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Abstract

Transforming growth factor-b (TGF-b) promotes extracellular matrix deposition by down-regulating the expression of matrix
degrading proteinases and upregulating their inhibitors. Tissue inhibitor of metalloproteinases (TIMP)-3 is an ECM-
associated specific inhibitor of matrix degrading metalloproteinases. Here, we have characterized the signaling pathways
mediating TGF-b-induced expression of TIMP-3. Basal and TGF-b-induced TIMP-3 mRNA expression was abolished in Smad4-
deficient mouse embryonic fibroblasts and restoring Smad4 expression rescued the response. Inhibition of Smad signaling
by expression of Smad7 and dominant negative Smad3 completely abolished TGF-b-elicited expression of TIMP-3 in human
fibroblasts, whereas overexpression of Smad3 enhanced it. Inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2)
activation with PD98059 and p38 mitogen-activated protein kinase activity by SB203580 resulted in suppression of TGF-b-
induced TIMP-3 expression, indicating that ERK1/2 and p38 MAPK mediate the effect of TGF-b on TIMP-3 expression.
Specific activation of p38a and ERK1/2 by constitutively active mutants of MKK3b or MEK1, respectively, and simultaneous
co-expression of Smad3 resulted in induction of TIMP-3 expression in the absence of TGF-b indicating that Smad3 co-
operates with p38 and ERK1/2 in the induction of TIMP-3 expression. These results demonstrate the complex interplay
between Smad3, p38a, and ERK1/2 signaling in the regulation of TIMP-3 gene expression in fibroblasts, which may play a
role in inflammation, tissue repair, and fibrosis.
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Introduction

Proteolytic turnover of extracellular matrix (ECM) is an

essential feature of connective tissue remodeling during embryonic

development, angiogenesis, and tissue repair. On the other hand,

excessive breakdown of ECM, due to an imbalance between the

activity of matrix degrading proteinases and their inhibitors

apparently play an important role in many pathological condi-

tions, such as arthritis, fibrosis and cancer invasion and metastasis

[1,2]. Matrix metalloproteinases (MMPs) are a family of zinc-

dependent metalloendopeptidases collectively capable of degrad-

ing essentially all ECM components [3]. Tissue inhibitors of

metalloproteinases (TIMPs) are specific endogenous inhibitors of

MMP activity. They bind MMPs non-covalently in 1:1 stoichio-

metric complexes and interact directly with the active sites of

MMPs. The vertebrate TIMP family consists of four members:

TIMP-1, TIMP-2, TIMP-3, and TIMP-4 [4]. TIMP-3 is retained

in the ECM, whereas other TIMPs are secreted in soluble form.

TIMPs inhibit the activity of all MMPs, although there are

differences in their inhibitory profiles. TIMP-1 inhibits the activity

of most MMPs, with the exception of MT-MMPs and MMP-19

[5]. In addition, TIMP-1 inhibits ADAM-10 (proteinase with A

Disintegrin And Metalloprotease domain). TIMP-2, TIMP-3, and

TIMP-4 inhibit all MMPs, but with different binding affinities.

TIMP-3 also inhibits the activity of ADAM-17 (tumor necrosis

factor-a (TNF-a) converting enzyme (TACE)), ADAM-12, AD-

AM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) [5].

Furthermore, TIMPs form complexes with proMMPs and

regulate their activation. TIMP-3 has been shown to promote

apoptosis in several types of normal and malignant human cells in

culture and in vivo [6–10], and thereby suppresses tumor growth.

TIMP-3 gene expression in cultured cells is induced by mitogenic

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e57474



stimuli, e.g., serum, epidermal growth factor (EGF), and trans-

forming growth factor-b (TGF-b), [11–14]. In addition, TIMP-3

expression is induced in fibroblasts in scleroderma skin, suggesting

a role for TIMP-3 in dermal fibrosis [15].

