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A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early
dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than
predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear
dynamics not incorporated in standard models. We show that when variability in infection rates is included in
standard susciptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models the total number
of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This
discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity
is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure
scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not
affect R0 or the number of infected individuals in the early phases of the epidemics. However, a wide distribution
of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected
fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate
the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average
infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola
epidemics and by numerical simulation.
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I. INTRODUCTION

An important element in theoretical epidemiology is the
epidemic threshold, which specifies the condition for an
epidemic to grow. In mean-field epidemiological models,
the concept of the basic reproductive number, Ro, has been
systematically employed as a predictor for epidemic spread
and as an analytical tool to study the threshold conditions
[1–4]. An advantage of Ro is that in many models it determines
both the threshold for the emergence of an epidemic and
the expected final outcome of an outbreak [5,6]. It has thus
been widely used to gauge the degree of threat that a specific
infectious agent will pose as an outbreak progresses [7,8].

However, over and over again differences have been ob-
served between the predicted and observed sizes of epidemics,
whereas in most cases the observed epidemic is much smaller
than predicted [9–21]. Indeed, recent studies raise doubt about
the validity of forecasting the outcome of epidemics using the
Ro-based estimate [22,23].

Specifically, given an estimate of Ro, one can project in
the ordinary differential equation (ODE) - based susceptible-
infected-recovered (SIR) and susciptible-infected-susceptible
(SIS) models the future course of the epidemic. However,
recent results have shown that these estimates are much
larger than the true extent of the disease outcome [24]. This
overestimate of late dynamics when using early dynamics
has been raised by many authors in general cases, as well as
specifically for the Ebola virus [25,26]. We build upon these
known observations to show that even in fully mixed models,
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the early dynamics cannot be used to estimate the outcome of
the late dynamics, and we propose an alternative approach.

This overestimate can be explained by a slow decrease
in Ro. Ro can be reduced by human intervention, such as
the removal of sick individuals from the society or removing
carriers of the disease [27,28], or a limitation of movement
either for the entire population or for people expressing clinical
signs [29,30], which reduces the effective reproductive number
[31]. Ro can also be reduced by passive vaccination of the
population [32] or aggressive vaccination of the population
[33,34].

All models mentioned above deal with external elements
reducing Ro, and thus reducing the number of patients in steady
state or the total number of removed individuals in SIR models.
We argue here that the measure of Ro may not be indicative of
future forecasts of the number of patients, even if no external
factors or vaccinations are involved.

Consequently, additional information is required to esti-
mate the number of people that will be affected by the disease
in steady state, or when the epidemic is over. We propose here
that the estimate of the change in the relative infection rate
defined as �I/I can be a good way to estimate the steady-state
number of infected individuals in SIS models, and the total
number of removed individuals in SIR models.

We introduce an epidemic model in which each of the
susceptible individuals has a different probability to get
infected and the same recovery probability. This model differs
from uniform models, but also from network models. In the
standard SIR and SIS models, the probability of infection is
constant for everyone [1–4]. However, in reality, different
people have different tendencies to be clinically sick and
infectious (e.g., elderly people, children, or immune and
deficient individuals [35–40]).
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In network SIR models, the infectivity of each node is a
function of its degree (and thus it varies among nodes). How-
ever, network models assume a constant interaction pattern
that may be realistic in sexually transmitted diseases, but it is
not realistic for most noncontact (e.g., airborne or vehicle-
led) transmission. Moreover, in undirected networks, the
probability to infect and to become infected are symmetrical
[2–4,41–43], which is again mainly appropriate for sexually
transmitted diseases, but not for airborne transmission.

We present evidence here that in a wide class of models, the
variability in the probability to get infected can break the link
between the early phase of the epidemics and the predicted
outcome. We investigate the dynamical processes driving this
result, its validity, and its consequences. We then compare the
conclusions of this model to observed Ebola outbreaks. Such
results have been presented in network models. However, in
such models the connectivity is fixed over time [44–47]. In
the current analysis, we show that inhomogeneity has a crucial
effect even in fully mixed systems.

II. MODELS AND METHODS

A. SIS model

The models used in this study are based on the SIS
and SIR models. Each susceptible individual has a different
probability to get infected, but all infected individuals have
the same probability to infect other susceptible individuals.
Specifically, individuals exist in two discrete states—“healthy”
or “infected”—in the SIS model, and three discrete states—
“healthy,” “infected,” or “recovered”—in the SIR model. At
each time step, each susceptible (healthy) individual i is
infected with rate βi . At the same time, infected individuals
are cured and become susceptible again with rate γ in the
SIS model, or recovered in the SIR model. The value of βi

is only a function of the person getting infected and not the
person infecting, and it does not vary over time for a given
individual. Given a variable probability to get infected in the
population, we define the number of susceptible individuals
with a βi value between β and β + dβ as S(β)dβ and the
number of infected individuals as I (β)dβ. We further define
N (β) as N (β) = S(β) + I (β). Note that N (β) does not change
over time and is thus equal to its initial condition. We have
studied multiple distributions for this initial condition, as shall
be further explained. S is the sum over all the susceptible
individuals with different probability to get infected, I is the
sum over all the infected individuals with different probability
to get infected, and N is the sum over all the susceptible
individuals and infected individuals with different probability
to get infected. Formally,

