpðxtjx� Tt;y Þ
h i

¼
X

xt2f0;1g

pðxtjx
� T
t Þ log2

pðxtjx� Tt Þ

pðxtjx� Tt;y Þ
� 0; ð18Þ

with equality iff pðxtjx� Tt;y Þ ¼ pðxtjx� Tt Þ. By taking the average over all times tn, we arrive at

0 � lim
N!1

1

N

XN

n¼1

X

xtn2f0;1g

pðxtn
jx� Ttn
Þ log

2

pðxtn
jx� Ttn
Þ

pðxtn
jx� Ttn;y
Þ

ð19Þ

¼ lim
N!1

1

N

XN

n¼1

X

xtn2f0;1g

pðxtn
jx� Ttn

; x� Ttn ;y
Þ log

2

1

pðxtn
jx� Ttn ;y
Þ

ð20Þ

� lim
N!1

1

N

XN

n¼1

X

xtn2f0;1g

pðxtn
jx� Ttn
Þ log

2

1

pðxtn
jx� Ttn
Þ

ð21Þ

¼ HðXjX� T
y
Þ � HðXjX� TÞ; ð22Þ

where the last step follows from stationarity and ergodicity and marginalizing out x� Ttn
in the

first term. From here, it follows that one always underestimates the history dependence in neu-

ral spiking, as long as the embedding is not sufficient, i.e.

RðT; yÞ � 1 �
HðXjX� T

y
Þ

HðXÞ
� 1 �

HðXjX� TÞ
HðXÞ

¼ RðTÞ: ð23Þ

Estimation of history dependence using past-embedding optimization

The past embedding is crucial in determining how much history dependence we can capture,

since an insufficient embedding θ leads to an underestimation of the history dependence R(T)

� R(T, θ). In order to capture as much history dependence as possible, the embedding θ
should be chosen to maximize the estimated history dependence R(T, θ). Since the history

dependence has to be estimated from data, we formulate the following embedding optimiza-

tion procedure in terms of the estimated history dependence R̂ðT; yÞ.
Embedding optimization. For given T, find the optimal embedding θ� that maximizes

the estimated history dependence

y
�
¼ arg max

y

R̂ðT; yÞ: ð24Þ

This yields an embedding-optimized estimate R̂ðTÞ ¼ R̂ðT; y�Þ of the true history dependence

R(T).

Requirements. Embedding optimization can only give sensible results if the optimized

estimates R̂ðT; yÞ are guaranteed to be unbiased or a lower bound to the true R(T, θ). Other-

wise, embeddings will be chosen that strongly overestimate history dependence. In this paper,
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we therefore use two estimators, BBC and Shuffling, the former of which is designed to be

unbiased, and the latter a lower bound to the true R(T, θ) (see below). In addition, embedding

optimization works only if the estimation variance is sufficiently small. Otherwise, maximizing

over variable estimates can lead to a mild overestimation. We found for a benchmark model

that this overestimation was negligibly small for a recording length of 90 minutes for a model

neuron with a 4 Hz average firing rate (S1 Fig). For smaller recording lengths, potential over-

fitting can be avoided by cross-validation, i.e. optimizing embeddings on one half of the

recording and computing embedding-optimized estimates on the other half.

Implementation. For the optimization, we compute estimates R̂ðT; d; kÞ for a range of

embedding dimensions d 2 [1, 2, . . ., dmax] and scaling parameters κ = [0, . . ., κmax]. For each

T, we then choose the optimal parameter combination d�, κ� for each T that maximizes the

estimated history dependence R̂ðT; d; kÞ, and use R̂ðT; d�; k�Þ as the best estimate of R(T).

Estimation of total history dependence and the information timescale. When estimat-

ing history dependence R(T) from data, there are some adjustments required to estimate the

total history dependence Rtot and the information timescale τR.

First, estimates R̂ðTÞ are not guaranteed to converge for large past ranges T, but might

decrease due to a reduced resolution of embeddings for higher T (Fig 2D). Thus, we estimated

an interval [TD, Tmax] for which estimates have converged. Here, the temporal depth TD and the

upper bound Tmax are the first and the last past ranges T for which estimates R̂ðTÞ are within

one standard deviation of the highest estimate R̂max, i.e. R̂ðTÞ � R̂max � sR̂max
(Fig 2D, vertical

blue bars). The standard deviation was estimated by bootstrapping (see Bootstrap confidence

intervals). From this interval, an estimate of the total history dependence R̂tot is obtained by

averaging R̂ðTÞ over past ranges T 2 [TD, Tmax] (Fig 2D, horizontal dashed blue line).

Second, noisy estimates R̂ðTÞ are not guaranteed to be monotonously increasing, hence

increments DR̂ðTÞ can be negative. Moreover, noisy estimates can lead to positive DR̂ðTÞ even

though the true R(T) has already converged to Rtot. This can have a huge effect on the esti-

mated information timescale t̂R if one simply uses these estimates in Eq (5). To avoid this, we

use knowledge about the behavior of the true R(T) when estimating ΔR(T). In particular, we

set estimates R̂ðTÞ equal to the largest previous estimate R̂ðT 0Þ for T 0 < T if they fall below it,

and equal to R̂tot if they are larger than R̂tot. This enforces that the estimated gain DR̂ðTÞ � 0 is

non-negative, and excludes spurious gain for high T due to noisy estimates.

Finally, the information timescale τR can crucially depend on the choice of the minimum

past range T0 in the sum in Eq (5). A T0 > 0 larger than zero allows to ignore short term effects

on the history dependence such as the refractory period or different firing modes, which we

found beneficial for resolving differences in the timescale among different neural systems (S15

Fig). In contrast, if the decay is truly exponential, then τR is independent of T0. In this paper,

we chose T0 = 10 ms to exclude short term effects, while also not excluding too much past

information.

Workflow. The estimation workflow using embedding optimization is summarized in

Fig 10.

Different estimators of history dependence

To estimate R(T, θ), one has to estimate the binary entropy of spiking H(X) in a small time bin

Δt, and the conditional entropy HðXjX� T
y
Þ from data. The estimation of the binary entropy

only requires the average firing probability p(x = 1) = rΔt with

ĤðXÞ ¼ � rDt log
2
rDt � ð1 � rDtÞ log

2
ð1 � rDtÞ; ð25Þ
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which can be estimated with high accuracy from the estimated average firing rate r even for

short recordings. The conditional entropy HðXjX� T
y
Þ, on the other hand, is much more diffi-

cult to estimate. In this paper, we focus on a non-parametric approach that estimates

HðXjX� T
y
Þ ¼ HðX;X� T

y
Þ � HðX� T

y
Þ ð26Þ

by a non-parametric estimation of the entropies HðX� T
y
Þ and HðX;X� T

y
Þ.

The estimation of entropy from data is a well-established problem, and we can make use of

previously developed entropy estimation techniques for the estimation of history dependence.

We here write out the estimation of the entropy term for joint sequences of present and past

spiking HðX;X� T
y
Þ, which is the highest-dimensional term and thus the hardest to estimate.

Estimation for the marginal entropy HðX� T
y
Þ is completely analogous.

Computing the entropy requires knowing the statistical uncertainty and thus the probabili-

ties for all possible joint sequences. In the following we will write probabilities as a vector

π ¼ ðpkÞ
K
k¼1

, where pk � pððx; x� T
y
Þ ¼ akÞ are the probabilities for the K = 2d+1 possible joint

spike patterns ak 2 {0, 1}d+1. The entropy HðX;X� T
y
Þ then reads

HðX;X� T
y
Þ ¼ HðπÞ ¼ �

XK

k¼1

pk log2
pk: ð27Þ

Once we are able to estimate the probability distribution π, we are able to estimate the entropy.

Fig 10. Workflow of past-embedding optimization to estimate history dependence and the information timescale. 1) Define a set of embedding parameters d, κ
for fixed past range T. 2) For each embedding d, κ, record sequences of current and past spiking xtn

; x� Ttn ;y
for all time steps tn in the recording. 3) Use the frequencies

of the recorded sequences to estimate history dependence for each embedding, either using maximum likelihood (ML), or fully Bayesian estimation (NSB). 4) Apply

regularization, i.e. the Bayesian bias criterion (BBC) or Shuffling bias correction, to ensure that all estimates are unbiased or lower bounds to the true history

dependence. 5) Select the optimal embedding to obtain an embedding-optimized estimate of R(T). 6) Repeat the estimation for a set of past ranges T to compute

estimates of the information timescale τR and the total history dependence Rtot.

https://doi.org/10.1371/journal.pcbi.1008927.g010
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In a non-parametric approach, the probabilities π ¼ ðpkÞ
K
k¼1

are directly inferred from counts

n ¼ ðnkÞ
K
k¼1

of different spike sequences ak within the spike recording. Each time step [tn, tn +

Δt) provides a sample of present spiking xtn
and its history x� Ttn ;y

, thus a recording of length Trec

provides N = (Trec − T)/Δt data points.

