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M A T E R I A L S  S C I E N C E

Load-bearing entanglements in polymer glasses
Cynthia Bukowski1†, Tianren Zhang2†, Robert A. Riggleman2*, Alfred J. Crosby1*

Through a combined approach of experiment and simulation, this study quantifies the role of entanglements in 
determining the mechanical properties of glassy polymer blends. Uniaxial extension experiments on 100-nm 
films containing a bidisperse mixture of polystyrene enable quantitative comparison with molecular dynamics (MD) 
simulations of a coarse-grained model for polymer glasses, where the bidisperse blends allow us to systematically 
tune the entanglement density of both systems. In the MD simulations, we demonstrate that not all entangle-
ments carry substantial load at large deformation, and our analysis allows the development of a model to describe 
the number of effective, load-bearing entanglements per chain as a function of blend ratio. The film strength 
measured experimentally and the simulated film toughness are quantitatively described by a model that only 
accounts for load-bearing entanglements.

INTRODUCTION
Glassy polymers, those below their glass transition temperature 
(Tg), are crucial to an expansive range of current and emerging 
technologies from additive manufacturing to filtration membranes 
for clean water. Their stiffness and processability make them attrac-
tive materials for many applications. Their strength, or the 
maximum stress a sample can withstand without failure, is decisive 
for determining lifetime and performance limits. The strength of 
polymer glasses has been studied classically, and it is broadly under-
stood that entanglements between polymer molecules in the glassy 
state play a crucial role in the determination of strength (1). Below 
a critical number of entanglements per molecule, glassy polymer 
materials are excessively brittle and break at diminishing levels of 
stress (2, 3). Above a critical entanglement density, polymer materials 
dissipate energy through intermolecular disentanglement and 
molecular scission to enhance their strength and toughness or the 
energy dissipated by deforming a sample to failure. These processes 
are unique to polymers and are a large reason for their wide-ranging 
use in many technologies. While entanglements are crucial for 
strength, they also necessitate the use of volatile solvents or exces-
sive temperatures during the processing of glass-forming polymers. 
These practices are environmentally costly (4). Ideally, the minimal 
degree of entanglements could be known to design maximally 
strong polymer materials processed with minimal environmental 
cost. However, a molecular view of how polymer entanglements 
determine strength and toughness has not been fully developed, 
thus hampering the efficient design of polymer materials. Here, we 
combine new experimental capabilities with molecular dynamics 
(MD) simulations to reveal that not all entanglements contribute 
equally in a polymer glass. We develop and validate a scaling theory 
that describes the number of strength-contributing entanglements 
per polymer chain, thus providing a quantitative framework for 
maximizing strength with minimal entanglements in a polymer  
glass.

The mechanical properties of polymer glasses are controlled by the 
interplay of van der Waals forces and entanglements. Van der Waals 

forces between polymer segments dominate at low strains and 
temperatures, defining properties such as the elastic modulus, while 
entanglements dominate at large strains and high temperatures (5). 
The transition between these regimes is associated with the activa-
tion of mobile segments along the polymer chains, which controls 
the onset of yielding and subsequent permanent, or so-called plastic, 
deformation and failure. For polymer glasses, plastic deformation is 
often associated with the growth of crazes or shear deformation 
zones, both of which are localized deformation mechanisms that 
precede crack growth and ultimate failure. The morphology and 
growth mechanisms of both crazes and shear deformation zones 
have been studied extensively since the 1970s (6–9).

