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Abstract: In continuation of our previous effort, different in silico selection methods were applied to
310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection
methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural
similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2
nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30
candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182,
220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the
ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred
compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182)
to be the most relevant SARS-Cov-2 nsp10 inhibitor.

Keywords: COVID-19; natural products; SARS-Cov-2 nsp10; structural similarity; fingerprint; molec-
ular docking; ADMET; toxicity; DFT

1. Introduction

More than 217 million humans around the world were confirmed to be infected with
COVID-19 and another 4.5 million families lost one of their beloveds as stated by the WHO
on 2 September 2021 [1]. In response, all scientists in the field of drug discovery should
work unceasingly to discover a cure against the notorious virus.

Computer-assisted (based or aided) drug design is a well-established branch of drug
design that covers various in silico computational and theoretical approaches. These ap-
proaches are essential contributors to the development of new bioactive agents [2–8].
Computer-assisted drug design has been applied in drug discovery [9–11], computational
chemistry [12,13], toxicity prediction [14–16], ADMET assessment [17–19], molecular mod-
eling [20], molecular design [21,22], and rational drug design [23–27]. All these techniques
have great popularity and have been used in both academic fields in addition to the phar-
maceutical industries [28]. This approach has been introduced successfully and recurrently
as a powerful weapon in the global fight against COVID-19 [29–32].

The relationship between humans and nature dates back to the prehistoric ages. The lat-
ter supplied the former with food, tools of beauty, and treatment [33,34]. Plants [35,36]
and lately microorganisms [37,38] have been extensively screened to explore their healing
power. Scientists isolated the secondary metabolites produced by these natural sources
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and labeled them as the key element in bioactivity. These candidates belonged to various
classes as isochromenes [39], α-pyrones [40], diterpenes [41,42], sesquiterpenes [43,44],
steroids [45], flavonoids [46,47], alkaloids [48], and saponins [49,50].

SARS-CoV-2 is an enveloped positive-sensed RNA virus. The replication of SARS-CoV-2
depends on a group of 16 non-structural proteins. These proteins have the codes of
nsp1–nsp16. Between them, the two proteins nsp10 and nsp16 make an essential protein
complex [51]. That complex is responsible for the vital methylation reaction at the ribose
2′-O position of the penultimate nucleotide of the viral RNA cap [52]. Accordingly, if a
molecule could bind with that enzyme and inhibit this essential step, the replication process
will be stopped.

The targeting of SARS-CoV-2 nsp-16 with a library of 10 [53] and 265 [54] FDA-approved
compounds was studied before. Likely, a group set of 22 natural compounds from
some Indian plants was computationally screened against six non-structural-proteins
of SARS-CoV-2 [55].

In this study, different computational (in silico) selection methods were applied to
310 candidates. The examined candidates were chosen through a deep database search
according to three parameters. The first parameter was to be naturally isolated. The second
was having exhibited antiviral potentiality before. Lastly, we considered that the culled
compounds belong to different chemical classes and accordingly have various chemical
structures. The applied computational techniques were a structural similarity study against
SAM followed by a fingerprint study against the same target. The selected candidates
were docked against nsp10 (PDB ID: 6W4H) to prefer 44, 48, 85, 102, 105, 182, 220, 221, 282,
284, 285, 301, and 302. Then ADMET and toxicity studies further picked two candidates.
Finally, a DFT study suggested the most relevant inhibitor of SARS-Cov-2 nsp10 (Figure 1).
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2. Results and Discussion
2.1. Molecular Similarity against SAM

The basic principle of 2D Molecular similarity is that molecules with similar chemical
structures are expected to have similar biological activities [56].

To measure the similarity of two objects, their general features have to be compared.
On a molecular level, the molecular features or descriptors of any compound start from the
general physicochemical properties and extend to more specific structural features such as
partition coefficient (ALog p) [57], molecular weight (M. Wt) [58], hydrogen bond donors
(HBA) [59], hydrogen bond acceptors (HBD) [60], number of rotatable bonds [61], number
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of rings, and also aromatic rings [62], in addition to molecular fractional polar surface area
(MFPSA) [63].