Maximum likelihood estimation. Most commonly, probabilities of spike sequences ak
are then estimated as the relative frequencies p̂k ¼ nk=N of their occurrence in the observed

data. It is the maximum likelihood (ML) estimator of π for the multinomial likelihood

pðnjπÞ /
YK

k¼1

p
nk
k : ð28Þ

Plugging the estimates p̂k into the definition of the entropy in Eq (27) results in the ML estima-

tor of the entropy

ĤMLðX;X
� T
y
Þ ¼ �

XK

k¼1

nk

N
log

2

nk

N
ð29Þ

or history dependence

R̂MLðT; yÞ ¼ 1 �
ĤMLðX;X

� T
y
Þ � ĤMLðX

� T
y
Þ

ĤðXÞ
: ð30Þ

The ML estimator has the right asymptotic properties [28, 61], but is known to underestimate

the entropy severely when data is limited [28, 62]. This is because all probability mass is

assumed to be concentrated on the observed outcomes. A more concentrated probability distri-

bution results in a smaller entropy, in particular if many outcomes have not been observed.

This results in a systematic underestimation or negative bias

Bias½ĤMLðX;X
� T
y
Þ� � 0: ð31Þ

The negative bias in the entropy, which is largest for the highest-dimensional joint entropy

ĤMLðX;X
� T
y
Þ, then typically leads to severe overestimation of the mutual information and his-

tory dependence [27, 63]. Because of this severe overestimation, we cannot use the ML estima-

tor for embedding optimization.

Bayesian Nemenman-Shafee-Bialek (NSB) estimator. In a Bayesian framework, the

entropy is estimated as the posterior mean or minimum mean square error (MMSE)

ĤMMSEðnÞ ¼
Z

dπHðπÞpðπjnÞ ¼
Z

dπHðπÞ
pðnjπÞpðπÞ

R
dπ0pðnjπ0Þpðπ0Þ

: ð32Þ

The posterior mean is the mean of the entropy with respect to the posterior distribution on the

probability vector π given the observed frequencies of spike sequences n

pðπjnÞ ¼
pðnjπÞpðπÞ

R
dπ0pðnjπ0Þpðπ0Þ

: ð33Þ

The probability p(n|π) for i.i.d. observations n from an underlying distribution π is given by

the multinomial distribution in Eq (28).

If the prior p(π) is a conjugate prior to the multinomial likelihood, then the high-dimen-

sional integral of Eq (32) can be evaluated analytically [32]. This is true for a class of priors
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called Dirichlet priors, and in particular for symmetric Dirichlet priors

pðπjbÞ /
YK

k¼1

p
b� 1

k : ð34Þ

The prior p(π|β) gives every outcome the same a priori weight, but controls the weight β> 0 of

uniform prior pseudo-counts. A β = 1 corresponds to a flat prior on all probability distribu-

tions π, whereas β! 0 gives maximum likelihood estimation (no prior pseudo-count).

It has been shown that the choice of β is highly informative with respect to the entropy, in

particular when the number of outcomes K becomes large [64]. This is because the a priori var-

iance of the entropy vanishes for K!1, thus for any π� p(π|β) the entropy H(π) is very

close to the a priori expected entropy

xðbÞ ¼

Z

dπHðπÞpðπjbÞ ¼ c0ðKbþ 1Þ � c0ðbþ 1Þ; ð35Þ

where cmðzÞ ¼ @
mþ1

z logGðzÞ are the polygamma functions. In addition, a lot of data is

required to counter-balance this a priori expectation. This is because the prior adds pseudo-

counts on every outcome, i.e. it assumes that every outcome has been observed β times prior to

inference. In order to influence a prior that constitutes K pseudo-counts, one needs at least

N> K samples, with more data required the sparser the true underlying distribution. There-

fore, an estimator of the entropy for little data and fixed concentration parameter β is highly

biased towards the a priori expected entropy ξ(β).

Nemenman et al. [33] exploited the tight link between concentration parameter β and the a

priori expected entropy to derive a mixture prior

pNSBðπÞ /
Z

db
�
�
�
@x

@b

�
�
�pðπjbÞ; ð36Þ

@x

@b
¼ Kc1ðKbþ 1Þ � c1ðbþ 1Þ; ð37Þ

that weights Dirichlet priors to be flat with respect to the expected entropy ξ(β). Since the vari-

ance of this expectation vanishes for K� 1 [64], for high K the prior is also approximately flat

with respect to the entropy, i.e. HðπÞ � Uð0; log
2
KÞ for π� pNSB(π). The resulting MMSE

estimator for the entropy is referred to as the NSB estimator

ĤNSBðnÞ ¼
Z

dπHðπÞ
pðnjπÞpNSBðπÞR

dπ0pðnjπ0ÞpNSBðπ0Þ
ð38Þ

¼

R
db dx

db ðbÞĤðbÞrðb; nÞR
db0 dxdb ðb

0
Þrðb

0
; nÞ

: ð39Þ

Here, ρ(β, n) is proportional to the evidence for given concentration parameter

rðb; nÞ≔
GðKbÞ

GðN þ KbÞ

YK

i¼1

Gðni þ bÞ

GðbÞ
ð40Þ

/

Z

dπ pðnjπÞ pðπjbÞ ¼ pðnjbÞ; ð41Þ

where Γ(x) is the gamma function. The posterior mean of the entropy for given concentration
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parameter is

ĤðbÞ ¼
XK

i¼1

ni þ b

N þ Kb
½c0ðN þ Kbþ 1Þ � c0ðni þ bþ 1Þ�: ð42Þ

From the Bayesian entropy estimate, we obtain an NSB estimator for history dependence

R̂NSBðT; yÞ ¼ 1 �
ĤNSBðX;X

� T
y
Þ � ĤNSBðX

� T
y
Þ

ĤðXÞ
; ð43Þ

where the marginal and joint entropies are estimated individually using the NSB method.

To compute the NSB entropy estimator, one has to perform a one-dimensional integral

over all possible concentration parameters β. This is crucial to be unbiased with respect to the

entropy. An implementation of the NSB estimator for Python3 is published alongside the

paper with our toolbox [37]. To compute the integral, we use a Gaussian approximation

around the maximum a posteriori β� to define sensible integration bounds when the likelihood

is highly peaked, as proposed in [34].

Bayesian bias criterion. The goal of the Bayesian bias criterion (BBC) is to indicate when

estimates of history dependence are potentially biased. It might indicate bias even when esti-

mates are unbiased, but the opposite should never be true.

To indicate a potential estimation bias, the BBC compares ML and NSB estimates of the his-

tory dependence. ML estimates are biased when too few joint sequences have been observed,

such that the probability for unobserved or undersampled joint outcomes is underestimated.

To counterbalance this effect, the NSB estimate adds β pseudo-counts to every outcome, and

then infers β with an uninformative prior. For the BBC, we turn the idea around: when the

assumption of no pseudo-counts (ML) versus a posterior belief on non-zero pseudo-counts

(NSB) yield different estimates of history dependence, then too few sequences have been

observed and estimates are potentially biased. This motivates the following definition of the

BBC.

The NSB estimator RNSB(T, θ) is biased with tolerance p> 0, if

jR̂NSBðT; yÞ � R̂MLðT; yÞj > p � R̂NSBðT; yÞ: ð44Þ

Similarly, we define the BBC estimator

R̂BBCðT; yÞ �

(
R̂NSBðT; yÞ if jR̂NSBðT; yÞ � R̂MLðT; yÞj � p � R̂NSBðT; yÞ;

0 otherwise:
ð45Þ

This estimator is designed to be unbiased, and thus can be used for embedding optimization

in Eq (24). We use the NSB estimator for R(T, θ) instead of the ML estimator, because it is gen-

erally less biased. A tolerance p> 0 accounts for this, and accepts NSB estimates when there is

only a small difference between the estimates. The bound for the difference is multiplied by

R̂NSBðT; yÞ, because this provides the scale on which one should be sensitive to estimation bias.