I =
∫ ∞

0
I (β)dβ, (1)

S =
∫ ∞

0
S(β)dβ, (2)

N =
∫ ∞

0
N (β)dβ, (3)

β is the disease transmission rate (i.e., the probability that a
person would be infected), and γ is the disease recovery rate.
Note that here we use an integral approximation of the discrete

sum. We will further show that this approximation is consistent
with numerical simulations. The equations for the SIS model
used here are

dS(β)

dt
= −βIS(β) + γ I (β),

(4)
dI (β)

dt
= βIS(β) − γ I (β),

and N = I + S.

B. SIR model

In the SIR model, we added the recovered individuals class.
R(β) is defined as a recovered individual with a probability β

to get infected. Formally,

R =
∫ ∞

0
I (β)dβ. (5)

None of the recovered individuals can be infected again in
the SIR model. In this model, N (β) as N (β) = S(β) + I (β) +
R(β). The equations of the SIR model are

dS(β)

dt
= −βIS(β),

dI (β)

dt
= βIS(β) − γ I (β),

(6)
dR(β)

dt
= γ I (β),

where I is defined in Eq. (1), S is defined in Eq. (2), and R is
defined above in Eq. (5), when N = I + S + R.

C. Distributions

In the different models studied here, we implicitly consider
four different distributions for the probability of susceptible
individuals to get infected:

(i) Constant infection rate for all susceptible individuals.
This is equivalent to the mean-field SIS or SIR models.
We used β = 2 × 10−5, γ = 1, and a population size of
N = 100 000. Thus Ro = βN/γ = 2. All other models only
differ in the distribution of β.

(ii) Uniform probability distribution of infection rates
within a range 2 × 10−11 < β < 4 × 10−6.

(iii) Normal probability distribution with mean μ and
variance σ 2, The probability of having infection rate β is
P (β) = 1

[σ
√

(2π)]
e−(β−μ)2/(2σ 2) in the domain β in (1.83 ×

10−8,2.1 × 10−4). We used μ = 2 × 10−5, and σ = 2μ.
(iv) Scale-free distribution with the probability of having

infection rate β is P (β) = β−α , where α = 1.5, and β is
limited to the range (2 × 10−8,2 × 10−4).

D. Simulations

Monte Carlo simulations of the systems studied have been
performed with a population size of N = 100 000. We assign
a different infection rate to each individual using the four
distributions above. The population is initiated with a small
number of infected individuals, I0 = 10. These 10 initial
infected individuals are random individuals (i.e., they have
β values randomly chosen from the population). Note that
β is very low. However, β ∗ N is high enough, allowing
for the epidemics to spread, since N = 100 000. We assume
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full mixing and a mass action formalism, allowing for a
very small number of infected individuals to spread the
pathogen. Formally, we assign each susceptible individual at
each iteration a probability βi�t to be infected. Similarly, each
infected individual is assigned in each iteration a probability
of γ�t = �t to be removed and become susceptible again.
The simulation updating is synchronous. The dynamics are
simulated for different parameter values.

E. Numerical solution of ODEs

The ODEs were solved numerically using the MATLAB

fourth-order Runge-Kutta method [48], as applied in the
MATLAB ode45 function assuming nonstiff equations [49].

III. RESULTS

We study the behavior of an epidemic outbreak assuming
that each susceptible individual has a different probability of
getting infected. However, once it is infected, its contribution
to the total force of infection is constant. In other words,
P [S(β) + I → I (β) + I ] = β. This represents, for example,
people with different levels of susceptibility to a given disease.
Within this model, we study two possible models of recovery.
Either the recovered hosts are immunized and then an SIR
model is used, or the recovered hosts become susceptible again
and then their β value does not change over time, and an SIS
model is used. To study the effect of the distribution of β (the
probability to be infected) on both initial and late dynamics,
we assume one of four possible β value distributions: constant,
uniform, Gaussian, or scale-free. In all cases, we maintain the
expected value of β equal among models.

As will be further shown, the initial dynamics are only
affected by the first moment of the distribution (the expected
values of β), while the total number of infected individuals
during the outbreak in the SIR model or the steady-state
infected fraction in the SIS model can be strongly affected
by the following moments. Thus, in some distributions, it is
impossible to predict the “outcome” of the epidemics from the
observed initial dynamics and the resulting estimate of Ro.