TGF-b is a multifunctional growth factor controlling cell growth

and differentiation, and it has marked effects on ECM deposition

[16,17]. TGF-b induces ECM gene expression and suppresses the

expression of many matrix degrading proteinases, including

MMP-1 in fibroblasts [18,19]. The cellular effects of TGF-b are

mediated via Smad and mitogen-activated protein kinase (MAPK)

signaling pathways [20]. TGF-b-activated Smads are subgrouped

into three groups according to their function: receptor-activated

Smads (Smad2 and Smad3), common-mediator Smad (Smad4),

and inhibitory Smad (Smad7). Receptor-activated Smad2 and

Smad3 are phosphorylated by the activated TGF-b receptor

complex. Following phosphorylation these Smads associate with

Smad4, and are translocated to the nucleus, where Smads bind to

DNA or associate with other transcriptional co-activators or co-

repressors, and regulate the transcription of TGF-b responsive

genes. Smad7 is an inhibitory Smad, the expression of which is

induced by TGF-b and it inhibits phosphorylation of Smad2 and

Smad3 by competetively interacting with the TGF-b receptor

complex.

TGF-b also activates MAPKs extracellular signal-regulated

kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 in

various types of cells [20,21]. It has become evident that there is

crosstalk between the distinct cell signaling cascades activated by

TGF-b. For example, ERK1/2, JNK, and p38 MAPKs can

influence the activation of the Smad pathway by phosphorylating

Smad2 or Smad3 [22–26]. In addition, delayed phosphorylation

of p38 MAPK by TGF-b is mediated by the Smad pathway via

GADD45b [27–29].

In this study, we have characterized the cellular signaling

pathways involved in regulating TIMP-3 gene expression in

fibroblasts. Our results show, that TGF-b -elicited induction of

TIMP-3 expression is dependent on Smad3, p38, and ERK1/2

signaling, and that these signaling pathways cooperate in the

regulation of TIMP-3 expression, which may play a role in

inflammation, tissue repair, and fibrosis.

Materials and Methods

Cell Cultures and Reagents
Normal human gingival fibroblasts were kindly provided by Dr.

Lari Häkkinen (University of British Columbia, Vancouver, BC)

[21,25]. The generation of Smad4 deficient EF7KO mouse

embryonic fibroblasts (MEFs) has been described before [30].

Corresponding wild-type MEFs (EF7WT) were used as control

cells. The cells were grown in Dulbecco’s Modified Eagle’s

Medium (DMEM; Sigma, St. Louis, MO) supplemented with 10%

fetal calf serum (FCS), 2 mM L-glutamine, 100 IU/ml penicillin-

G, and 100 mg/ml streptomycin. Human recombinant TGF-b1

was obtained from Sigma (St. Louis, MO), and p38 MAPK

inhibitor SB203580 and MEK1/2 inhibitor PD98059 from

Calbiochem (San Diego, CA).

Transduction of Cells with Recombinant Adenoviruses
The construction of empty control virus RAdpCA3 and

recombinant adenoviruses RAdSmad2, RAdSmad3, RAdSmad4

for HA-tagged Smad2, Smad3, and Smad4, respectively, has

been described previously [25]. Recombinant adenoviruses for

Smad7 (RAdSmad7) [31] and dominant negative Smad3

(RAdSmad3DN) [32] were kindly provided by Dr. Aristidis

Moustakas (Ludwig Institute for Cancer Research, Uppsala,

Sweden). Adenovirus for constitutively active MKK3b

(RAdMKK3bE) and for wild type p38a (RAdp38a) [33] were

kindly provided by Dr. Jiahuai Han (Scripps Research Institute,

La Jolla, CA), adenovirus for constitutively active MEK1

(RAdMEK1CA) [34] by Dr. Marco Foschi (University of

Florence, Italy), and control adenoviruses RAd66 and RAdLacZ

[35] by Dr. Gavin W.G. Wilkinson (University of Cardiff, UK).