All mentioned molecular properties were used in the applied similarity study between
the natural candidate’s set (Figure S1, Supplementary Materials) and the co-crystallized lig-
and (SAM) of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) using Discovery
studio software. Thirty candidates (Figure 2) were chosen to be the most similar to SAM.
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As shown in Figure 2, the similar candidates showed a high degree of structural
similarity with SAM. In detail, most candidates have a sugar-like moiety as that of SAM
as candidates 85, 102, 105, 120, 182, 183, 203, 204, 220, 221, 282, 284, 285, 301, and 302.
These moieties may serve as a good center for hydrogen bonding interaction with the target
receptor. Furthermore, most candidates have hetero bicyclic structures as present in SAM.
Besides, xanthine-like structures were defined in many similar candidates such as 182, 284,
285, and 301.

As shown in Figure 3, the candidate’s set was divided into six smaller sets. From the
first set to the fifth comprised 50 candidates while the sixth set was 60.
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Table 1 demonstrates the molecular properties of the similar candidates as well as SAM.
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Table 1. Structural properties of the similar candidates with SAM.

Candidate ALog p 1 M. Wt 2 HBA 3 HBD 4 Rotatable Bonds Rings Aromatic Rings MFPSA 5 Minimum Distance

7 0.857 546.629 9 3 11 5 1 0.223 1.272
19 2.643 301.294 6 2 2 3 2 0.261 1.441
33 0.674 315.321 5 3 0 4 1 0.333 1.472
44 −4.182 194.206 5 6 2 1 0 0.597 1.379
48 −3.556 190.217 4 5 1 2 0 0.466 1.454
71 1.479 304.252 7 5 1 3 2 0.467 1.491
77 1.388 318.235 8 6 1 3 2 0.526 1.477
82 1.388 318.235 8 6 1 3 2 0.526 1.477
83 1.388 318.235 8 6 1 3 2 0.526 1.477
85 0.436 446.404 10 5 5 4 2 0.373 1.093

102 −0.729 330.287 9 5 5 2 1 0.457 0.491
105 −1.814 353.301 9 5 5 2 1 0.489 0.375
120 −0.396 422.34 11 8 2 4 2 0.533 0.652
141 0.207 321.216 9 5 4 2 2 0.563 0.632
143 0.007 477.352 13 7 7 3 2 0.536 0.565
182 −1.881 267.241 8 4 2 3 2 0.539 0.489
183 −2.396 243.217 7 4 2 2 0 0.545 0.747
186 1.045 371.273 4 3 0 4 2 0.339 1.039
187 1.045 371.273 4 3 0 4 2 0.339 1.039
194 0.253 193.203 5 4 2 1 1 0.501 0.964
203 −0.499 503.583 10 4 8 3 0 0.268 1.113
204 −0.091 517.61 10 3 9 3 0 0.237 1.229
218 0.536 293.283 7 3 1 4 3 0.444 0.903
220 −2.005 258.228 6 4 2 2 0 0.479 0.877
221 −2.451 244.201 6 4 2 2 0 0.525 0.876
282 −1.049 544.527 11 6 5 5 2 0.403 0.534
284 −1.308 251.242 7 3 2 3 2 0.482 0.406
285 −1.595 292.251 9 4 2 3 2 0.57 0.432
301 −1.614 251.242 7 3 3 3 2 0.48 0.364
302 −1.526 302.714 7 4 2 3 1 0.401 0.510

SAM −4.254 399.445 9 4 7 3 2 0.483

1 Partition coefficient, 2 Molecular weight, 3 Hydrogen bond acceptors, 4 Hydrogen bond donors, 5 Molecular fractional polar surface area.

2.2. Filter Using Fingerprints

The fingerprint is another similarity technique that depends on the 2D molecular
structures of two different ligands in a binary format. This technique computes the pres-
ence and/or absence of several sub-structural fragments to calculate the degree of inter-
molecular structural similarity. This technique is utilized as a tool to detect the degree
of similarity between a hit candidate and a lead one [64] The fingerprint approach ex-
amines the following parameters: charges [65], hybridization [66], H-bond acceptors,
and donors [67], positive and negative ionizable moieties [68], halogens, and aromatic
rings beside the ALogP category of candidates. The experiment was carried out using
Discovery Studio.