The role of entanglements in both crazes and shear deformation 
zones has been well established through experiments, simulations, 
and theory (6, 8–11). Crazes form at low entanglement densities, 
and shear deformation zones form at high entanglement densities. 
The stability of a craze, or the resistance for a craze to break down 
and form a crack, is also a function of entanglement density, as well as 
temperature and strain rate (12). Many previous experimental studies 
have focused on understanding these deformation mechanisms, as 
they can be tracked morphologically with optical and transmission 
electron microscopy (7, 13–16). A particularly attractive aspect of 
this approach is that it is conducive to using thin films, where model 
polymer blends of polymers with narrow polydispersity and con-
trolled enthalpic interactions can be used to empirically isolate the 
role of molecular entanglements (15, 17). However, linking these 
deformation mechanisms to the mechanical strength of a polymer 
glass is challenging since measurements of mechanical strength, 
such as the maximum failure stress or critical strain energy release 
rate, have been limited to thicker, bulk specimens where model 
polymer blends with controlled entanglements are challenging and 
cost prohibitive. In this study, we overcome this limitation by using 
a recently developed experimental method that allows measurement 
of the complete uniaxial stress-strain response of ultrathin polymer 
films (16, 18). This approach allows us to systematically alter the 
state of entanglements using model polymer blends while also mea-
suring their impact on mechanical strength.

MD simulations have provided valuable insights into the role of 
entanglements in the properties of polymer melts and glasses (11, 19, 20). 
Simulations of even simplified, coarse-grained glasses exhibit behav-
iors that agree very well with experiments during deformation close 
to Tg, where the response is ductile (21, 22). However, there are 
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numerous challenges including the disparate length and time scales 
accessible to simulations and experiments, and the failure mode in 
common coarse-grained models is often ductile even at conditions 
where experiments expect brittle failure. Even at very low temperatures, 
the ductile response makes direct connection between the failure 
properties of glassy polymers in experiments and molecular simula-
tions challenging. Below, we identify the appropriate quantities that 
describe mechanical strength in both MD simulations and experiments 
to realize quantitative connections between the two. This advance 
provides important opportunities for using predictive MD simula-
tion studies to guide the design of more efficient polymer materials.

In addition to simulations, scaling theories have contributed to 
defining the role of entanglements in the mechanical properties of 
polymer glasses. Most theories have focused on understanding 
deformation mechanisms, such as crazes and shear deformation 
zones, and measurements of ductility, such as the maximum stretch 
ratio. These parameters and mechanisms can be connected to the 
morphological analysis approach afforded by thin films with 
controlled entanglement networks. Mikos and Peppas (23–26) 
developed predictive scaling models that focus on predicting the 
strength and toughness of polymer glasses, both of which are 
potentially more important for straightforward engineering de-
sign of materials. They approached the role of entanglements by 
developing a stochastic model based on effective crossings. An 
effective crossing is one in which two neighboring entanglements 
fall on opposite sides of a fracture plane, allowing the crossing chain 
to bear a load (23). This distinction excludes chain ends from being 
able to form entanglements. Counting the number of effective 
crossings per unit area, they postulate that fracture energy is 
controlled by the energy required to rupture all crossing molecules. 
In counting effective crossings, they consider two extremes of 
polydispersity, materials with monodisperse distributions of molecu-
lar length and polydisperse ones described by a Schultz-Flory distri-
bution. The predicted difference between these two extremes is 
minor. For a polydisperse material, the fracture energy was pro-
posed to obey ​​G​ F​​  = ​ G​ F∞​​ ​e​​ ​(​​−​  2 _ ⟨Z⟩​​)​​​​, where GF∞ is the fracture energy 
for a polymer system with infinite molecular weight, ⟨Z⟩ ≡ Mn/Me, 
Mn being the number average molecular weight, and Me the material-
specific molecular weight between entanglements. For bulk speci-
mens, which realistically have defects, the strength scales as 