Adenoviral infections of human gingival fibroblasts were

performed as previously described [25]. In experiments, gingival

fibroblasts, EF7WT, and EF7KO cells were transduced in

suspension with MOIs 500, 100, and 300, respectively.

Thereafter, the cells were plated and incubated for 18 h in

DMEM with 1% FCS. The medium was replaced with DMEM

without FCS, and the incubations were continued for 24 h. The

cultures were treated with TGF-b1 (5 ng/ml) for indicated

periods of time. Thereafter, cell layers were harvested either for

RNA extraction to detect TIMP-3, TIMP-1, and PAI-1

(plasminogen-activator inhibitor-1) mRNAs by quantitative

reverse-transcription-PCR (qRT-PRC) analysis or Northern

blotting, or for the determination of TIMP-3 from the cell

lysates by Western blotting.

Northern Blot Hybridizations
Total cellular RNA was extracted with Qiagen’s Rapid RNA

Purification Kit (Qiagen, Chatsworth, CA), and Northern blot

hybridizations were performed as described previously [25]. For

hybridizations, a-0.6 kb cDNA of human TIMP-3 and a 0.6-kb

cDNA of human TIMP-1 obtained by RT-PCR as previously

described [15], were used. Human plasminogen activator

inhibitor (PAI-1) cDNA [36], and a 1.3-kb rat GAPDH

(glyceraldehyde 3-phosphate dehydrogenase) cDNA [37] were

used for detecting PAI-1 and GAPDH mRNAs, respectively.

Quantitative Reverse Transcription PCR Analysis
Total RNAs were isolated by using the Qiagen RNeasy kit

(Qiagen, Chatsworth, CA). The levels of TIMP-3 and PAI-1

mRNAs were determined by quantitative reverse transcription

PCR (qRT-PCR, TaqManH) (Table S1). Aliquots of total RNA

(1 mg) were first reverse transcribed into cDNA. Taqman

analysis was performed using the Applied Biosystems ABI prism

7700 sequence-detection system as previously described [38].

18S ribosomal RNA was used as an endogenous control to

normalize for differences in the amount of total RNA in each

sample.

Western Blot Analysis
Aliquots of conditioned media or cell lysates were fractionated

on SDS-polyacrylamide gels, and transferred to Hybond ECL

nitrocellulose membrane (Amersham Pharmacia Biotech, UK).

The membranes were blocked against non-specific binding using

5% skim milk. Proteins were detected using specific primary

antibodies and peroxidase conjugated secondary antibodies.

Monoclonal antibody for TIMP-3 was purchased from Chemicon

International Inc. (Temecula, CA) and monoclonal antibody for b-

actin from Sigma (St. Louis, MO). Polyclonal antibody for Smad4

was from Santa Cruz Biotechnology (Santa Cruz, CA) and rat

monoclonal anti-HA 3F10 antibody from Roche (Mannheim,

Germany). The blots were visualized by enhanced chemilumines-

cence (ECL) detection system (Amersham Pharmacia Biotech,

UK).

Regulation of TIMP-3 Expression
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Results

TGF-b-elicited Induction of TIMP-3 Expression is Smad-
dependent

TGF-b has been previously shown to induce TIMP-1 and

TIMP-3 gene expression in fibroblasts [12]. To confirm that

TIMP-3 is a TGF-b responsive gene in human gingival fibroblasts,

the cells were first treated with TGF-b1 for 24 h and analyzed for

the expression of TIMP-3 mRNAs by Northern blot analysis. The

TGF-b1 concentration used was 5 ng/ml, which has been shown

to give maximal stimulation in fibroblasts [21,24–26,39,40]. In

addition, previous studies have shown that the response of

fibroblasts to TGF-b1 in this concentration is comparable to

TGF-b2 and TGF-b3 [40–42]. As shown in Figure 1A, TGF-b
stimulation resulted in marked induction of TIMP-3, TIMP-1, and

PAI-1 mRNA expression, as compared to untreated control cells.