The fingerprint’s output depends on Tanimoto coefficient (SA/(SA + SB + SC)). SA is
a symbol that represents the number of bits present in the reference molecule (SAM) and
the examined candidate. On the other hand, SB and SC represent the number of bits in the
examined candidate but not SAM and the number of bits in SAM but not the examined
candidate, respectively. The Tanimoto coefficient gives values with a range of zero (no
shared bits) to one (all bits the same).

The results revealed the significant fingerprint similarity of 44, 48, 85, 102, 105, 182,
220, 221, 282, 284, 285, 301, and 302 with SAM (Table 2).

The reported antiviral potentialities of the preferred metabolites were summarized in
the Supplementary Materials.

2.3. Docking Studies

Molecular docking studies were achieved to study the binding modes, orientations,
and affinities of the candidates 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302
inside the SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H, resolution: 1.80 Å)
active site using MOE 14.0 software.

The docking process was validated through a redocking step of SAM against active
pockets of SARS-CoV-2 nonstructural protein (nsp10). The suitability of the performed
protocol was demonstrated by the small RMSD (0.60 Å) that was found between the docked
pose and SAM (Figure 4).
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Table 2. Fingerprint similarity between the tested candidates and SAM.

Comp. Similarity SA SB SC

SAM 1 237 0 0
44 0.503 159 79 78
48 0.423 110 23 127
85 0.423 200 236 37

102 0.497 149 63 88
105 0.529 165 75 72
182 0.717 160 −14 77
220 0.475 135 47 102
221 0.458 125 36 112
282 0.443 250 327 −13
284 0.685 150 −18 87
285 0.671 159 0 78
301 0.642 145 −11 92
302 0.552 139 15 98
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The mode of binding of SAM inside COVID-19 nsp10 was illustrated in Figure 5.
It was noticed that SAM interacted with the active site via the formation of six hydrogen
bonds with Lys6844, Leu6898, Asn6899, Asp6912, Cys6913, and Tyr6930.

Among all studied metabolites, members 220, 48, 182, 221, and 284 exhibited the
greatest binding free energies of docking (Table 3).

The methylpyrimidine-2,4-dione derivative (220) possessed a good potential affinity
of −21.17 into the COVID-19 nsp10 active site. This high affinity is attributed to the
formation of five hydrogen bond interactions. The pyrimidine moiety of candidate 220
was involved in two hydrogen-bonding interactions with Asp6912 and Cys6913. While
the furan part interacted with the active site by three hydrogen bonds with Leu6898 and
Tyr6930 (Figure 6).
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Candidate (48) exhibited a binding mode like that of SAM with the formation of four
hydrogen bonds with Cys6913, Tyr6930, and Leu6898 (Figure 7).
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Investigation of the top docking poses of the 6-aminopurine member (182) showed that
it interacted with the COVID-19 nsp10 active site through the formation of three hydrogen
bond interactions. Its amino group was involved in a hydrogen bond with Asp6912 while
one purine nitrogen atom formed a hydrogen bond with Cys6913. In addition, the furan
oxygen interacted by a hydrogen bond with Tyr6930 (Figure 8).

The proposed binding pattern of the pyrimidinedione derivative (221) was illustrated
in Figure 9. It interacted with the active site via the formation of five hydrogen bonds with
Asn6899, Asp6897, Cys6913, and Tyr6930.
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2.4. In Silico ADMET Analysis

Five parameters were examined for candidates 48, 182, 220, 221, and 284 using Dis-
covery studio software. Acyclovir, the potent anti-viral drug, was used as a reference
candidate. The results are illustrated in Figure 11.
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All the tested candidates have a very low chance to penetrate BBB. This indicates
the high safety margin of such derivatives against the CNS. Additionally, all candidates
exhibited an aqueous solubility character. For intestinal absorption, candidates 48, 182, 220,
and 221 were predicted to have poor to very poor levels, while candidate 284 was expected
to have a moderate level. Furthermore, all candidates were predicted to be CYP2D6 non-
inhibitors and can bind plasma protein by less than 90%. These results indicated that all
the tested candidates have good pharmacokinetic properties and can be utilized for further
investigations.