​​σ​ F​​ ~ ​√ 
_

 ​E ​G​ F​​ _ L  ​ ​​ where E is the elastic modulus and L is the length of 

the largest defect. In the limit of zero defects, the strength is 

​​σ​ F​​  = ​ σ​ F∞​​ ​e​​ ​(​​−​ 2 _ ⟨Z⟩​​)​​​​, where F∞ is the critical strength for an infinitely 

long chain. While these predictions for fracture energy and strength 
seemingly compared favorably to classical experimental data, these 
comparisons were made over ranges of molecular weights where it 
is difficult to resolve the accuracy of the chosen parameters, GF∞ 
and F∞ (27–30). While advantageous in many respects, these low-
dispersity samples do not allow for understanding the role of various 
entanglements found in more typical polydisperse polymer materials. 
As we demonstrate below, the Mikos and Peppas theory does not 
accurately predict the behavior of bidisperse systems. Using the 
insight offered by MD simulations, we develop a modified theory that 
demonstrates that strength and fracture energy of polymer glasses 
are dictated by a predictable fraction of the interchain entanglements.

In this work, we use a combined experimental and MD approach 
to understand the role of entanglements on the deformation failure 

processes of thin glassy polymer blend films. The ability to directly 
quantify the far-field stress-strain response of model glassy polymer 
blend films provides a quantitative pathway to connect to MD 
simulation results. This approach allows us to examine both the 
macroscopic perspective of experimental films and the molecular 
perspective of local dynamics chain simulations to attain a multisize-
scale understanding of polymer strength.

RESULTS
To control the number of entanglements in the system, we mixed 
monodisperse polymers of the same chemical structure. The mono-
disperse polymers have different molecular lengths including 
species that are much longer than Me, species that are close to Me, 
and species that are much less than Me. In experiments, polystyrene 
of Mn = 150.9 kDa is mixed with either Mn = 13.7- or 59.5-kDa 
polystyrene. The Me value used is 18.1 kDa (23). Simulations use a 
coarse-grained polymer model with chains of length or degree of 
polymerization, N = 250 combined with N = 10, 30, or 60 chains. 
For this model, the typical number of monomers between entangle-
ments (Ne) is around 16. All simulation quantities are reported in 
reduced units scaled by the mass, van der Waals energy, and size of 
a polymer monomer. This blended method of sample preparation 
allows a wide range of the average number of entanglements per 
chain to be sampled, as the shorter chains dilute the longer chain’s 
entanglement network (15, 17).

In both experiments and simulations, various blend combinations 
are used where the volume fraction of long chain is represented 
by . In this manner, both the experiments and simulations are 
designed to provide quantitative insight into how the entanglement 
network contributes to the mechanical properties of glassy polymer 
materials (Fig. 1).

Mechanical properties of polymer blends
The measured mechanical response at various diluent concentra-
tions with two different diluent lengths is shown in Fig. 2 for both 
simulations and experiments. As the concentration of the longest 

Fig. 1. Blended homopolymer thin films. Macroscopic experimental dog 
bone–shaped specimen (pictured) loaded in TUTTUT for uniaxial extension. Molecular-
level simulations depict chains sliding past one another to form openings in the 
film as it is strained. Blended systems are composed of long (dark blue) and short 
(light blue) chains where most load-bearing entanglements (orange dots), if not all, 
are among the long polymer chains. Photo credit: C. Bukowski, University of 
Massachusetts Amherst.
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chains is decreased, the maximum stress and failure strain begin to 
decrease for  < 0.80 in the experiments. In Fig. 2A, the representative 
curves for each blend demonstrate an initial linear elastic stress-
strain response that plateaus after yield for larger  values. Blends 
with  > 0.80 are dominated by the long chains in the system, and 
the short chains have little effect on the maximum stress. The 
plateaus in the curves indicate plastic deformation in the form of 
crazing. Crazes were observed with The Uniaxial Tensile Tester for 
Ultra-Thin (TUTTUT) films’ in situ microscope across the gauge 
perpendicular to the axis of stretching for many measured samples 
with high . Lower  value blends may have crazed locally around 
the failure location, but this location was not always in the micro-
scope view and therefore, crazes cannot be confirmed for these 
blends. The blends with 13.7-kDa diluent only reach a dilution level 
of  = 0.75 before becoming too brittle to manipulate.