To study the Smad-dependence of the TGF-b-induced expression

of TIMP-3, Smad4-deficient mouse embryonic fibroblasts,

(EF7KO), and the corresponding wild type MEFs (EF7WT), were

treated with TGF-b for 3 h and 12 h, as indicated. Thereafter, the

expression of TIMP-3 and PAI-1 mRNAs were analyzed by qRT-

PCR. As shown in Figure 1B, TGF-b stimulation of EF7WT

fibroblasts resulted in potent induction of TIMP-3 and PAI-1

mRNA expression. However, in EF7KO cells the basal and TGF-

b-induced expression of TIMP-3 mRNA was abolished, indicating

that the Smad signaling pathway is essential for the expression of

TIMP-3. In addition, the TGF-b-induced expression of PAI-1

mRNA was reduced, as compared to EF7WT control cells

(Figure 1B). This is in accordance with previous observations

showing that PAI-1 is a Smad-responsive gene [43,44]. However,

the TGF-b-induced PAI-1 mRNA expression was not completely

abolished in EF7KO cells, indicating that other signaling pathways

also participate in TGF-b induction of PAI-1 expression.

Restoration of Smad4 expression Rescues the Induction
of TIMP-3 and PAI-1 Expression in Response to TGF-b

To further elucidate the role of Smad signaling in TGF-b-

induced TIMP-3 gene expression, we analyzed whether exogenous

expression of Smad4 could rescue the TGF-b response of TIMP-3

expression in Smad4-deficient MEFs. We utilized adenoviral gene

delivery of recombinant adenovirus expressing HA-tagged Smad4

(RAdSmad4). EF7WT and EF7KO cells were infected with an

empty control virus RAd66 or RAdSmad4 and incubated for

36 h. Thereafter, the cells were treated with TGF-b1 for different

periods of time up to 24 h, and the RNAs were subjected to qRT-

PCR analysis. As shown in Figure 2A, uninfected or RAd66

infected EF7KO cells expressed no Smad4, as compared to

EF7WT control cells. However, Smad4 expression was restored in

RAdSmad4 infected EF7KO cells, as detected with Smad4

antibody or with HA-antibody, which detects only adenovirus-

produced HA-Smad4 (Figure 2A). TGF-b was unable to induce

TIMP-3 or PAI-1 expression in EF7KO cells transduced with

control virus RAd66, whereas restoring Smad4 expression resulted

in marked and significant upregulation of TIMP-3 expression in

response to TGF-b (Figure 2B). Together, these results support the

observation that TGF-b-induced TIMP-3 and PAI-1 gene

expression is Smad-dependent.

TGF-b-elicited Induction of TIMP-3 Expression is
Mediated by Smad3

As the results above with Smad4 deficient fibroblasts demon-

strate that the TGF-b-induced expression of TIMP-3 is Smad-

dependent in mouse fibroblasts, we studied this in detail also in

human fibroblasts. Human gingival fibroblasts were transduced

with recombinant adenoviruses for Smad2, Smad3, dominant

negative Smad3 (RAdSmad2, RAdSmad3, and RAdSmad3DN,

respectively), and with empty control adenovirus RAd66, and

incubated for 18 h. Thereafter, the cells were treated with TGF-b
for 24 h, as indicated. As shown in Figure 3A, a 24 h TGF-b
stimulation of control virus RAd66 transduced cells resulted in the