We found that a tolerance of p = 0.05 was small enough to avoid overestimation by BBC esti-

mates on the benchmark model (Fig 5 and S1 Fig).

Shuffling estimator. The Shuffling estimator was originally proposed in [31] to reduce

the sampling bias of the ML mutual information estimator. It has the desirable property that it

is negatively biased in leading order of the inverse number of samples. Because of this prop-

erty, Shuffling estimates can safely be maximized during embedding optimization without the
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risk of overestimation. Here, we therefore propose to use the Shuffling estimator for embed-

ding-optimized estimation of history dependence.

The idea behind the Shuffling estimator is to rewrite the ML estimator of history depen-

dence as

R̂MLðT; yÞ ¼
1

ĤðXÞ
ĤMLðX

� T
y
Þ � ĤMLðX

� T
y
jXÞ

� �
ð46Þ

and to correct for bias in the entropy estimate ĤMLðX
� T
y
jXÞ. Since X is well sampled and thus

ĤðXÞ is unbiased, and the bias of the ML entropy estimator is always negative [28, 61], we

know that

Bias½R̂MLðT; yÞ� ¼ Bias½ĤMLðX
� T
y
Þ� � Bias½ĤMLðX

� T
y
jXÞ� ð47Þ

� � Bias½ĤMLðX
� T
y
jXÞ�: ð48Þ

Therefore, if we find a correction term of the magnitude of Bias½ĤMLðX
� T
y
jXÞ�, we can turn the

bias in the estimate of the history dependence from positive to negative, thus obtaining an esti-

mator that is a lower bound of the true history dependence. This can be achieved by subtract-

ing a lower bound of the estimation bias Bias½ĤMLðX
� T
y
jXÞ� from ĤMLðX

� T
y
jXÞ.

In the following, we describe how [31] obtain a lower bound of the bias in the conditional

entropy ĤMLðX
� T
y
jXÞ by computing the estimation bias for shuffled surrogate data.

Surrogate data are created by shuffling recorded spike sequences such that statistical depen-

dencies between past bins are eliminated. This is achieved by taking all past sequences that

were followed by a spike, and permuting past observations of the same bin index j. The same is

repeated for all past sequences that were followed by no spike. The underlying probability dis-

tribution can then be computed as

pshðx� Ty jxÞ ¼
Yd

j¼1

pðx� T
y;j jxÞ; ð49Þ

and the corresponding entropy is

HðX� T
y;shjXÞ ¼

Xd

j¼1

HðX� T
y;j jXÞ: ð50Þ

The pairwise probabilities pðx� T
y;j jxÞ are well sampled, and thus each conditional entropy in the

sum can be estimated with high precision. This way, the true conditional entropy HðX� T
y;shjXÞ

for the shuffled surrogate data can be computed and compared to the ML estimate

ĤMLðX
� T
y;shjXÞ on the shuffled data. The difference between the two

DĤMLðX
� T
y;shjXÞ� � ĤMLðX

� T
y;shjXÞ � HðX� T

y;shjXÞ ð51Þ

yields a correction term that is on average equal to the bias of the ML estimator on the shuffled

data.

Importantly, the bias of the ML estimator on the shuffled data is in leading order more neg-

ative than on the original data. To see this, we consider an expansion of the bias on the
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conditional entropy in inverse powers of the sample size N [27, 63]

Bias½ĤMLðX
� T
y
jXÞ� ¼ �

1

2N ln 2

X

x2f0;1g

~KðxÞ � 1
� �

þO
1

N2

� �

: ð52Þ

Here, ~KðxÞ denotes the number of past sequences with nonzero probability pðx� T
y
¼ akjxÞ > 0

of being observed when followed by a spike (x = 1) or no spike (x = 0), respectively. Notably,

the bias is negative in leading order, and depends only on the number of possible sequences

~KðxÞ. For the shuffled surrogate data, we know that pshðx� Ty ¼ akjxÞ ¼ 0 implies

pðx� T
y
¼ akjxÞ ¼ 0, but Shuffling may lead to novel sequences that have zero probability

otherwise. Hence the number of possible sequences under Shuffling can only increase, i.e.

~K shðxÞ � ~KðxÞ, and thus the bias of the ML estimator under Shuffling to first order is always

more negative than for the original data

Bias½ĤMLðX
� T
y;shjXÞ�≾Bias½ĤMLðX

� T
y
jXÞ�: ð53Þ

Terms that could render it higher are of order OðN � 2Þ and are assumed to have no practical

relevance.

This motivates the following definition of the Shuffling estimator: Compute the difference

between the ML estimator on the shuffled and original data to yield a bias-corrected Shuffling

estimate

ĤML;shðX
� T
y
jXÞ � ĤMLðX

� T
y
jXÞ � DĤMLðX

� T
y;shjXÞ; ð54Þ

and use this to estimate history dependence

R̂ShufflingðT; yÞ �
1

ĤðXÞ
ĤMLðX

� T
y
Þ � ĤML;shðX

� T
y
jXÞ

� �
: ð55Þ

Because of Eqs (48) and (53), we know that this estimator is negatively biased in leading order

Bias½R̂ShufflingðT; yÞ� ≾ 0 ð56Þ

and can safely be used for embedding optimization.

Estimation of history dependence by fitting a generalized linear model (GLM).

Another approach to the estimation of history dependence is to model the dependence of neu-

ral spiking onto past spikes explicitly, and to fit model parameters to maximize the likelihood

of the observed spiking activity [21]. For a given probability distribution pðxtjx� Tt ; nÞ of the

model with parameters ν, the conditional entropy can be estimated as

ĤðXjX� T; nÞ ¼
1

N

XN

n¼1

log
2
pðxtn
jx� Ttn

; nÞ
� 1

ð57Þ

which one can plug into Eq (6) to obtain an estimate of the history dependence. The strong

law of large numbers [59] ensures that if the model is correct, i.e. pðxtjx� Tt ; nÞ ¼ pðxtjx� Tt Þ for

all t, this estimator converges to the entropy H(X|X−T) for N!1. However, any deviations

from the true distribution due to an incorrect model will lead to an underestimation of history

dependence, similar to choosing an insufficient embedding. Therefore, model parameters

should be chosen to maximize the history dependence, or to maximize the likelihood

n� ¼ arg max
n

XN

n¼1

log
2
pðxtn
jx� Ttn

; nÞ: ð58Þ
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We here consider a generalized linear model (GLM) with exponential link function that has

successfully been applied to make predictions in neural spiking data [20] and can be used for

the estimation of directed, causal information [21]. In a GLM with past dependencies, the spik-

ing probability at time t is described by the instantaneous rate or conditional intensity func-

tion

lðtjx� Tt ; nÞ ¼ lim
dt!0

pð̂t 2 ½t; t þ dt�jx� Tt ; nÞ

dt
: ð59Þ

Since we discretize spiking activity in time as spiking or non-spiking in a small time window

Δt, the spiking probability is given by the binomial probability

pðxt ¼ 1jx� Tt ; nÞ ¼
lðtjx� Tt ; nÞDt

1þ lðtjx� Tt ; nÞDt
: ð60Þ

The idea of the GLM is that past events contribute independently to the probability of spiking,

such that the conditional intensity function factorizes over their contributions. Hence, it can

be written as

lðtjx� Tt ; m; hÞ ¼ exp mþ
Xd

j¼1

hjx
� T
t;j

 !

; ð61Þ

where hj gives the contribution of past activity x� Tt;j in past time bin j to the firing rate, and μ is

an offset that is adapted to match the average firing rate.