A. Moment closure method

To examine the behavior of the infected class as a function
of time, we developed a moment closure scheme, and we use
the following notations:

EN (βn) =
∫ ∞

0 βnN (β)dβ∫ ∞
0 N (β)dβ

, (7)

EI (βn) =
∫ ∞

0 βnI (β)dβ∫ ∞
0 I (β)dβ

, (8)

ES(βn) =
∫ ∞

0 βnS(β)dβ∫ ∞
0 S(β)dβ

. (9)

For the SIR model, in addition to the above definitions, we
define

ER(βn) =
∫ ∞

0 βnR(β)dβ∫ ∞
0 R(β)dβ

. (10)

We then use the following notation:

In = EI (βn)I (11)

as a product of Eq. (8) with Eq. (1),

Sn = ES(βn)S (12)

as a product of Eq. (9) with Eq. (2),

Rn = ER(βn)R (13)

as a product of Eq. (10) with Eq. (5), and

Nn = EN (βn)N (14)

as a product of Eq. (7) with Eq. (3).
For the SIS model in Eq. (4), the number of infected

individuals can be estimated via (see Appendix A)

dI

dt
= IEN (β)N − II1 − γ I, (15)

where I1 is the first order of Eq. (11) and EN (β) is the first
order of Eq. (7). An iterative equation can be developed to
estimate the higher orders:

dIn

dt
= IEN (βn+1)N − IIn+1 − γ In. (16)

This would obviously lead to an infinite number of coupled
equations. However, the number of equations can be limited
using a simple moment closure method. The highest order of
the set of ODEs is set to be zero, and the order below it is set
to be a constant. Note that more advanced schemes could be
used [50–52]. However, this simple scheme agrees well with
simulation and is enough for the current analysis.

For the SIR model in Eq. (6), the number of infected
individuals can be estimated via

dI

dt
= IEN (β)N − II1 − IR1 − γ I, (17)

where I1 is the first order of Eq. (11), EN (β) is the first order
of Eq. (7), and R1 is the first order of Eq. (13). We developed
a similar scheme for the SIR model, with Eq. (6). The iterative
equation obtained for the number of susceptibles is

dSn

dt
= −ISn+1, (18)

where Sn is defined in Eq. (12).
The closure scheme above is also applied here. For

example, if the stopping order is S5, we set S5 = 0, and the
previous order is set to S4 = const, where const = S4(t = 0) =∫ ∞

0 β4S(β,t = 0)dβ.
The moment closure scheme is consistent with the dy-

namics of the infected population simulated using a Monte
Carlo simulation with the appropriate parallel distribution
(Figs. 1–3).

Increasing the number of moments for the solution of
Eqs. (16) and (18) reduces the difference between Monte
Carlo simulations and the moment closure results (data not
shown). For example, in the SIS model, for the three cases of
distribution of infection rates, an order of 20 coincides with the
results obtained from the simulation. In the SIR model, only
an eighth order was needed to reach a very high prediction.
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FIG. 1. Infected individuals as a function of time. Initial time dynamics based on Eq. (19) for the SIS model and Eq. (20) for the SIR
model. The results of a Monte Carlo simulation, the full moment closure scheme, and the approximation of the initial dynamics were compared,
and a good fit was obtained. For all four distribution studied, N = 100 000, γ = 1, and EN (β) = 2 × 10−5. The rising line is the initial time
approximation, and the two other, highly similar, lines are the full moment closure solution and the simulation results.

B. Early dynamics

For the early dynamics of the SIS model in Eq. (15), we
can approximate the dynamics by neglecting elements of the
order of −II1 compared with other elements, since β � 1 and
I (β) � N (β). The resulting solution of Eq. (15), when t → 0,
is (see Appendix A)

I = Ioexp[EN (β)N−γ ]t , (19)

where Io is the initial number of infected individuals in the
population. To check this approximation, we compared it to
the results of a Monte Carlo simulation, and a good fit was
obtained. For all four types of distributions, in the early time
of the dynamics, Eq. (19) fits the full moment closure scheme
as well as the values obtained from the Monte Carlo simulation.

For the SIR model, we can use a similar approach in
Eq. (17). We can approximate the dynamics by ignoring
elements of the order of −II1 and −IR1 compared with
other elements, since β � 1 and I (β) � N (β) and R(β)
� N (β). The resulting solution of Eq. (17), when t → 0, is

(see Appendix C)

I = Ioexp[EN (β)N−γ ]t (20)

and the recovered individuals number as

R = γ

[EN (β)N − γ ]
Ioexp[EN (β)N−γ ]t . (21)

Equation (19) for the SIS model and Eq. (20) for the SIR model
are consistent with the simulations (Fig. 1). Furthermore, as
can be clearly seen, in both SIS and SIR, all distributions tested
(uniform, Gaussian, and scale-free) have the same dynamics
as the constant infectivity.

C. Second-order analysis

During the early dynamics, only the first moment of the
sensitivity distribution affects the dynamics. Thus, the higher
moments of the distribution cannot be estimated from the
observed value of R0. However, these moments may affect the
dynamics later in the epidemic. We thus examined if the term
neglected in the previous subsection, (−II1), has a differential
effect as a function of the higher moments of the infection
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rate distribution. The general solution of the infected class for
Eq. (15) can be estimated to be (see Appendix A)

I (t) = e[EN (β)N−γ ]t

EI (β)
[EN (β)N−γ ]e

[EN (β)N−γ ]t + C
, (22)

where C = 1
Io

− EI (β)
EN (β)N−γ

. The ratio between the solution
of Eq. (22) and the solution without the neglected term in
Eq. (19) is

r(t) = 1

Io
EI (β)

[EN (β)N−γ ]e
[EN (β)N−γ ]t + C

. (23)

For t = 0, r = 1. For t ≈ 0, one can estimate

r(t) ≈ 1

1 + IoEI (β)t
. (24)

The same analysis can be performed for the SIR model.
We examined again the effect of the neglected terms on the
dynamics, with the general solution of the infected class in

Eq. (17) approximated by

I = e[EN (β)N−γ ]t

EI (β)
[EN (β)N−γ ]e

[EN (β)N−γ ]t + C
, (25)

where C = 1
Io

− EI (β)
[EN (β)N−γ ] .