Figure 1. TGF-b induces TIMP-3 gene expression in a Smad-dependent manner in fibroblasts. (A) Human gingival fibroblasts were
treated with TGF-b1 (5 ng/ml) for 24 h. Thereafter, total cellular RNAs were harvested and analyzed for the expression of TIMP-3, TIMP-1, PAI-1, and
GAPDH mRNAs by Northern blotting. (B) EF7WT and EF7Smad4KO (Smad4 deficient) cells were treated with TGF-b1 (5 ng/ml) for 3 h and 12 h or left
untreated (control). Total RNA was extracted and TIMP-3 and PAI-1 gene expression was determined by qRT-PCR. mRNA expression (mean+SD) is
shown relative to 18S ribosomal RNA (n = 4). *p,0.05, **p,0.005 (t-test) for TGF-b vs. control cultures.
doi:10.1371/journal.pone.0057474.g001
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induction of TIMP-3 mRNA expression, as compared to

untreated control cells. Interestingly, adenoviral overexpression

of Smad3 markedly enhanced the TGF-b-elicited expression of

TIMP-3 mRNAs (Figure 3A), whereas overexpression of Smad2

had no effect on the TGF-b-induced levels of TIMP-3 mRNA. In

addition, adenoviral delivery of Smad3DN potently inhibited the

up-regulatory effect of TGF-b on TIMP-3 expression (Figure 3A).

To further dissect the role of Smad signaling in TGF-b-elicited

TIMP-3 gene expression, we analyzed TIMP-3 expression also on

the protein level with immunoblotting. In accordance with the

results above, a 24-h TGF-b stimulation of empty control virus

(RAdpCA3) infected fibroblasts resulted in marked induction of

TIMP-3 production, as compared to untreated control cells

(Figure 3B). In addition, overexpression of Smad3 enhanced the

up-regulatory effect of TGF-b. In contrast, adenoviral expression

of the inhibitory Smad, Smad7, and Smad3DN potently

suppressed the TGF-b-elicited induction of TIMP-3 production

(Figure 3B). Together, these observations provide evidence, that

Smad signaling in particular via Smad3 mediates the TGF-b-

elicited induction of TIMP-3 gene expression in human fibro-

blasts.

Smad3, p38, and ERK1/2 Cooperate in Regulating TIMP-3
Expression

Smad signaling is regulated through crosstalk with other

signaling cascades, e.g. MAPK pathways p38, ERK1/2, and

JNK, and Cam kinase II [20]. TGF-b activates ERK1/2 and p38

MAPK pathways in gingival fibroblasts [21]. In addition, our

Figure 2. Expression of Smad4 rescues the TGF-b response of TIMP-3 and PAI-1 in Smad4 null fibroblasts. (A) EF7WT (wild-type) and
EF7KO (Smad4 deficient) fibroblasts were transduced with recombinant adenovirus for HA-tagged Smad4 (RAdSmad4), or with empty control virus
RAd66 at MOI 100 (EF7WT) or 300 (EF7KO). After 36 h incubation cell lysates were harvested and analyzed by Western blotting to detect the levels of
endogenous and exogenous Smad4. Anti-HA antibody was used to detect adenovirally delivered Smad4 (upper panel) and anti-Smad4 to detect
endogenous Smad4 (lower panel). (B) EF7KO fibroblasts were infected with adenoviruses RAdSmad4 or RAd66. After 36 h incubation the cells were
stimulated with TGF-b1 (5 ng/ml) for different periods of time, as indicated. Total RNA was extracted and analyzed by qRT-PCR to determine TIMP-3
and PAI-1 mRNA levels. mRNA expression (mean 6 SEM from two separate experiments, both run with duplicates) is shown relative to 18S ribosomal
RNA. *p,0.05, t-test).
doi:10.1371/journal.pone.0057474.g002
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previous observations demonstrate, that Smad3 co-operates with

p38 MAPK in regulating the expression of MMP-13 [25], and

with ERK1/2 in the TGF-b-elicited expression of connective

tissue growth factor (CTGF) in human gingival fibroblasts [26].

Therefore, we first examined whether ERK1/2 and p38 MAPK

pathways play a role in mediating the effect of TGF-b on TIMP-3

gene expression in human gingival fibroblasts. We used PD98059

(30 mM), an inhibitor for MEK1, the upstream activator of

ERK1/2, and SB203580 (10 mM), a specific chemical inhibitor for

p38 MAPK. Interestingly, PD98059 and SB203580 potently

down-regulated TGF-b-induced TIMP-3 mRNA expression

(Figure 4A), indicating that both p38 and ERK1/2 MAPKs are

crucial for mediating the effects of TGF-b on TIMP-3 expression.