The experimental stress-strain curves in Fig.  2A resemble the 
low-strain regime of those simulated using blends of chains N = 250 
and N = 60 or 30 in Fig. 2B. At the low-strain regime in the simula-
tion stress-strain curves, there is an initial linear elastic region 
followed by a yield stress and postyield stress drop (see Fig. 2B, 
inset). After yielding, we observe different failure mechanisms by 
varying the degree of dilution (). There is a plastic plateau regime, 
followed by strain softening across most of the blend systems; we 
observe a strain hardening regime only for highly entangled systems 

( > 0.50). The regimes exhibited in highly entangled systems are in 
qualitative agreement with a prior simulation study of crazing 
behavior in the bulk (31).

In the experimental results, a constant elastic modulus (E), within 
error, is observed across all blends (Fig. 2C). The measured moduli 
for polystyrene are comparable to literature values of bulk 
polystyrene specimens (32,  33) and experimental values of thin 
films (16, 34, 35). The maximum stress Max for blends with  > 0.80 
is also approximately constant (Fig. 2D). When  < 0.80, the maximum 
stress decreases as a function of  for both blended systems. The 
decrease observed in the 13.7-kDa diluted blends is higher than the 
59.5-kDa blends.

The maximum stress in polystyrene is controlled by the craze 
propagation stress and the molecular weight (2). By blending chains, 
we are adding more chain ends to the sample, altering the average 
molecular length of the system, and continuously diluting our 
entanglement network (15, 17). However, the maximum stress 
remains constant for undiluted and minimally diluted films, even as 
the addition of short chains is decreasing the total number of entan-
glements in the system. This suggests that not all entanglements 
bear load or are necessary to reach the maximum stress during a 
mechanical test.

The maximum stress begins to decrease after diluting films with 
more than 20 volume % (vol %) of short chains ( < 0.80), suggesting 

Fig. 2. Stress-strain behavior of polymer blends. (A) Representative uniaxial deformation stress-strain response for each blend tested experimentally on TUTTUT. 
 represents the volume fraction of long chains in the system. The top graph is blends with 13.7 kDa as the short chain diluent and the bottom with 59.5 kDa. (B) Uniaxial 
deformation stress-strain responses of N = 250 (⟨Z⟩ = 15.9) blended with N = 30 (top) and 60 (bottom) at a temperature of T/Tg = 0.71. ⟨Z⟩ is 1.8 and 3.6 for each short chain, 
respectively. Low-strain response is included in the inset of each section. (C) The elastic modulus (E) for each experimentally measured blend. (D) The average maximum 
stress for each blend measured experimentally. Error bars are 1 SD of five to nine averaged films. Open symbols represent blends that were attempted but too brittle to 
manipulate in TUTTUT and stretch uniaxially. (E) The elastic modulus for each simulated blend. (F) The toughness value for each simulated blend.
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that a critical number of entanglements necessary for achieving 
maximum strength is no longer present. This result is consistent 
with previous craze morphology measurements on polystyrene 
blends conducted by Yang et al. (15), who observed that the true 
stress in craze fibrils remains constant until a critical value of entan-
glement density is reached. However, connecting this craze fibril 
stress to the macroscopic strength has not been demonstrated pre-
viously. The Mikos and Peppas theory (23), discussed above, should 
quantitatively describe this development of strength above a critical 
number of entanglements, but a direct validation has yet to be 
demonstrated.