The ratio between the solution without the neglected terms
[Eq. (20)] and the solution of Eq. (25), marked by r(t), is

r(t) = 1

Io
EI (β)

[EN (β)N−γ ]e
[EN (β)N−γ ]t + C

(26)

with a similar approximation. One can clearly see that the
difference between the models is affected by the value of
EI (β)(t). Thus if EI (β)(t) differs among models, so would
the resulting dynamics.

As can be seen in Fig. 2, the values obtained from the
Monte Carlo simulations and the values estimated in Eq. (23)
for the SIS model and Eq. (26) for the SIR model agree
for all distributions. Note that in both the Gaussian and the
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FIG. 2. r(t) [Eq. (23) for the SIS model and Eq. (26) for the SIR model]. The x axis is time since the initial infections. These values agree
for all distributions with the values obtained from Monte Carlo simulations. Note that in both the Gaussian and the uniform distributions,
the values are close to those obtained with constant infectivity. However, in the SF distribution, r(t) deviates from the values obtained in the
constant infectivity case. The source of the difference is in the drastic change in EI (β) in the SF model over time. This affects the denominator
of Eq. (24) for the SIS and SIR models. For all four cases, N = 100 000, γ = 1, and EN (β) = 2 × 10−5.
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uniform distributions, the values are close to those obtained
with constant infectivity. However, in the SF distribution, r(t)
deviates from the values obtained in the constant infectivity
case. The source of the difference is in the drastic change in
EI (β) in the SF model over time. This affects the denominator
of Eq. (24) for the SIS and SIR models.

This difference results from the effect of rare events in the
SF distribution. While in the uniform and Gaussian distribution
the value of EI (β) is close to ES(β), this is not the case in the
SF model, and early in the dynamics EI (β) � ES(β). Thus
in Eq. (24), r(t) is expected to decrease much faster than in
the constant β scenario, as is indeed the case. The source of
the difference between the SF and all other distributions is the
presence of the very high β values in the population (even if
they are rare). People with such high values of β are almost
automatically infected, and they increase EI (β) sharply. Note
that they also slightly decrease ES(β). In all other distributions,
the variance of β is limited per definition by the requirement
that all individuals have positive β values. Thus, while the

normal distribution cannot have a large variance, in the case
of the SF distribution, β could get in principle values between
(0,∞). This is not the case in reality, since the sample is finite.
Still, the upper bound is a few orders above the average (Fig. 2).

The same happens for the SIR model, with the important
distinction that the individuals with high β values are rapidly
removed from the population, leading to a decrease in EI (β)
following the initial sharp rise. Thus, while initially all distri-
bution show dynamics purely determined by R0, the dynamics
evolve differently as a function of the distribution of β.

One is thus led to ask whether the difference in the
distribution can be estimated from the early dynamics. The
conclusion from the results above are that in order to estimate
the future dynamics, it is not enough to know R0, but the
change in EI (β) should be estimated. While this cannot be
estimated directly, we can directly quantify the effect this has
on S ∗ ES(β) through the disease dynamics. Specifically, a
decrease in ES(β) is expected to lead to a parallel decrease
in �I/I . In the bottom graph of Fig. 3, we calculated the
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FIG. 3. Plot of EI (β)(t) and ES(β)(t) as a function of time for the SIS model and for the SIR model for all distributions tested. While in
the uniform and Gaussian distribution the value of EI (β) is close to ES(β), in the SF model this is not the case, and early in the dynamics
EI (β) � ES(β). The source of the difference between the SF and all other distributions is the presence of very high β values in the population
(even if they are rare). People with such high values of β are almost automatically infected, and they increase EI (β) sharply. The bottom plot
represents the relative infection rate �I/I as a function of time. The total decrease in the expected value of β in the S compartment and the
increase in the expected value of β in the I compartment induce a rapid decrease in this rate in the SF distribution.
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difference in the number of infected individuals in every time
step, divided by the total number of infected individuals in
the same time. The total decrease in the expected value of β

in the S compartment and the increase in the expected value
of β in the I compartments are clear in the SF distribution,
while it is more limited in all other distributions. This can be
clearly seen in the measures of ES(β), in EI (β), and in �I/I .
The mechanism driving the difference is straightforward. In
normal or uniform distribution the variance in β is limited,
thus even infecting the most susceptible individuals does not
significantly affect the values of EI (β) and ES(β). In the SF
model, the expected value of β is strongly affected by the tail
of the distribution.