Treatment with PD98059 suppressed also TGF-b-induced PAI-1

expression, whereas SB20358 had a weaker inhibitory effect. In

comparison, PD98059 and SB203580 had modest effects on the

TGF-b-induced levels of TIMP-1 (Figure 4A).

Next, we examined the possible crosstalk between the MAPK

and Smad3 pathways in the regulation TIMP-3 gene expression.

Human gingival fibroblasts were first infected with recombinant

adenoviruses for Smad3 and Smad4 together with adenoviruses

for wild-type p38a (RAdp38a), and constitutively active MKK3b

(RAdMKK3bE), an upstream activator of p38, and incubated for

24 h. As shown in Figure 4B, the activation of p38a by MKK3bE

and simultaneous co-expression of Smad3 resulted in the induction

of TIMP-3 mRNA expression in the absence of TGF-b. This effect

was further augmented by simultaneous co-expression of Smad4

(Figure 4B). This indicates, that activation of p38 and simulta-

neous co-expression of Smad3 and Smad4 can induce the

expression of endogenous TIMP-3 even in the absence of TGF-

b. Activation of p38a by MKK3bE resulted in induction of PAI-1

mRNA, but this was not further augmented by co-expression

Smad3 and Smad4 (Figure 4B). This indicates, that p38a
participates in regulating the expression of PAI-1, but does not

co-operate with Smad3 in this respect. On the contrary, the levels

of TIMP-1 mRNA were not markedly altered under these

conditions.

Next, gingival fibroblasts were transduced with adenoviruses for

constitutively active MEK1 (RAdMEK1CA) alone or in combi-

nation with RAdSmad3 and RAdMKK3bE. Activation of

endogenous p38 by RAdMKK3bE or ERK1/2 by RAdMEK1CA

alone was not sufficient to induce TIMP-3 expression, but

combined activation of both ERK1/2 and p38 resulted in potent

induction in the expression of TIMP-3 mRNA (Figure 4C).

Furthermore, overexpression of Smad3 augmented this effect. The

basal level of TIMP-1 mRNA was relatively low under these

conditions, and only activation of both ERK1/2 and p38 by

RAdMEK1CA and RAdMKK3bE, respectively, induced the

expression of TIMP-1 mRNA (Figure 4C). In the same cells, the

level of PAI-1 mRNA was upregulated when ERK1/2 was

activated by MEK1CA, and this was further augmented by

overexpression of Smad3 and by activation of p38 by MKK3bE

(Figure 4C), suggesting that p38, ERK1/2 and Smad3 co-operate

in mediating the induction of PAI-1 expression.

Discussion

TGF-b plays an important role in regulation of ECM

homeostasis. It controls both the deposition and turnover of

ECM components, such as the fibrillar collagens and fibronectin,

and inhibits the expression of matrix degrading proteolytic

enzymes, such as serine proteinases and MMPs. In addition,

TGF-b induces the production of proteinase inhibitors, including

PAI-1 and TIMPs [12,13,16]. As specific inhibitors of metallo-

proteinases, TIMPs are essential for maintaining the balance

between ECM deposition and degradation in both physiological

and pathological conditions. Smads are crucial in mediating many

cellular actions of the TGF-b family including ECM gene

expression, e.g. type I and VII collagen, aggrecan, PAI-1, and

MMP-13 [25,43,45–47]. Furthermore, Smads participate in the

down-regulation of human MMP1 promoter activity by TGF-b
[19].