2.5. In Silico Toxicity Studies

Candidates 48, 182, 220, 221, and 284 were tested in silico for their proposed toxicity
using Discovery studio software. In this test, seven toxicity models were utilized using
ribavirin as a reference. The results are summarized in Table 4.

Table 4. Toxicity properties of candidates.

Comp.
FDA Rodent

Carcinogenicity
(Mouse-Female)

Carcinogenic Potency TD50
(Mouse) mg/kg Body

Weight/Day

Rat Maximum
Tolerated Dose

(Feed) a
Rat Oral LD50

a Rat Chronic
LOAEL a

Ocular
Irritancy

Skin
Irritancy

48 Non-Carcinogen 9.295 0.191 0.778 0.018 Severe Mild
182 Non-Carcinogen 4.245 0.175 1.119 0.010 Moderate Mild
220 Single-Carcinogen 67.851 0.095 6.173 0.009 Moderate Mild
221 Single-Carcinogen 55.437 0.094 4.343 0.006 Moderate Mild
284 Multi-Carcinogen 6.402 0.155 1.213 0.004 Moderate Mild

Ribavirin Non-Carcinogen 13.111 0.154 0.750 0.013 Mild Mild

a Unit = g/kg body weight.

FDA rodent carcinogenicity in female mice indicated that candidates 48 and 182 were
non-carcinogenic, while candidates 220, 221, and 284 had some sort of carcinogenicity.
Besides, candidates 48, 182, and 284 showed TD50 values of 9.295, 4.245, and 6.402 mg/kg
body weight/day, respectively. Candidates 220 and 221 showed high carcinogenic potency
TD50 values of 67.851 and 55.437 mg/kg body weight/day, respectively. Furthermore,
candidates 48 and 182 showed high rat maximum tolerated dose values of 0.191 and
0.175 g/kg body weight, respectively. On the other hand, candidates 220 and 221 showed
low rate maximum tolerated dose values of 0.095 and 0.094 g/kg body weight, respectively.
Candidate 284 showed a comparable rat maximum tolerated dose value (0.155 g/kg body
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weight) with ribavirin (0.154 g/kg body weight). The tested candidates showed rat oral
LD50 values ranging from 0.778 to 6.173 g/kg body weight, which were higher than
the reference drug LD50 = 0.750 g/kg body weight. For the rat chronic LOAEL model,
candidates 48 and 182 showed high values of 0.018 and 0.010 g/kg body weight, while
candidates 220, 221, and 284 showed low values of 0.009, 0.006, and 0.004 g/kg body
weight, respectively. All candidates were predicted to have mild to moderate irritant effects
against ocular irritancy and skin irritancy models. Accordingly, candidates 48 and 182 had
low toxicity profiles and were preferred for further studies.

2.6. DFT Studies

DFT parameters (Table 5) were studied for candidates 48 and 182 [69,70] against SAM
as a reference using Discovery studio software (Table 5, Figures 12 and 13).

Table 5. Spatial distribution of molecular orbitals for candidates 48 and 182.

Name Total
Energy *

Binding
Energy *

HOMO
Energy *

LUMO
Energy *

Dipole
Mag

Band Gap
Energy *

48 −664.379 −4.841 −0.366 −0.156 1.391 0.210
182 −955.658 −6.102 −0.195 −0.068 1.396 0.128

SAM −1675.931 −8.815 −0.270 −0.174 3.631 0.097
* Unit = kcal/mol for all descriptors except Dipole Mag.