Although fitting GLM parameters is more data-efficient than computing non-parametric

estimates, overfitting may occur for limited data and high embedding dimensions d, hence d
cannot be chosen arbitrarily high. In order to estimate a maximum of history dependence for

limited d, we apply the same type of binary past embedding as we use for the other estimators,

and optimize the embedding parameters by minimizing the Bayesian information criterion

[65]. In particular, for given past range T, we choose embedding parameters d�, κ� that mini-

mize

BICðd; kÞ ¼ ðd þ 1Þ log
2
N � 2L�ðd; kÞ; ð62Þ

where N is the number of samples and

L�ðd; kÞ ¼
XN

n¼1

log
2
pðxtn
jx� Ttn ;d;k

; m�; h�Þ ð63Þ

is the maximized log-likelihood of the recorded spike sequences ðxtn
; x� Ttn ;d;k

Þ
N
n¼1

for optimal

model parameters μ�, h�. We then use the optimized embedding parameters to estimate the

conditional entropy according to

ĤGLMðXjX
� T
d� ;k� Þ ¼ �

1

N
L�ðd�; k�Þ; ð64Þ

which results in the GLM estimator of history dependence

R̂GLMðTÞ ¼ 1 �
ĤGLMðXjX

� T
d� ;k� Þ

ĤðXÞ
: ð65Þ
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Bootstrap confidence intervals. In order to estimate confidence intervals of estimates

R̂ðT; yÞ for given past embeddings, we apply the blocks of blocks bootstrap method [66]. To

obtain bootstrap samples, we first compute all the binary sequences ðxtn
; x� Ttn ;y
Þ for n = 1, . . ., N

that result from discretizing the spike recording in N time steps Δt and applying the past

embedding. We then randomly draw N/l blocks of length l of the recorded binary sequences

such that the total number of redrawn sequences is the same as the in the original data. We

choose l to be the average interspike interval (ISI) in units of time steps Δt, i.e. l = 1/(rΔt) with

average firing rate r. Sampling successive sequences over the typical ISI ensures that bootstrap

samples are representative of the original data, while also providing a high number of distinct

blocks that can be drawn.

The different estimators (but not the bias criterion) are then applied to each bootstrap sam-

ple to obtain confidence intervals of the estimates. Instead of computing the 95% confidence

interval via the 2.5 and 97.5 percentiles of the bootstrapped estimates, we assumed a Gaussian

distribution and approximated the interval via ½R̂ðT; yÞ � 2ŝRðT; yÞ; R̂ðT; yÞ þ 2ŝRðT; yÞ�,
where ŝRðT; yÞ is the standard deviation over the bootstrapped estimates.

We found that the true standard deviation of estimates for the model neuron was well esti-

mated by the bootstrapping procedure, irrespective of the recording length (S10 Fig). Further-

more, we simulated 100 recordings of the same recording length, and for each computed

confidence interval for the past range T with the highest estimated history dependence R(T).

By measuring how often the model’s true value for the same embedding was included in these

intervals, we found that the Gaussian confidence intervals are indeed close to the claimed con-

fidence level (S10 Fig). This indicates that the bootstrap confidence intervals approximate well

the uncertainty associated with estimates of history dependence.

Cross-validation. For small recording lengths, embedding optimization may cause over-

fitting through the maximization of variable estimates (S1 Fig). To avoid this type of overesti-

mation, we apply one round of cross-validation, i.e. we optimize embeddings over the first half

of the recording, and evaluate estimates for the optimal past embedding on the second half.

We chose this separation of training and evaluation data sets, because it allows the fastest com-

putation of binary sequences ðxtn
; x� Ttn ;y
Þ for the different embeddings during optimization. We

found that none of the cross-validated embedding-optimized estimates were systematically

overestimating the true history dependence for the benchmark model for recordings as short

as three minutes (S1 Fig). Therefore, cross-validation allows to apply embedding optimization

to estimate history dependence even for short recordings.

Benchmark neuron model

Generalized leaky integrate-and-fire neuron with spike-frequency adaptation. As a

benchmark model, we chose a generalized leaky integrate-and-fire model (GLIF) with an addi-

tional adaptation filter ξ (GLIF-ξ) that captures spike-frequency adaptation over 20 seconds

[43].

For a standard leaky integrate-and-fire neuron, the neuron’s membrane is formalized as an

RC circuit, where the cell’s lipid membrane is modeled as a capacitance C, and the ion chan-

nels as a resistance that admits a leak current with effective conductance gL. Hence, the tempo-

ral evolution of the membrane’s voltage V is governed by

C _V ¼ � gLðV � VRÞ þ IextðtÞ: ð66Þ

Here, VR denotes the resting potential and Iext(t) external currents that are induced by some

external drive. The neuron emits an action potential (spike) once the neuron crosses a voltage
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threshold VT, where a spike is described as a delta pulse at the time of emission t̂ . After spike

emission, the neuron returns to a reset potential V0. Here, we do not incorporate an explicit

refractory period, because interspike intervals in the simulation were all larger than 10 ms. For

constant input current Iext, integrating Eq (66) yields the membrane potential between two

spiking events

VðtÞ ¼ V1 þ ðV0 � V1Þe� gðt� t̂0Þ; ð67Þ

where t̂0 is the time of the most recent spike, γ = gL/C the inverse membrane timescale and

V1 = VR + Iext/γ the equilibrium potential.

In contrast to the LIF, the GLIF models the spike emission with a soft spiking threshold. To

do that, spiking is described by an inhomogeneous Poisson process, where the spiking proba-

bility in a time window of width δt� 1 is given by

pðt̂ 2 ½t; t þ dt�Þ ¼ 1 � exp
Z tþdt

t
lðsÞds

� �

� lðtÞdt: ð68Þ

Here, the spiking probability is governed by the time dependent firing rate

lðtÞ ¼ l0 exp
VðtÞ � VTðtÞ

DV

� �

: ð69Þ

The idea is that once the membrane potential V(t) approaches the firing threshold VT(t), the

firing probability increases exponentially, where the exponential increase is modulated by

1/ΔV. For ΔV! 0, we recover the deterministic LIF, while for larger ΔV the emission becomes

increasingly random.

In the GLIF-ξ, the otherwise constant threshold V�T is modulated by the neuron’s own past

activity according to

VTðtÞ ¼ V�T þ
X

t̂ j<t

xðt � t̂ jÞ: ð70Þ

Thus, depending on their spike times t̂ j, emitted action potentials increase or decrease the

threshold additively and independently according to an adaptation filter ξ(t). In the experi-

ments conducted in [43], the following functional form for the adaptation filter was extracted:

x sð Þ ¼
ax ; if 0 < s � Tx

ax s
Tx

� �� bx
; if Tx < s < 22s:

8
<

:
ð71Þ

The filter is an effective model not only for the measured increase in firing threshold, but also

for spike-triggered currents that reduce the membrane potential. When mapped to the effec-

tive adaptation filter ξ, it turned out that past spikes lead to a decrease in firing probability that

is approximately constant over a period Tξ = 8.3 ms, after which it decays like a power-law

with exponent βξ = 0.93, until the contributions are set to zero after 22 s.

Model variant with 1 s past kernel. For demonstration, we also simulated a variant of the

above model with a 1 s past kernel

x
1s
ðsÞ ¼

a1s
x

; if 0 < s � Tx

a1s
x

s
Tx

� �� bx
; if Tx < s < 1 s:

8
><

>:
ð72Þ
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All parameters are identical apart from the strength of the kernel a1s
x
¼ 35:2mV, which was

adapted to maintain a firing rate of 4 Hz despite the shorter kernel.

Simulation details. In order to ensure stationarity, we simulated the model neuron

exposed to a constant external current Iext = const. over a total duration of Trec = 900 min.

Thereby, the current Iext was chosen such that the neuron fired with a realistic average firing

rate of 4 Hz. During the simulation, Eq (66) was integrated using simple Runge-Kutta integra-

tion with an integration time step of δt = 0.5 ms. At every time step, random spiking was mod-

eled as a binary variable with probability as in Eq (68). After a burning-in time of 100 s, spike

times were recorded and used for the estimation of history dependence. The detailed simula-

tion parameters can be found in Table 1.

Computation of the total history dependence. In order to determine the total history

dependence in the simulated spiking activity, we computed the conditional entropy H(X|X−1)

from the conditional spiking probability in Eq (68) that was used for the simulation. Note that

this is only possible because of the constant input current, otherwise the conditional spiking

probability would also capture information about the external input.

Since the conditional probability of spiking used in the simulation computes the probability

in a simulation step δt = 0.5 ms, we first have to transform this to a probability of spiking in

the analysis time step Δt = 5 ms. To do so, we compute the probability of no spike in a time

step [t, t + Δt) according to

psimðxt ¼ 0jx� 1t Þ ¼
YDt=dt

j¼1

½1 � ~lðt þ ðj � 1ÞdtÞdt�; ð73Þ

and then compute the probability of at least one spike by pðxt ¼ 1jx� 1t Þ ¼ 1 � pðxt ¼ 0jx� 1t Þ.
Here, the rate ~lðtÞ is computed as λ(t) in Eq (69), but only with respect to past spikes that are

emitted at times t̂ < t. This is because no spike that occurs within [t, t + Δt) must be consid-

ered when computing psimðxt ¼ 0jx� 1t Þ.
For sufficiently long simulations, one can make use of the SLLN to compute the conditional

entropy

HsimðXjX
� 1Þ ¼ �

1

N

XN

n¼1

log
2
psimðxtn

jx� 1tn Þ; ð74Þ

Table 1. Simulation parameters of the GLIF-ξ model.