D. Steady-state analysis

We have shown in the previous subsections that the distri-
bution of the infection rate has a drastic effect on the dynamics
for SF distributions. For other distributions, the infected class
dynamics are similar to the constant infectivity model, or
slightly lower. At the steady state of the system, the difference
is further enlarged. In the SIS model [Eq. (4)], we can compute
the equilibrium frequency of infected individuals (see
Appendix B) to be the solution of the following implicit
equation:

I =
∫ ∞

0

βN (β)

β + γ

I

dβ. (27)

One can develop the expansion of the integrand of Eq. (27)
around the average infection rate, leading to an expression
of the different distributions through the moments of N (β):
Eq. (27) then becomes

I = N1

(
EN (β) + γ

I

)−1

+ γ

I

∞∑
n=1

∫ ∞

0
N (β)Cndβ, (28)

where Cn are the Taylor series coefficients,

Cn = (−1)n+1[β − EN (β)]n
(

EN (β) + γ

I

)−(n+1)

. (29)

Expanding the terms [β − EN (β)]n leads to

I = N1

(
EN (β) + γ

I

)−1

+ γ

I

∞∑
n=1

n∑
j=0

(−1)n+j+1,

×
(

EN (β) + γ

I

)−(n+1)(
n

j

)
EN (β)jNn−j . (30)

As expected from the intermediate period, in the constant,
uniform, and Gaussian distributions, the same number of
infected individuals is obtained in the SIS model (Fig. 4).
However, in agreement with the intermediate period, the total
number of infected individuals in equilibrium is much lower
for the SF distribution. A similar analysis can be performed for
the SIR model with similar results (Fig. 4). The results obtained
in both models in simulations and in Eq. (30) are equivalent
(Fig. 4). For the uniform, constant, and normal distribution,
where the higher moments of β are of limited importance,
the results of a first-order approximation of Eq. (30) are very
similar to the full expansion and the simulation (about 10−6

relative error). However, in the SF model where the higher
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FIG. 4. Comparison between the analytic results and simulation
results for the SIS steady-state value in the four distributions studied
(upper plot), and the total number of removed individuals in SIR
(lower plot). The SF model distribution has the lowest steady-state
concentration of infected individuals in SIS and the lowest number
of removed individuals in SIR. This results from the removal of
individuals with high infection probability from the susceptible pool.
This effect is directly quantifiable through the higher moments of β

in the population and the resulting change in the first moment of β in
the susceptible and infected pool.

moments of β are important, the first moment approximation
(that is only affected by the first moment of β) obviously fails
to properly reproduce the number of infected individuals.

The intuitive explanation for the effect of the distribution
of β on the number of infected individuals in equilibrium,
and the resulting reduction in the number of people affected
by the epidemics compared with the case of constant β, is the
removal of individuals with high infection probability from the
susceptible pool. This effect is directly quantifiable through
the higher moments of β in the population and the resulting
change in the first moment of β in the susceptible and infected
pool. Only in the distribution where the higher moments can be
important will there be a difference between the models with
constant infectivity and the models with a larger variability.

E. Application to observed epidemics

To confirm the effect of heterogeneity in β on the outcome
of observed epidemics, and that the steady-state number of in-
fected individuals is much smaller than expected from the con-
stant transmission rate model, we compared between observed
epidemics and the analytical results described above. We
studied the spread of the Ebola virus in three African countries.

The Ebola virus is one of five viruses of the Ebolavirus
genus [53]. Four of the five known Ebola viruses, including
EBOV, cause a severe and often fatal hemorrhagic fever in
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humans and other mammals, known as Ebola virus disease
(EVD). The Ebola virus has caused the majority of human
deaths from EVD, and it is the cause of the 2013–2015 Ebola
virus epidemic in West Africa, which resulted in at least 28 424
suspected cases and 11 311 confirmed deaths [54]. The natural
reservoir of the Ebola virus is believed to be bats, and it is
primarily transmitted between humans and from animals to
humans through bodily fluids [55].

We analyzed the Ebola virus daily infection rates collected
by health authorities in three African countries: Guinea,
Liberia, and Sierra Leone. We computed the theoretical
parameters providing the best fit to the epidemics in each of
the three distributions described above as well as the standard
SIR models. There are now known cases of reexposure to
Ebola. We thus fit the SIR and not the SIS model. For
example, the free parameters are as follows: for the SF
distribution N is number of the population, α,βmin,βmax,I0,γ ;
for the Gaussian distribution, N,μ,σ,γ,I0; for the uniform
distribution, N,βmin,βmax,γ,I0; and for the constant model,
N,β,γ,I0. Using the observed I0 leads to suboptimal results
for all models. This is probably the case since in the early
dynamics, stochastic fluctuations can affect the results. We
thus estimate I0 from the dynamics later when enough cases
are available.