In this study, we have elucidated the cellular signaling pathways

involved in mediating the TGF-b-induced expression of TIMP-3,

an ECM component, by fibroblasts. Our observations demon-

strate that TIMP-3 is clearly a TGF-b responsive gene. Its

expression by fibroblasts was found to be up-regulated by TGF-b
more potently than the expression of TIMP-1. Furthermore, we

Figure 3. Smad3 mediates TGF-b-elicited induction of TIMP-3 expression in human fibroblasts. (A) Normal human gingival fibroblasts
were transduced with recombinant adenoviruses for Smad2 (RAdSmad2), Smad3 (RAdSmad3), dominant negative Smad3 (RAdSmad3DN), or with
empty control virus (RAd66) at MOI 500, and incubated for 18 h. Thereafter, the cells were treated with TGF-b1 for 24 h. The cell layers were
harvested for RNA extraction and analyzed for the expression of TIMP-3 or GAPDH by Northern blot hybridizations. (B) Normal human gingival
fibroblasts were infected with RAdSmad3, RAdSmad3DN, adenovirus for Smad7 (RAdSmad7), or with empty control virus (RAdpCA3) as in (A). Cells
were treated with TGF-b1 for 24 h, the cell layers harvested and analyzed for the expression of TIMP-3 by Western blotting. Equal loading was
confirmed by stripping and reprobing the same filter for b-actin.
doi:10.1371/journal.pone.0057474.g003
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observed that the expression of TIMP-3 was dependent on Smad

signaling. This was confirmed by using Smad4-deficient murine

fibroblasts where TIMP-3 mRNA expression was completely

abolished as compared to corresponding wild-type fibroblasts and

rescued by restoration of Smad4 expression. Overexpression of

Smad3 in human gingival fibroblasts resulted in enhanced

expression of TIMP-3 in response to TGF-b, whereas dominant

negative Smad3 and Smad7 suppressed TIMP-3 expression,

providing evidence that Smad3 specifically mediates the TGF-b-

elicited induction of TIMP-3 expression. This is in accordance

with previous observations showing that Smads mediate TGF-b-

stimulated TIMP-3 expression in human chondrocytes and that

TIMP-3 gene is a target of Smad signaling pathway [14].

We have previously observed that Smad3 mediates the TGF-b-

induced expression of MMP-13 and CTGF in human gingival

fibroblasts and squamous carcinoma cells [24–26]. In addition,

there are other reports demonstrating that Smad3 is crucial in

mediating the effects of TGF-b on ECM deposition and turnover

[16,20]. TIMP-3 gene expression is also upregulated in human

scleroderma fibroblasts, and it is further enhanced by TGF-b,

suggesting that TIMP-3 as an ECM component is involved in the

pathogenesis of dermal fibrosis [15]. Given the documented role of

Smad signaling in tissue fibrosis [48], it is conceivable, that the

Smad3-mediated up-regulation of TIMP-3 expression may play a

role in excessive accumulation of ECM and subsequent develop-

ment of tissue fibrosis. In addition, recent obervations implicate

TIMP-3 in the regulation of inflammation following tissue injury,

suggesting an important role for TIMP-3 in the process of normal

tissue repair [49]. Furthermore, stromal TIMP-3 has recently been

show to regulate basal lymphocyte populations in liver tissue and

prevent autoimmune hepatitis providing further evidence for the

role of TIMP-3 in regulation of inflammation [50]. The results of

the present study suggest a novel indirect anti-inflammatory

mechanism for TGF-b by inducing TIMP-3 expression by

fibroblasts in injured tissue. It is likely, that the signaling

mechanisms documented here also play a crucial role in regulating

this anti-inflammatory function of TIMP-3 in tissue repair.

There is a considerable body of evidence concerning the

crosstalk between the distinct cell signaling cascades activated by

TGF-b, e.g. MAPK and Smad pathways. ERK1/2, JNK, and p38

MAPKs can activate or inhibit the Smad signaling pathway by

phosphorylating Smad2 or Smad3 [22,23,51,52]. In addition,

delayed phosphorylation of p38 MAPK by TGF-b has been shown

to be mediated by the Smad pathway [27–29]. Recent studies

have shown, that coordinate activation of Smad and MAPK

pathways plays an important role in epithelial-mesenchymal

transition and myofibroblast formation induced by TGF-b
[53,54]. Furthermore, Smad3 is inactivated via hypoxia-induced

dephosphorylation by protein phosphatase 2A in epithelial cells

[55].