Term Description Value Units

λ0 Latency 2.0 ms−1

1/γ Membrane timescale 15.3 ms

V1 Equilibrium potential -45.9 mV

V0 Reset potential -38.8 mV

V�T Firing threshold baseline -51.9 mV

ΔV Firing threshold sharpness 0.75 mV

αξ Magnitude of the effective adaptation filter ξ 19.3 mV

βξ Scaling exponent of the effective adaptation filter ξ 0.93 -

Tξ Cutoff of the effective adaptation filter ξ 8.3 ms

δt Simulation step 0.5 ms

The parameters were originally extracted from experimental recordings of (n = 14) L5 pyramidal neurons [43].

https://doi.org/10.1371/journal.pcbi.1008927.t001
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and thus the total history dependence

Rtot ¼ 1 �
HsimðXjX

� 1Þ

ĤðXÞ
; ð75Þ

which gives an upper bound to the history dependence for any past embedding.

Computation of history dependence for given past embedding. To compute history

dependence for given past embedding, we use that the model neuron can be well approximated

by a generalized linear model (GLM) within the parameter regime of our simulation. We can

thus fit a GLM to the simulated data for the given past embedding T, d, κ to obtain a good

approximation of the corresponding true history dependence R(T, d, κ). Note that this is a spe-

cific property if this model and does not hold in general. For example in experiments, we

found that the GLM accounted for less history dependence than model-free estimates (Fig 6).

To map the model neuron to a GLM, we plug the membrane and threshold dynamics of

Eqs (67) and (70) into the equation for the firing rate Eq (69), i.e.

lðtÞ ¼ exp log l0 þ V1 � V�T þ
X

t̂ j<t

xðt � t̂ jÞ þ ðV0 � V1Þe
� gðt� t̂0Þ

0

@

1

A: ð76Þ

For the parameters used in the simulation, the decay time of the reset term V0 − V1 is 1/γ =

15.3 ms. When compared to the minimum and mean inter-spike intervals of ISImin = 25 ms

and ISI ¼ 248ms, it is apparent that the probability for two spikes to occur within the decay

time window is negligibly small. Therefore, one can safely approximate

ðV0 � V1Þe� gðt� t̂0Þ �
X

t̂ j<t

ðV0 � V1Þe
� gðt� t̂ jÞ;

ð77Þ

i.e. describing the potential reset after a spike as independent of other past spikes, because con-

tributions beyond the last spike (j> 0) are effectively zero. Using the above approximation,

one can formulate the rate as in a generalized linear model with

lðtÞ ¼ exp mþ
Xd

j¼1

hjx
�

t;j

 !

; ð78Þ

where

m ¼ log l0 þ V1 � V�T ð79Þ

hj ¼ xðjdtÞ þ ðV0 � V1Þe� gjdt; ð80Þ

and x�t;j 2 f0; 1g indicates whether the neuron spiked in [t − jδt, t − (j − 1)δt). Therefore, the

true spiking probability of the model is well described by a GLM.

We use this relation to approximate the history dependence R(T, d, κ) for any past embed-

ding T, d, κ with a GLM with the same past embedding. Since in that case the parameters μ
and h are not known, we fitted them to the simulated 900 minute recording via maximum like-

lihood (see above) and computed the history dependence according to

R̂GLMðT; d; kÞ ¼ 1 �
ĤGLMðXjX

� T
d;kÞ

ĤðXÞ
: ð81Þ
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Computation of history dependence as a function of the past range. To approximate

the model’s true history dependence R(T), for each T we computed GLM estimates

R̂GLMðT; d; kÞ (Eq 81) for a varying number of past bins d 2 [25, 50, 75, 100, 125, 150]. For

each d, the scaling κ was chosen such that the size of the first past bin was equal or less than 0.5

ms. To save computation time, and to reduce the effect of overfitting, the GLM parameters

where fitted on 300 minutes of the simulation, whereas estimates R̂GLMðT; d; kÞ were computed

on the full 900 minutes of the simulated recording. For each T, we then chose the highest esti-

mate R̂GLMðT; d; kÞ among the estimates for different d as the best estimate of the true R(T).

Experimental recordings

We analyzed neural spike trains from in vitro recordings of rat cortical cultures and salaman-

der retina, as well as in vivo recordings in rat dorsal hippocampus (layer CA1) and mouse pri-

mary visual cortex. For all recordings, we only analyzed sorted units with firing rates between

0.5 Hz and 10 Hz to exclude the extremes of either inactive units or units with very high firing

rate.

Rat cortical culture. Neurons were extracted from rat cortex (1 st day postpartum) and

recorded in vitro on an electrode array 2–3 weeks after plating day. We took data from five

consecutive sessions (L_Prg035_txt_nounstim.txt, L_Prg036_txt_nounstim.
txt, . . ., L_Prg039_txt_nounstim.txt) with a total duration of about Trec� 203 min.

However, we only analyzed the first 90 minutes to make the results comparable to the other

neural systems. We analyzed in total n = 48 sorted units that satisfied our requirement on the

firing rate. More details on the recording procedure can be found in [67], and details on the

data set proper can be found in [49].

Salamander retina. Spikes from larval tiger salamander retinal ganglion cells were

recorded in vitro by extracting the entire retina on an electrode array [68], while a non-

repeated natural movie (leaves moving in the wind) was projected onto the retina. The record-

ing had a total length of about Trec� 82 min, and we analyzed in total n = 111 sorted units that

satisfied our requirement on the firing rate. More details on the recording procedure and the

data set can be found in [47, 48]. The spike recording was obtained from the Dryad database

[47].

Rat dorsal hippocampus (layer CA1). We evaluated spike trains from a multichannel

simultaneous recording made from layer CA1 of the right dorsal hippocampus of a Long-

Evans rat during an open field task (data set ec014.277). The data set provided sorted spikes

from 8 shanks with 64 channels. The recording had a total length of about Trec� 90 min. We

analyzed in total n = 28 sorted units that were indicated as single units and satisfied our

requirement on the firing rate. More details on the experimental procedure and the data set

can be found in [45, 46]. The spike recording was obtained from the NSF-founded CRCNS

data sharing website.

Mouse primary visual cortex. Neurons were recorded in vivo during spontaneous behav-

ior, while face expressions were monitored. Recordings were obtained by 8 simultaneously

implanted Neuropixel probes, and sorted units were located using the location of the electrode

contacts provided in [50], and the Allen Mouse Common Coordinate Framework [69]. We

analyzed in total n = 142 sorted units from the mouse “Waksman” that belonged to primary

visual cortex (irrespective of their layer) and satisfied our requirement on the firing rate. Sec-

ond, we only selected units that were recorded for more than Trec� 40 min (difference

between the last and first recorded spike time). Details on the recording procedure and the

data set can be found in [58] and [50].
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Parameters used for embedding optimization

The embedding dimension or number of bins was varied in a range d 2 [1, dmax], where dmax

was either dmax = 20, dmax = 5 (max five bins) or dmax = 1 (one bin). During embedding optimi-

zation, we explored Nκ = 10 linearly spaced values of the exponential scaling κ within a range

[0, κmax(d)]. The maximum κmax(d) was chosen for each number of bins d 2 [1, dmax] such

that the bin size of the first past bin was equal to a minimum bin size, i.e. τ1 = τ1,min, which we

chose to be equal to the time step τ1,min = Δt = 5 ms. To save computation time, we did not

consider any embeddings with κ> 0 if the past range T and d were such that τ1(κmax(d))� Δt
for κ = 0. Similarly, for given T and each d, we neglected values of κ during embedding optimi-

zation if the difference Δκ to the previous value of κ was less than Δκmin = 0.01. In Table 2 we

summarize the relevant parameters that were used for embedding optimization.

Details to Fig 3. For Fig 3B, the process was considered for l = 1 and an reactivation prob-

ability of m = 0.8. For l = 1, all probabilities can easily be calculated, with marginal probability

to be active p(xt = 1) = h/(1 −m + mh), and conditional probabilities p(xt = 1|xt−1 = 1) = h + (1

− h)m and p(xt = 1|xt−1 = 0) = h. From these probabilities, the total mutual information Itot and

total history dependence Rtot could be directly computed. We then plotted these quantities as a

function of h, where values of h were chosen to vary the firing rate between 0.5 and 10 Hz,

with a bin size of Δt = 5 ms. For Fig 3C, the binary autoregressive process was simulated for

n = 107 time steps with m = 0.8 (l = 1), whereas for l = 5, m was adapted to yield approximately

the same Rtot as for l = 1. The input activation probability h was chosen to lead to a fixed proba-

bility p(x = 1)� 0.025, corresponding to 5 Hz firing rate with Δt = 5 ms. Autocorrelation C(T)

was computed using the MR.estimator toolbox [52], and ΔR(T) and L(T) were estimated using

plugin estimation. For Fig 3D, the same procedures were applied as in Fig 3C, but now m was

varied between 0.5 and 0.95, and h was adapted for each m to hold the firing rate fixed at 5 Hz.