In Fig. 5, the top graph represents the observed infected
class in Sierra Leone and the bottom graph represents the
observed infected class in Guinea. We added the real times as
labels. Both graphs are fitted to the models with the distribution
above. While in Sierra Leone there is practically no difference
between the different models (as can be observed in the F

scores in Fig. 6), in the Guinea case there is a large difference.
The scale-free and normal distributions provide a better fit than
the constant case and uniform cases.
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FIG. 5. Observed number of Ebola infections in Sierra Leone
(upper plot) and Guinea (bottom plot) and a comparison of the
dynamics with the best fit obtained using the different distributions.
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FIG. 6. Decrease of the relative infection rate �I/I as a function
of time (top graph). This rapid decrease even in the early stage of
the disease suggests that highly infectious individuals are rapidly
removed from the population. In the bottom graph, an F test was
calculated between the best fit in the constant case and all the other
distributions to incorporate the different number of free parameters.
Three asterisks between the classic model and any of the distributions
represent p < 0.001. In Guinea, all three distributions are much better
than the constant case, but there is no significant difference between
the quality of the nonconstant distributions. In Liberia, the SF and
Gaussian distributions have a significantly better fit than the uniform
distribution, and the same result is obtained for Sierra Leone.

The relative infection rate �I/I can be used to detect
significant deviations from the straightforward dynamics
expected from these models quite early in the dynamics. The
top of Fig. 6 represents the observed infected class in Sierra
Leone for the relative infection rate �I/I . We computed from
the observed epidemics the number of new infection cases
divided by the current number of infected individuals with a
moving window of 3 days.

To determine the best-fitting model for multiple states in
Africa, we calculated the sum of squared errors (SSE) of
the optimal fit obtained for each distribution, where the error
is the difference between the observed number of infected
individuals and the solution of the theoretical model for the
appropriate distribution. In the bottom graph, the SSE is plotted
for three countries: Guinea, Liberia, and Sierra Leone. For all
countries, the SSE of all distribution of transmission coefficient
is smaller than the classic case.

An F test [56–58] was conducted to determine whether
the reduced SSE is statistically significant. The F statistic
is computed using one of two equations depending on the
number of parameters in the models. If both models have the
same number of parameters, the formula for the F statistic
is F = σSSE1/σSSE2, where SSE1 is for the first model and
SSE2 is for the second model. The p value of the results is
computed using W -V degrees of freedom, where W is the
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number of data points and V is the number of parameters
being estimated (one degree of freedom is lost per parameter
estimated). The resulting F statistic can then be compared to
an F distribution. If the models have different numbers of
parameters, the formula becomes

F = (σSSE1 − σSSE2)/(ndf1 − ndf2)

σSSE2/ndf2
. (31)

where df is the number degree of freedom of every model. df1
is number of degree of model 1 and df2 is number of degree of
model 2. In the bottom of Fig. 6, the F test was calculated
between the constant case and all the other distributions.
Three asterisks between the classic model and any of the
distributions represent a better fit of any of the distributions
than the classic case. In Guinea, all three distributions are better
than the constant case, but we cannot determine which of the
three distributions is preferable. In Liberia, the SF and
Gaussian distributions were shown to be preferable to the
uniform distribution, and the same result was obtained for
Sierra Leone. We also compared between the results of the
const susceptible-exposed-infected-recovered (SEIR) model
and other distributions of the SIR model by the F test, and the
residuals of the SEIR model are practically identical to those
of the SIR model, and in this case adding an extra parameter
does not improve the fit to the real data.

IV. CONCLUSIONS

We investigated the SIR model and the SIS model for the
three cases of distribution of the transmission coefficient in the
population and the classic case with a constant transmission co-
efficient. We found that in realistic cases, nonuniform models
provide a better description of the observed epidemics than the
model where there is a constant transmission coefficient for the
entire population. In the early dynamics, only the first moment
of β determines the dynamics, and there is no difference
between the models as long as they have the same transmission
rate. Later, the second moment of β starts affecting the
dynamics for both the SIR and SIS models. During this period,
the scale-free distribution behaves differently from other dis-
tributions and results in a lower number of infected individuals
than expected. This reduction is the result of a difference
between the first moment of β in the different compartments
(S, I ). There is a sharp increase in the average value of β among
infected compartments, accompanied by a smaller decrease
in the susceptible compartment, compared with the initial
value. Such an effect can only be observed in distributions
where the second moment of β in the total population is large
enough. The difference is then further enlarged in steady state
where all distributions of the transmission coefficient in the
population lead to a smaller number of infected individuals
compared with the model with constant β, but the biggest
difference is in the SF model, again explained by the high
second moment of β in this distribution. We have then tested
this conclusion by studying the spread of the Ebola virus in
multiple African countries. An F test between the different
distributions shows that they all produce a better fit than the
constant β model. We attempted to detect early in the infection
whether the total number of people affected by the epidemics
will deviate significantly from the results expected from the
early dynamics.