Here, p38 and ERK1/2 MAPK pathways mediated the effects

of TGF-b on TIMP-3 gene expression in human gingival

fibroblasts, since blocking their activity with chemical inhibitors

SB203580 and PD98059 resulted in a marked suppression of

TGF-b-induced TIMP-3 mRNA levels. In addition, activation of

p38 by MKK3bE and ERK1/2 by MEK1CA in combination

resulted in the induction of TIMP-3 expression in the absence of

TGF-b, and this effect was augmented by simultaneous co-

expression of Smad3. This indicates that p38, ERK1/2, and

Smad3 synergistically mediate the up-regulation of the expression

of TIMP-3. We have previously demonstrated, that p38 and

Smad3 co-operate in mediating TGF-b-induced expression of

MMP-13 in human gingival fibroblasts [25]. Activated p38

induced activation and nuclear translocation of Smad3 in gingival

fibroblasts, indicating that p38 MAPK is able to activate Smad3.

In addition, ERK1/2 and Smad3 co-operatively mediated the

Figure 4. Smad3, p38a and ERK1/2 cooperate in the induction of TIMP-3 gene expression in human fibroblasts. (A) Human gingival
fibroblasts were serum starved for 18 h, and treated for 1 h with PD98059 (30 mM), or SB203580 (10 mM), specific chemical inhibitors for MEK1 or p38,
respectively. Subsequently, TGF-b1 (5 ng/ml) was added, and the cultures incubated for 16 h. Total cellular RNAs were harvested and analyzed for the
levels of TIMP-3, TIMP-1, PAI-1 and GAPDH mRNAs by Northern blot hybridizations. (B) Human gingival fibroblasts were transduced with recombinant
adenoviruses for wild-type p38a (RAdp38a), constitutively active MKK3b (RAdMKK3bE), Smad3 (RAdSmad3), Smad4 (RAdSmad4), or with empty
control virus (RAd66) at MOI 500, and incubated for 24 h. Total cellular RNA was analyzed with Northern blot hybridizations for the expression of
TIMP-3, TIMP-1, PAI-1, and GAPDH mRNAs. (C) Human gingival fibroblasts were transduced with recombinant adenoviruses for constitutively active
MEK1 (RAdMEK1CA), constitutively active MKK3b (RAdMKK3bE), Smad3 (RAdSmad3) and control virus RAd66 as in (B). Total cellular RNA was
analyzed with Northern blot hybridizations for the expression of TIMP-3, TIMP-1, PAI-1, and GAPDH mRNAs.
doi:10.1371/journal.pone.0057474.g004
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TGF-b-induced CTGF gene expression [26]. It is conceivable that

also here, p38a and ERK1/2 influenced Smad3 activation, and

together these signaling mediators induced TIMP-3 gene expres-

sion. The results are summarized Figure 5 demonstrating the

complex regulation of TIMP-3 gene expression by crosstalk

between ERK1/2, p38, and Smad3 pathways.

To conclude, these results demonstrate that coordinate activa-

tion of Smad3, p38a, and ERK1/2 is essential for the induction of

TIMP-3 expression by TGF-b. In addition, this study demon-

strates that complex crosstalk between Smad3 and ERK1/2 and

p38 MAPK pathways plays a pivotal role in mediating the signals

triggered by TGF-b in fibroblasts, and in controlling ECM

deposition in e.g. tissue repair and fibrosis.
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20. Leivonen S-K, Kähäri V-M (2007) Transforming growth factor-b signaling in
cancer invasion and metastasis. Int J Cancer 121: 2119–2124.
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