For Fig 3E, the same procedures were applied as in Fig 3C, but now l was varied between 1 and

10, and h and m were adapted for each l to hold the firing rate fixed at 5 Hz and Rtot fixed at

the value for l = 1 and m = 0.8.

Details to Fig 4A and 4B. The branching process was simulated using the MR.estimator

toolbox, with a time step of Δt = 4 ms, population rate of 500 Hz and subsampling probability

of 0.01. Thus, the subsampled spike train had a firing rate of� 5 Hz. The branching parameter

was set to m = 0.98 with analytic autocorrelation time τC(m) = 198 ms. For a long simulation,

autocorrelation C(T) was computed using the MR.estimator toolbox, L(T) using plugin

Table 2. Parameters used for embedding optimization.

Symbol Value Settings variable name Description

Δt 0.005 embedding_step_size Time step (in seconds) for the discretization of neural spiking activity.

d 1, 2, . . ., dmax embedding_number_of_bins_set Set of embedding dimensions.

Nκ 10 number_of_scalings Number of linearly spaced values of the exponential scaling κ.

τ1,min 0.005 min_first_bin_size Minimum bin size (in seconds) of the first past bin.

Δκmin 0.01 min_step_for_scaling Minimum required difference between two values of κ.

p 0.05 bbc_tolerance Tolerance for the acceptance of estimates for BBC.

- False cross_validated_optimization Is cross-validation used for optimization or not.

- 250 number_of_bootstraps_R_max Number of bootstrap samples used to estimate sR̂max
.

l 1/rΔt block_length_l Block length used for blocks-of-blocks bootstrapping.

- all estimation_method Estimators for which embeddings are optimized (BBC, Shuffling)

To facilitate reproduction, we added the settings variable names of the parameters as they are used in the toolbox [37].

https://doi.org/10.1371/journal.pcbi.1008927.t002
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estimation, and R(T) using the embedding-optimized Shuffling estimator with dmax = 20. The

generalized timescales τR and τL were computed with T0 = 10 ms.

Details to Fig 4C and 4D. The Izhikevich model was simulated with the PyNN tool-

box [70], with parameters set to the chattering mode (a = 0.02, b = 0.2, c = −50, d = 2), simula-

tion time bin dt = 0.01 ms, and noisy input with mean 0.011 and standard deviation 0.001. For

the analysis, a time step of Δt = 1 ms was chosen. Apart from that, C(T) and L(T) were com-

puted as for Fig 4B. Here, R(T) was computed with BBC and dmax = 20, which revealed higher

Rtot than Shuffling. To compute τR, we set T0 = 0.

Details to Fig 4E and 4F. The GLIF model was simulated as described in Benchmark neu-

ron model (model with 22 s past kernel). The analysis time step was Δt = 5 ms. Apart from

that, C(T) and L(T) were computed as for Fig 4B. History dependence R(T) was estimated

using a GLM as described in Benchmark neuron model. To compute τR, we set T0 = 10 ms.

Details to Fig 5A and 5B. In Fig 5A and 5B, we applied the ML, NSB, BBC and Shuffling

estimators of R(τ, d) to a simulated recording of 90 minutes. Embedding parameters were T =

d � τ and κ = 0, with τ = 20 ms and d 2 [1, 60]. Since the goal was to show the properties of the

estimators, confidence intervals were estimated from 50 repeated 90 minute simulations

instead of bootstrap samples from the same recording. Each simulation had a burning in

period of 100 seconds. To estimate the true R(τ, d), a GLM was fitted on a 300 minute record-

ing and evaluated on the full 900 minute recording for the estimation of R.

Details to Fig 5C. In Fig 5C, history dependence R(T) was estimated on a 90 minute

recording for 57 different values of T in a range T 2 [10 ms, 3 s]. Embedding-optimized esti-

mates were computed with up to dmax = 25 past bins, and 95% confidence intervals were com-

puted using the standard deviation over n = 100 bootstrap samples (see Bootstrap confidence

intervals). To estimate the true R(T, d�, κ�) for the optimized embedding parameters d�, κ�

with either BBC or Shuffling, a GLM was fitted for the same embedding parameters on a 300

minute recording and evaluated on 900 minutes recording for the estimation of R.

Details to Fig 6. For Fig 6, history dependence R(T) was estimated for 61 different values

of T in a range T 2 [10 ms, 5 s]. For each recording, we only analyzed the first 90 minutes to

have a comparable recording length. For embedding optimization, we used dmax = 20 as a

default for BBC and Shuffling, and compared the estimates with the Shuffling estimator opti-

mized for dmax = 5 (max five bins) and dmax = 1 (one bin). For the GLM, we only estimated

R(TD) for the temporal depth TD that was estimated with BBC. To optimize the estimate, we

computed GLM estimates of R(TD) with the optimal embedding found by BBC, and for vary-

ing embedding dimension d 2 [1, 2, 3, ‥, 20, 25, 30, 35, 40, 45, 50], where for each d we chose

κ such that τ1 = Δt. We then chose the embedding that minimized the BIC, and took the corre-

sponding estimate R̂ðTDÞ as a best estimate for Rtot. For Fig 6A, we plotted only spike trains of

channels that were identified as single units. For Fig 6B, 95% confidence intervals were com-

puted using the standard deviation over n = 100 bootstrap samples. For Fig 6C, embedding-

optimized estimates with uniform embedding (κ = 0) were computed with dmax = 20 (BBC

and Shuffling) or dmax = 5 (Shuffling). Medians were computed over the n = 28 sorted units in

CA1.

Details to Figs 7 and 8. For Figs 7 and 8, history dependence was R(T) was estimated for

61 different values of T in a range T 2 [10 ms, 5 s] using the Shuffling estimator with dmax = 5.

The autocorrelation coefficients C(T) were computed with the MR.Estimator toolbox [52],

and the autocorrelation time τC was obtained using the exponential_offset fitting

function. For each recording, we only analyzed the first 40 minutes to have a comparable

recording length. For Fig 7, medians of τR, τC and Rtot were computed over all sorted units that

were analyzed, and 95% confidence intervals on the medians were obtained by bootstrapping
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with n = 10000 resamples of the median. For Fig 8, 95% confidence intervals were computed

using the standard deviation over n = 100 bootstrap samples.

Practical guidelines: How to estimate history dependence from neural spike

recordings

Estimating history dependence (or any complex statistical dependency) for neural data is

notoriously difficult. In the following, we address the main requirements for a practical and

meaningful analysis of history dependence, and provide guidelines on how to fulfill these

requirements using embedding optimization. A toolbox for Python3 is available online [37],

together with default parameters that worked best with respect to the following requirements.

It is important that practitioners make sure that their data fulfill the data requirements (points

4 and 5).

1) The embedding of past spiking activity should be individually optimized to account

for very different spiking statistics. It is crucial to optimize the embedding for each neuron

individually, because history dependence can strongly differ for neurons from different areas

or neural systems (Fig 7), or even among neurons within a single area (see examples in Fig 8).

Individual optimization enables a meaningful comparison of information timescale and his-

tory dependency R between neurons.

2) The estimation has to capture any non-linear or higher-order statistical dependen-

cies. Embedding optimization using both, the BBC or Shuffling estimators, is based on non-

parametric estimation, in which the joint probabilities of current and past spiking are directly

estimated from data. Thereby, it can account for any higher-order or non-linear dependency

among all bins. In contrast, the classical generalized linear model (GLM) that is commonly

used to model statistical dependencies in neural spiking activity [20, 21] does not account for

higher-order dependencies. We found that the GLM recovered consistently less total history

dependence Rtot (Fig 6D). Hence, to capture single-neuron history dependence, higher-order

and non-linear dependencies are important, and thus a non-parametric approach is

advantageous.