Classical models predict a large number of infected indi-
viduals in most epidemics with R0 higher than 1. However,
in reality, many epidemics end with a limited impact. The
most classical example is perhaps the huge difference between
the predictions and the observed amplitude of the JCD [9–
16]. Many models can explain this discrepancy, including,
among others, nonlinear dynamics [59,60], delays [61,62],
human intervention, passive vaccination [63,64], and small
effective population [65–67]. We show here that even in
the most standard SIR and SIS models, the initial dynamics
cannot determine the total number of people affected by
the epidemics. However, quite early in the dynamics, the
relative infection rate �I/I can be used to detect significant
deviations from the straightforward dynamics expected from
these models. The large difference is only expected if the
distribution of β values is large. Such a large difference can
be the result of intrinsic differences, but also the result of
environmental differences, partial mixing, or subpopulation
structure. Understanding this distribution in advance would
improve our capacity to relate early and late dynamics. We
now plan to develop methods to estimate this distribution from
finer measures early in the disease dynamics.
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APPENDIX A: ITERATIVE EQUATION OF THE
SIS MODEL

We solve Eq. (4) using iterative equations for the SIS model.
The equation for the infected compartment from Eq. (4) can
be integrated over all values of β as follows:

d

dt

∫ ∞

0
I (β)dβ = I

∫ ∞

0
βS(β)dβ − γ

∫ ∞

0
I (β)dβ, (A1)

S(β) = N (β) − I (β),

d

dt

∫ ∞

0
I (β)dβ = I

∫ ∞

0
β[N (β)−I (β)]dβ−γ

∫ ∞

0
I (β)dβ,

(A2)

d

dt

∫ ∞

0
I (β)dβ = I

∫ ∞

0
βN (β)dβ

− I

∫ ∞

0
βI (β)dβ − γ

∫ ∞

0
I (β)dβ.

(A3)

The term
∫ ∞

0 βN (β)dβ is equal to E(β)N , and the term∫ ∞
0 βI (β)dβ can be defined as I1. Equation (A3) thus leads to

dI

dt
= IEN (β)N − II1 − γ I, (A4)

where it has a form similar to Eq. (15). We can differentiate
higher orders of I with respect to time to obtain equations
similar to Eq. (A4). This can be written at the nth order of I

(In) as the following general solution:

dIn

dt
= IEN (βn+1)N − IIn+1 − γ In, (A5)
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1. Early dynamics of the SIS model

For the early dynamics for the SIS model, we dropped the
term −II1 from Eq. (15), as explained in the main text, and
we obtained

dI

dt
= I

∫ ∞
0 βN (β)dβ

∫ ∞
0 N (β)dβ∫ ∞

0 N (β)dβ
− γ I, (A6)

dI

dt
= IE(β)N − γ I,

dI

I
= [EN (β)N − γ ]dt, (A7)

I = Ioexp[EN (β)N−γ ]t . (A8)

2. Second order for initial time

In the second order for initial time, the term −II1 in
Eq. (A4) is not neglected. We can write this term as −I 2EI (β)
using Eq. (11). The new form of Eq. (A4) leads to

dI

dt
= IEN (β)N − I 2EI (β) − γ I. (A9)

We denote −EN (β)N + γ = C1 and −EI (β) = C2 to obtain

dI

dt
+ IC1 = I 2C2. (A10)

The solution for that equation is

I (1−2)e(1−2)
∫

C1dt = (1 − 2)
∫

C2e
(1−2)

∫
C1dtdt + C. (A11)

We get

I (−1)e−C1t = −
∫

C2e
−C1t dt + C. (A12)

One can change the constants to be EN (β)N − γ = ξ and
EI (β) = ψ , and we obtain

1

I
eξt = ψ

eξt

ξ
+ C. (A13)

The boundary condition is I (t = 0) = Io, leading to

1

Io

= ψ

ξ
+ C, (A14)

C = 1

Io

− ψ

ξ
. (A15)

The solution for the infected class in Eq. (A13) is

I = eξt

ψ

ξ
eξt + C

. (A16)

The ratio between the solution without the neglected terms
Eq. (A8) and the current solution of Eq. (A16), marked by
r(t), is

r(t) =
eξt

ψ

ξ
eξt+C

Ioeξt
= 1

Io
ψ

ξ
eξt + C

. (A17)

For t = 0,

r(t) = I
(−1)
0

[
ψ

ξ
+ ξ − I0ψ

ξI0

](−1)

=
[
I0ψ

ξ
+ ξ − I0ψ

ξ

](−1)

= 1. (A18)

For t ≈ 0, we get

r(t) = I
(−1)
0

[
ψ

ξ
(1 + ξ t) + ξ − I0ψ

ξI0

](−1)

=
[
I0ψ

ξ
(1 + ξ t) + ξ − I0ψ

ξ

](−1)

(A19)

and then we get

r(t) ≈ 1

1 + I0ψt
= 1

1 + I0EI (β)t
. (A20)

APPENDIX B: STEADY STATE OF THE SIS MODEL

We solve Eq. (4) for the endemic state of the SIS model.
In steady state, the equation of the infected compartment from
Eq. (4) can be written as

dI (β)

dt
= βIS(β) − γ I (β) = 0. (B1)

Substituting

S(β) = N (β) − I (β),

we get

βI [N (β) − I (β)] − γ I (β) = 0 (B2)

or

βIN (β) − βII (β) − γ I (β) = 0. (B3)