Compared to the experimental stress-strain curves, the results 
from simulations, where nonvolume conserving strains were applied, 
are much more ductile, and the strain at which films fail is orders of 
magnitude larger than experimental values. Simulated films with 
 > 0.50 exhibit strain hardening in strain regimes not achievable 
experimentally. These disparities in stress-strain response between 
experiment and simulation can be attributed to two main differences. 
First, there are known finite-size effects in the yielding and failure of 
simulated glasses (36), and certainly, the length scale of the simula-
tion box is small compared to the large size scale of experimental 
specimens. To check the impact of size scale, we compared the 
stress-strain response of different simulation box sizes and observed 
a more rapid failure once the strain is above 0.3 in the larger sample 
(fig. S1), though this failure strain is still much higher than those in 
experiments. Second, there is a large difference in molecular fric-
tion between coarse-grained polymer models and real polymers. In 
simulations, failure only occurs through chain pullout. Assuming 
that a covalent bond should carry approximately 100 times the 
energy of a van der Waals bond to break, at no point do we observe 
any bond energies sufficiently large to merit consideration of chain 
scission. While the ratio of 100 is consistent with those expected 
from experiments (37) and numerous previous simulations (38, 39), an 
additional possible source of the discrepancy could be the use of such 
a high ratio in a coarse-grained model. Experimentally, it is known 
that both failure modes, chain pullout and scission, play a role and 
that mechanically induced failure is highly defect dependent (40, 41).

While these differences make direct comparisons between 
simulations and experiments challenging, we have identified the 
key parameters that allow quantitative connections to be made. In 

the glassy state, the elastic modulus is dictated by local intersegment 
interactions, dominated by van der Waals forces in the system 
studied here. Accordingly, trends of the elastic moduli as a function 
of entanglement density, or blend composition, should be comparable 
between experiments and simulations (Fig. 2, C and E, respectively). 
We see that both datasets have a constant elastic modulus across all 
blends measured. For failure related properties, the key parameters 
are the maximum stress for the experiments and the toughness for 
the simulations (Fig. 2, D and F, respectively). The maximum stress 
is dictated by the onset of local yielding processes associated with 
the onset of prefracture mechanisms, such as crazing. Consistent 
with classical models of yielding and crazing in polymer glasses, we 
anticipate that the energy barrier for this local process should scale 
with the work to failure, or toughness, measured in the simulations: 

​Γ  = ​ ∫0​ 
​ε​ σ=0​​

 ​​ σ dε​, where =0 denotes the  at which  crosses zero in 

Fig. 2B. The toughness measured in the simulations reveals a mono-
tonic increase, as more long chains (N = 250) are incorporated in 
the films, and blends with N = 30 are less tough than blends with 
N = 60 at the same  (Fig. 2F).

Determining how to count entanglements
While the experimental maximum stress and simulated toughness 
values appear to scale differently, according to the Mikos and 
Peppas theory, the failure processes should scale with entanglement 
number, not blend volume fraction. Testing the Mikos and Peppas 
model with our data, we plotted normalized maximum stress and 
normalized toughness for the experiments and simulations, respec-
tively, against the average entanglement number (⟨Z⟩) in the system 
(Fig. 3). To determine ⟨Z⟩ in simulations, we used the Z1 algorithm 
to reduce our polymer configurations to the primitive path (PP) 
network, which is defined by straightening the polymer chains 
without allowing them to cross each other. At the end of the Z1 
analysis, we are left with straight lines connecting the chain ends 
through a series of “kinks” where the chains bend around neighboring 
chains. We extract the mean number of interior kinks per chain to 
define ⟨Z⟩, which is proportional to the number of entanglements 
regardless of the details of the definition used to define an entangle-
ment (42). Compared to the original Kremer-Grest (KG) model 
(43), the average number of monomers between entanglements 

Fig. 3. Data plotted against the Mikos and Peppas model. Normalized experimental maximum stress, Max/∞ (A), and normalized simulated toughness, /∞ (B), as a 
function of entanglements, ⟨Z⟩. Here, ⟨Z⟩ is the Mn obtained from gel permeation chromatography of each blend divided by the Me of polystyrene (18.1 kDa). For simulations, 
⟨Z⟩ is average chain length N for each blend divided by Ne (16). Maximum stress and toughness are normalized by the maximum stress of polystyrene chains Mn = 1.928 MDa 
and the toughness of chains N = 250, respectively.
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⟨Ne⟩ is reduced in our systems due to the use of an angular potential, 
and more details on this are provided in Materials and Methods. ⟨Z⟩, 
experimentally, is calculated using the number average molecular 
weight of the blend system, the same average used by Mikos and 
Peppas, divided by Me.