3) Estimation has to be computationally feasible even for a high number of recorded

neurons. Strikingly, while higher-order and non-linear dependencies are important, the esti-

mation of history dependence does not require high temporal resolution. Optimizing up to

dmax = 5 past bins with variable exponential scaling κ could account for most of the total his-

tory dependence that was estimated with up to dmax = 20 bins (Fig 6D). With this reduced

setup, embedding optimization is feasible within reasonable computation time. Computing

embedding-optimized estimates of the history dependence R(T) for 61 different values of T
(for 40 minute recordings, the approach used for Figs 7 and 8) took around 10 minutes for the

Shuffling estimator, and about 8.5 minutes for the BBC per neuron on a single computing

node. Therefore, we recommend using dmax = 5 past bins when computation time is a con-

straint. Ideally, however, one should check for a few recordings if higher choices of dmax lead

to different results, in order to cross-validate the choice of dmax = 5 for the given data set.

4) Estimates have to be reliable lower bounds, otherwise one cannot interpret the

results. It is required that embedding-optimized estimates do not systematically overestimate

history dependence for any given embedding. Otherwise, one cannot guarantee that on aver-
age estimates are lower bounds to the total history dependence, and that an increase in history

dependence for higher past ranges is not simply caused by overestimation. This guarantee is

an important aspect for the interpretation of the results.

For BBC, we found that embedding-optimized estimates are unbiased if the variance of esti-

mators is sufficiently small (S1 Fig). The variance was sufficiently small for recordings of 90
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minutes duration. When the variance was too high (short recordings with 3–45 minutes

recording length), maximizing estimates for different embedding parameters introduced very

mild overestimation due to overfitting (1–3%) (S1 Fig). The overfitting can, however, be

avoided by cross-validation, i.e. optimizing the embedding on one half of the recording and

computing estimates on the other half. Using cross-validation, we found that embedding-opti-

mized BBC estimates were unbiased even for recordings as short as 3 minutes (S1 Fig).

For Shuffling, we also observed overfitting, but the overestimation was small compared to

the inherent systematic underestimation of Shuffling estimates. Therefore, we observed no sys-

tematic overestimation by embedding-optimized Shuffling estimates on the model neuron,

even for shorter recordings (3 minutes and more). Thus, for the Shuffling estimator, we advice

to apply the estimator without cross-validation as long as recordings are sufficiently long (10

minutes and more, see next point).

5) Spike recordings must be sufficiently long (at least 10 minutes), and of similar length,

in order to allow for a meaningful comparison of total history dependence and informa-

tion timescale across experiments. The recording length affects estimates of the total history

dependence Rtot, and especially of the information timescale τR. This is because more data

allow more-complex embeddings, hence higher history dependence can be estimated. More-

over, complex embeddings are particular relevant for long past ranges T. Therefore, if record-

ings are shorter, smaller R(T) will be estimated for long past ranges T, leading to smaller

estimates of τR. We found that for shorter recordings, estimates of Rtot were roughly the same

as for 90 minutes, but estimates of τR were considerably smaller (S2 and S3 Figs).

To enable a meaningful comparison of the information timescale between neurons, one

thus has to ensure that recordings are sufficiently long (in our experience at least 10 minutes),

otherwise differences in τR may not be well resolved. Below 10 minutes, we found that esti-

mates of τR could be less than half of the value that was estimated for 90 minutes, and also esti-

mates of Rtot showed a notable decrease. In addition, all recordings should have comparable

length to prevent that differences in history dependence or timescale are due to different

recording lengths.

Supporting information

S1 Fig. Embedding optimization leads to mild overfitting for short recordings, which can

be avoided by cross-validation. Shown is the relative bias for two versions of the GLIF model

with spike adaption, one with 1 s and the other with 22 s past kernel. The relative bias refers to

the relative difference between embedding-optimized estimates R̂ðT; d�; k�Þ and the model’s

true history dependence R(T, d�, κ�) for the same optimized embedding parameters d�, κ�. The

relative bias for R̂tot was computed by first averaging the relative difference ðR̂ðT; d�; k�Þ �
RðT; d�; k�ÞÞ=RðT; d�; k�Þ for T 2 [TD, Tmax], and second averaging again over 30 different

simulations for Trec between 1 and 20 minutes, and 10 different simulations for 45 and 90 min-

utes. Embedding parameters were optimized for each simulation, respectively, using parame-

ters as in Table 2 with dmax = 25. (Left) For BBC, the relative bias for R̂tot is zero only if

recordings are sufficiently long (> 20 minutes for 1 s kernel, and� 90 minutes for 22 s kernel).

When recordings are shorter, the relative bias increases, and thus estimates are mildly overesti-

mating the model’s true history dependence for the optimized embedding parameters. For

Shuffling, estimates provide lower bounds to the model’s true history dependence, hence the

relative bias remains negative even in the presence of overfitting. (Right) When one round of

cross-validation is applied, i.e. embedding parameters are optimized on the first, and estimates

are computed on the second half of the data, the bias is approximately zero for BBC even for

short recordings, or more negative for the Shuffling estimator. Therefore, we conclude that the
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origin of overfitting is the selection of embedding parameters on the same data that are used

for the estimation of R. Errorbars show 95% bootstrap confidence intervals on the mean over

n = 10 (45 or 90 min) or n = 30 (� 20 min) different simulations.

(TIF)

S2 Fig. For the simulated neuron model, recording length has little effect on the estimated

total history dependence, but large impact on the estimated information timescale. (Left)

Mean estimated total history dependence R̂tot for different recording lengths, relative to the

true total history dependence Rtot of the model (GLIF with spike adaption with 1 s or 22 s past

kernel). As the recording length decreases, so does R̂tot. However, with only 3 minutes, one

does still infer about� 95% of the true Rtot. (Right) In contrast, the estimated information

timescale t̂R decreases strongly with decreasing recording length. With 3 minutes and less,

only� 75% of the true τR is estimated on average. Note that for the simpler 1 s model (top), an

accurate estimation of the true τR is possible for 90 minute recordings, whereas for the 22 s

model (bottom), the estimated t̂R remains below the true value. Shown are mean values for 30

different simulations for Trec between 1 and 20 minutes, and 10 different simulations for 45

and 90 minutes, as well as 95% confidence intervals on the mean based on bootstrapping.

(TIF)

S3 Fig. For experimental data, too, recording length has little effect on estimated total his-

tory dependence, but larger impact on the estimated information timescale. (Left) Total

history dependence Rtot for different recording lengths, relative to the total history dependence

estimated for a 90 minute recording. As long as recordings are 10 minutes or longer, one does

still estimate about� 95% as much or more of Rtot as for 90 minutes, for all three recordings.

For less than 10 minutes, the estimated total history dependence decreases down to 90%

(CA1), or increases again due to overfitting (retina). (Right) Similar to the GLIF model, the

estimated information timescale τR decreases more strongly with decreasing recording length.

With 10 minutes and more, one estimates around� 75% or more of the τR that is estimated

on a 90 minute recording. Note that for the experimental data, the estimated timescale of the

BBC estimator depends more strongly on the recording time, whereas the Shuffling estimator

is more robust, especially for dmax = 5. Shown is the median with 95% bootstrap confidence

intervals over n = 10 randomly chosen sorted units for each neural system. Before taking the

median over sorted units, for each unit we averaged estimates over 10 excerpts of the full

recording, each with 3 or 5 minutes duration, and over 8,4 and 2 excerpts with 10, 20 and 45

minutes duration, respectively.

(TIF)

S4 Fig. Example estimation results for the generalized leaky integrate-and-fire model

(GLIF) with 1 s past kernel. For each recording length, we show the embedding-optimized

estimates of history dependence R(T) with and without cross-validation, for BBC (red) and

Shuffling (blue) with dmax = 25, as well as the ground truth for the same embeddings that were

found during optimization (dashed lines). Dashed lines indicate the estimated information

timescale t̂R and total history dependence R̂tot. Shaded areas indicate ± two standard deviations

obtained by bootstrapping.

(TIF)

S5 Fig. Example estimation results for the generalized leaky integrate-and-fire model

(GLIF) with 22 s past kernel. For each recording length, we show the embedding-optimized

estimates of history dependence R(T) with and without cross-validation, for BBC (red) and

Shuffling (blue) with dmax = 25, as well as the ground truth for the same embeddings that were
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found during optimization (dashed lines). Dashed lines indicate the estimated information

timescale t̂R and total history dependence R̂tot. Shaded areas indicate ± two standard deviations

obtained by bootstrapping.