We then integrate over β to obtain

I

∫ ∞
0 βN (β)dβ

∫ ∞
0 N (β)dβ∫ ∞

0 N (β)dβ
− I

∫ ∞

0
βI (β)dβ − γ I = 0,

(B4)

IEN (β)N − IEI (β) − γ I = 0,

EI (β) =
∫ ∞

0
βI (β)dβ = [EN (β)N − γ ]. (B5)

From Eq. (B3), we can also write

βIN (β) = (βI + γ )I (β), (B6)

I (β) = β

(βI + γ )
IN (β) = β

β + γ

I

N (β), (B7)

and integrating again, we obtain

I =
∫ ∞

0

βN (β)

β + γ

I

dβ. (B8)

Note that

〈β〉 =
∫ ∞

0 βI (β)dβ∫ ∞
0 I (β)dβ

, (B9)

〈β〉 = EI (β)

I
= EN (β)N − γ

I
. (B10)
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APPENDIX C: ITERATIVE EQUATION OF THE
SIR MODEL

We solve Eq. (6) for the general solution with the iterative
equation for the SIR model. The equation of the infected
compartment from Eq. (6) can be integrated over all values
of β as follows:

d

dt

∫ ∞

0
I (β)dβ = I

∫ ∞

0
βS(β)dβ − γ

∫ ∞

0
I (β)dβ, (C1)

S(β) = N (β) − I (β) − R(β),

d

dt

∫ ∞

0
I (β)dβ = I

∫ ∞

0
β[N (β) − I (β) − R(β)]dβ

− γ

∫ ∞

0
I (β)dβ, (C2)

d

dt

∫ ∞

0
I (β)dβ = I

∫ ∞

0
βN (β)dβ − I

∫ ∞

0
βI (β)dβ

− I

∫ ∞

0
βR(β)dβ − γ

∫ ∞

0
I (β)dβ.

(C3)

The above term
∫ ∞

0 βN (β)dβ is equal to E(β)N , and the term∫ ∞
0 βI (β)dβ can be defined as I1, and Eq. (C3) leads to

dI

dt
= IEN (β)N − II1 − IR1 − γ I, (C4)

where it has the same form as Eq. (17).

1. Early dynamics of SIR model

We drop the terms −II1 and −IR1 for the early dynamics
to obtain

dI

dt
= I

∫ ∞
0 βN (β)dβ

∫ ∞
0 N (β)dβ∫ ∞

0 N (β)dβ
− γ I (C5)

so

dI

dt
= IEN (β)N − γ I, (C6)

dI

I
= [EN (β)N − γ ]dt, (C7)

I = Ioexp[EN (β)N−γ ]t , (C8)

and R is

dR(β)

dt
= γ I (β). (C9)

We integrate again and obtain

d

dt

∫ ∞

0
R(β)dβ = γ

∫ ∞

0
I (β)dβ (C10)

and

dR

dt
= γ I (C11)

leading to

dR = γ Idt = γ Ioexp[EN (β)N−γ ]t dt, (C12)

which is

R = γ

[EN (β)N − γ ]
Ioexp[EN (β)N−γ ]t . (C13)

2. Second order for initial time

In the second order for initial time, the terms −II1 and
−IR1 in Eq. (C4) will not be neglected. The same development
for the term I is identical to that in Appendix A.

APPENDIX D: CLOSURE SCHEME OF THE SIR MODEL

We solve Eq. (6) with the closure scheme by integrating by
β:

d
∫ ∞

0 S(β)dβ

dt
= −I

∫ ∞

0
βS(β)dβ, (D1)

d
∫ ∞

0 I (β)dβ

dt
= I

∫ ∞

0
βS(β)dβ − γ

∫ ∞

0
I (β)dβ, (D2)

d
∫ ∞

0 R(β)dβ

dt
= γ

∫ ∞

0
I (β)dβ, (D3)

to obtain

dS

dt
= −I

∫ ∞

0
βS(β)dβ, (D4)

dI

dt
= I

∫ ∞

0
βS(β)dβ − γ I, (D5)

dR

dt
= γ I. (D6)

We define S1 = ∫ ∞
0 βS(β)dβ to reshape the equations

dS

dt
= −IS1, (D7)

dI

dt
= IS1 − γ I, (D8)

dR

dt
= γ I. (D9)

If we differentiate S1, we get

dS1

dt
= d

dt

∫ ∞

0
βS(β)dβ =

∫ ∞

0
β

dS(β)

dt
dβ, (D10)

and the equation will be

dS1

dt
= −

∫ ∞

0
βI

∫ ∞

0
βS(β)dβ

= −I

∫ ∞

0
β2S(β)dβ = −IS2, (D11)

where we define S2 = ∫ ∞
0 β2S(β)dβ. In the same way, we can

define in general

Sn =
∫ ∞

0
βnS(β)dβ, (D12)

and the difference equation is

dSn

dt
= −ISn+1. (D13)
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We use the moment closure method to derive the solution for
these differential equations. The order where the differential
equation stops will be zero, and the order before it will be const.

For example, if we want to stop at order S5, this order will be
S5 = 0, and order S4 = const, where the const = S4(t = 0) =∫ ∞

0 β4S(β)dβ.
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