2.6.1. Molecular Orbital Analysis

Candidates 48, 182, and SAM exhibited total energy values of −664.379, −955.658,
and −1675.931 kcal/mol, respectively. The higher total energy of candidate 182 indicates
a higher reactivity against the biological target. The two tested candidates, 48 and 182,
showed almost equal dipole moment values of 1.391 and 1.396, respectively. The Molecular
Orbital (MO) analysis of EHOMO represents the energy of the highest occupied molecular
orbital. On the other side, ELUMO represents the lowest unoccupied molecular orbital
energies. The MO analysis is one of the essential parameters that is linked to the chemical
reactivity and stability of a molecule. The HOMO spatial distributions of SAM are mainly
presented on the 2-aminobutanoic acid moiety (the electron transfer zones), while its
LUMO spatial distributions are located on the tetrahydrofuran-3,4-diol moiety (the electron
acceptor zones). For candidate 48, the HOMO spatial distributions are mainly located
on the (2R,3R,4R)-2-(hydroxymethyl)pyrrolidine-3,4-diol moiety, while its LUMO spatial
distributions are found on the (S)-pyrrolidin-3-ol moiety. For candidate 182, the HOMO
spatial distributions are mainly presented on the 9H-purin-6-amine moiety, while its LUMO
spatial distributions are located on the (2R,3S,4R)-2-(hydroxymethyl)tetrahydrofuran-3,4-
diol moiety. Furthermore, the gap energy of candidate 182 (0.128 kcal/mol) was less than
that of candidate 48 (0.210 kcal/mol), confirming the high reactivity of candidate 182.
Consequently, candidate 182 may serve as a promising candidate for further studies.

2.6.2. Molecular Electrostatic Potential Maps (MEP)

MEP was used to specify the electrostatic potential of 48, 182, and SAM in a 3D form
via the calculation of the partial charges, electronegativity, and chemical reactivity [71].
The electrostatic potential affects the binding of a drug with a specific protein and gives
a deeper insight into drug–receptor interaction [72]. In MEP, the red color denotes the
electronegative atoms, which can go through hydrogen bonding interactions as an acceptor.
Additionally, the blue color denotes the electron-poor atoms that can form a donor in
hydrogen bonding. The green to yellow color denotes the neutral atoms, which can form
hydrophobic interactions [73].
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The MEPs of SAM, 48, and 182, were illustrated in Figure 13A, B, and C, respectively.
Investigating these figures indicated that SAM has eight red patches that are suitable for
hydrogen bonding acceptors and are considered favorable sites for the electrophilic attack.
Also, it comprises six blue patches that are suitable for hydrogen bond donors (the most
favorable sites for the nucleophilic attack). Candidate 182 has six red patches and five
blue patches. In addition, there is a yellow patch on the 9H-purine nucleus indicating a
high possibility for hydrophobic interaction. These findings are highly like that of SAM.
The MEP of candidate 48 is slightly different from SAM. In detail, it has four red patches
and four blue patches. These results indicated that candidate 182 has a greater similarity
with SAM than candidate 48. Because of that, candidate 182 was singled out.

The antiviral activities of the preferred candidate, vidarabine (182), were reported
against several viruses in different reports. It was active against herpes simplex encephalitis
and neonatal herpes simplex infection [74,75], HBV [76], varicella-zoster virus [77], human
polyomavirus [78], adenovirus [79], and Epstein–Barr virus infection [80].
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3. Method
3.1. Molecular Similarity Detection

Achieved by Discovery studio software (see method part in Supplementary Materials).

3.2. Pharmacophoric Study

Achieved by Discovery studio software (see method part in Supplementary Materials).

3.3. Docking Studies

Docking studies were achieved by MOE.14 software (see method part in Supplemen-
tary Materials).

3.4. ADMET Analysis

Achieved by Discovery studio 4.0 (see method part in Supplementary Materials).

3.5. Toxicity Studies

Achieved by Discovery studio software [81–83] (see method part in Supplemen-
tary Materials).

3.6. DFT Studies

Achieved by Discovery studio software [84] (see method part in Supplementary Mate-
rials).
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4. Conclusions

Vidarabine (182) was suggested to be the most relevant SARS-Cov-2 nsp10 inhibitor
among 310 naturally isolated metabolites that exhibited antiviral potentialities before. This
suggestion was based on different computational (in silico) selection methods that included
molecular similarity assessment, molecular fingerprint, docking studies, toxicity, ADMET,
and DFT. The selected candidate showed various antiviral activities before. Further in vitro
and in vivo biological studies have to be conducted to confirm the effect of 182 against
SARS-Cov-2 nsp10 and its potential as an anti-COVID-19 drug.

Supplementary Materials: The following are available online, Figure S1: Chemical structures of
the examined natural antiviral compounds, Table S1: Detailed toxicity report, in addition to the
method (Molecular Similarity, Pharmacophore, Docking studies, ADMET studies, Toxicity studies
and DFT studies).
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