(TIF)

S6 Fig. Estimation results for all sorted units in rat dorsal hippocampus (layer CA1). For

each unit, we show the embedding-optimized estimates of history dependence R(T) for BBC

with dmax = 20 (red), as well as Shuffling with dmax = 20 (blue), dmax = 5 (green) and dmax = 1

(yellow). Dashed lines indicate estimates of the information timescale τR and total history

dependence Rtot. Also shown is the embedding-optimized GLM estimate (violet square) with a

past range equal to the temporal depth that was found with the BBC estimator.

(TIF)

S7 Fig. Estimation results for all sorted units in rat cortical culture. For each unit, we show

the embedding-optimized estimates of history dependence R(T) for BBC with dmax = 20 (red),

as well as Shuffling with dmax = 20 (blue), dmax = 5 (green) and dmax = 1 (yellow). Dashed lines

indicate estimates of the information timescale τR and total history dependence Rtot. Also

shown is the embedding-optimized GLM estimate (violet square) with a past range equal to

the temporal depth that was found with the BBC estimator.

(TIF)

S8 Fig. Estimation results for all sorted units in salamander retina. For each unit, we show

the embedding-optimized estimates of history dependence R(T) for BBC with dmax = 20 (red),

as well as Shuffling with dmax = 20 (blue), dmax = 5 (green) and dmax = 1 (yellow). Dashed lines

indicate estimates of the information timescale τR and total history dependence Rtot. Also

shown is the embedding-optimized GLM estimate (violet square) with a past range equal to

the temporal depth that was found with the BBC estimator.

(TIF)

S9 Fig. Estimation results for all sorted units in mouse primary visual cortex. For each unit,

we show the embedding-optimized Shuffling estimates of history dependence R(T) for dmax =

5. Dashed lines indicate estimates of the information timescale τR and total history dependence

Rtot.

(TIF)

S10 Fig. Bootstrapping yields accurate estimates of standard deviation and confidence

intervals. (Left) Shown is the standard deviation on BBC estimates (blue) obtained from 250

“blocks of blocks” bootstrap samples on a single recording (GLIF model with 22 s past kernel).

It agrees well with the true standard deviation (black), which we estimated from 100 repeated

simulations of the same recording length and embedding. As expected, the standard deviation

decreases substantially for longer recordings. For each recording length, estimates were com-

puted for typical optimal embedding parameters d�, κ� and T = TD that were found by embed-

ding optimization. Errorbars show mean and standard deviation of the estimated σ(R) over

the repeated simulations. (Right) The 95% confidence intervals based on two standard devia-

tions σ(R) have approximately the claimed confidence level (CI accuracy). Standard deviation

was estimated from 250 “blocks of blocks” bootstrap samples. For each recording length, we

computed estimates R̂ and the bootstrap confidence intervals on the 100 simulations. We then

computed the confidence level (CI accuracy) by counting how often the true value of R was

contained in the estimated confidence interval (green line). Estimates and the true value of R
were computed for the same typical embedding parameters d�, κ� and T = TD as before.

(TIF)
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S11 Fig. Total history dependence and information timescale for increasing branching

parameter m. Similar to the binary autoregressive process, increasing the branching parame-

ter m increases the total history dependence Rtot, whereas the information timescale τR stays

constant, or even decreases for high m. For each m, the input activation probability h was

adapted to hold the firing rate fixed at 5 Hz.

(TIF)

S12 Fig. The estimated information timescale varies between estimators. For each sorted

unit (grey dots), estimates of the information timescale τR are plotted relative to the corre-

sponding BBC estimate for dmax = 20. The BBC estimator tends to estimate higher timescales

than the Shuffling estimator on recordings of CA1 and cortical culture, whereas for retina the

medians of different estimators are more similar. Although estimates of the timescale are

highly variable between estimators, Shuffling with only dmax = 5 past bins still estimates time-

scales of at least 80% of the timescales that are estimated with BBC. Errorbars indicate median

over sorted units and 95% bootstrap confidence intervals on the median.

(TIF)

S13 Fig. Total history dependence and information timescale show no clear dependence

on the firing rate, whereas the total mutual information tends to increase with the rate.

Shown are the same estimates of the total history dependence Rtot and information timescale

τR as in Fig 7 (Shuffling estimator with dmax = 5) versus the firing rates of sorted units (dots).

The total mutual information Itot is equal to Rtot times the spiking entropy H(spiking) of the

respective unit. While Itot tends to increase with firing rate, no clear relation is visible for Rtot

or τR. Errorbars indicate median over sorted units and 95% bootstrap confidence intervals on

the median.

(TIF)

S14 Fig. Relationship between total history dependence or information timescale and stan-

dard statistical measures of neural spike trains. Estimates of the total history dependence

Rtot tend to decrease with the median interspike interval (ISI), and to increase with the coeffi-

cient of variation CV. This result is expected for a measure of history dependence, because a

shorter median ISI indicates that spikes tend to occur together, and a higher CV indicates a

deviation from independent Poisson spiking. In contrast, the information timescale τR tends

to increase with the autocorrelation time, as expected, with no clear relation to the median ISI

or the coefficient of variation CV. However, the correlation between the measures depends on

the neural system. For example in retina (n = 111), Rtot is significantly anti-correlated with the

median ISI (Pearson correlation coefficient: r = −0.69, p< 10−5) and strongly correlated with

the coefficient of variation CV (r = 0.90, p< 10−5), and τR is significantly correlated with the

autocorrelation time τC (r = 0.75, p< 10−5). In contrast, for mouse primary visual cortex

(n = 142), we found no significant correlations between any of these measures. Results are

shown for the Shuffling estimator with dmax = 5, and T0 = 10 ms. Errorbars indicate median

over sorted units and 95% bootstrap confidence intervals on the median.

(TIF)

S15 Fig. Excluding short-term contributions helps to differentiate the timescales for differ-

ent neural systems. By only considering gains ΔR(T) for past ranges T> T0 when computing

the information timescale τR, short-term effects that are related to the refractory period and

different firing modes are excluded. The higher T0, the higher is the distance in the median τR
between systems (especially between salamander retina and mouse primary visual cortex).

This is because both timescales τR and τC increase with T0 for CA1 and primary visual cortex,

whereas they decrease for retina. The same holds for the autocorrelation time τC, where only
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time lags T> T0 were considered when fitting an exponential decay to the autocorrelograms.

Note that if the decay is perfectly exponential, then T0 does not affect the results. Estimates of

Rtot and τR are shown for the Shuffling estimator with dmax = 5. Errorbars indicate median

over sorted units and 95% bootstrap confidence intervals on the median.

(TIF)

S16 Fig. Total history dependence decreases for small time bins Δt. The choice of the time

bin Δt of the spiking activity has little effect on the information timescale τR, whereas the total

history dependence Rtot decreases for small time bins Δt< 5 ms. This is consistent across

experiments. The smaller the time bin, the higher the risk that noise in the spike emission

reduces the overall predictability or history dependence in the spiking, whereas an overly large

time bin holds the risk of destroying coding relevant time information in the spike train. Thus,

we chose the smallest time bin Δt = 5 ms that does not yet show a substantial decrease in Rtot.

We do not plot results for higher Δt, because for higher Δt we observed many instances of mul-

tiple spikes in the same time bin. Results are shown for the Shuffling estimator with dmax = 5,

and T0 = 10 ms. Errorbars indicate median over sorted units and 95% bootstrap confidence

intervals on the median.

(TIF)
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Priesemann.

References
1. Barlow HB, et al. Possible principles underlying the transformation of sensory messages. Sensory com-

munication. 1961; 1(01).

2. Rieke F. Spikes: exploring the neural code. MIT press; 1999.

PLOS COMPUTATIONAL BIOLOGY History dependence in neural spiking activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008927 June 1, 2021 47 / 51

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008927.s016
https://doi.org/10.1371/journal.pcbi.1008927


3. Pozzorini C, Naud R, Mensi S, Gerstner W. Temporal Whitening by Power-Law Adaptation in Neocorti-

cal Neurons. Nature Neuroscience. 2013; 16(7):942. https://doi.org/10.1038/nn.3431 PMID: 23749146

4. Atick JJ. Could Information Theory Provide an Ecological Theory of Sensory Processing? Network:

Computation in Neural Systems. 1992; 3(2):213–251. https://doi.org/10.1088/0954-898X_3_2_009

5. Lizier JT. Computation in Complex Systems. In: Lizier JT, editor. The Local Information Dynamics of

Distributed Computation in Complex Systems. Springer Theses. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2013. p. 13–52. Available from: https://doi.org/10.1007/978-3-642-32952-4_2.
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