The maximum stress and toughness of each blend is normalized 
by the value measured for a system with an effectively infinite chain 
length (for experiments, Mn = 1.928 MDa; and for simulations, 
N = 250) and  = 1. Experimental measurements of Mn = 1.928 MDa 
are provided in fig. S2. The plotted normalized data should collapse 
onto a single exponential curve if in agreement with the model 
(Fig. 3). In Fig. 3, it is evident that the model does not adequately 
describe the experimental or simulation results. This finding indi-
cates that the average entanglement number, ⟨Z⟩, does not accu-
rately determine the failure properties of polymer glasses. To gain a 
better understanding of why this may be, we turned to simulations 
to observe local chain dynamics and determine differences among 
the entanglements in blended systems.

Simulations have shown that not all entanglements in a system 
are load bearing. For better visual representation, one long chain is 
selected from one of the blend films, and the monomers along the 
chain are color labeled by the average bond stress calculated in their 
corresponding PP (Fig. 4A) (44). A PP is the section of chain be-
tween the kinks that were generated by the Z1 algorithm described 
above. The first PP is from the end of a chain to the first entangle-
ment. The second PP is from the first entanglement to the second 
entanglement, and this repeats until the center of the chain is 

reached. A schematic of each PP can be seen in Fig. 4B. The distri-
bution of stress is heterogenous throughout the deformation, where 
some of the PPs internal to the chain (far from the chain end) carry 
more stress as the deformation proceeds. This is quantified in Fig. 4B, 
where the stress contribution from the PPs at different distances from 
the chain end shows that ends support much less load, on average, 
than the other sections further away from the ends. In addition, the 
average bond stress as a function of strain based on the monomer 
index for two individual blend systems is provided in fig. S3. These 
data support the earlier claim that not all entanglements in the 
entanglement network bear load. While the strains here are much 
larger than those seen experimentally, the increased bond stress toward 
the center of the chain supports the idea that stress on those entangle-
ments is more likely to lead to chain scission at high strains in an 
experimental system, where molecular friction is higher. This finding 
supports the assumption of Mikos and Peppas, who did not include 
the chain end segments in determining the number of entanglements. 
However, as shown by the inability to describe both experimental and 
simulation results by their original theory (Fig. 3), a more complete 
counting of load-bearing entanglements is required.

When the total entanglement density () is calculated in simula-
tions for varying dilution levels, blends with diluents where N ≥ Ne 
show that  remains constant, as seen in Fig. 4C. Here,  is calculated 
by dividing the total number of entanglements in the system by the 
volume. Removing the entanglements where either partner chain in 
the entanglement involves the first and second PPs shows that the 
“load-bearing entanglement density” decreases approximately linearly 

Fig. 4. Force distribution on entanglements. (A) Simulation snapshots at various levels of strain. A single chain, highlighted in red in the top row, is shown in the row 
below at each of the indicated strains. The single chains are colored to show varying levels of average bond stress on each primitive path (PP) along the chain. (B) The 
average bond stress as a function of strain on each PP in a blend of N = 250 and 30 at  = 0.50. The schematic next to the graph outlines where each mentioned PP is 
located. PPs are color coded to match the plotted points. Entanglements occur at each orange dot. Hollow orange dots represent non–load-bearing entanglements at 
the end of chains. (C and D) Solid symbols represent calculations that consider all entanglements in the blend systems, and hollow symbols only consider load-bearing 
entanglements. (C) The density of entanglements, , in each simulated system as a function of dilution, calculated as the total number of entanglements divided by the 
system volume. Note that there is a solid blue star at point (0,0). (D) The average number of entanglements per chain, ⟨Z⟩, as a function of dilution. The dashed line corresponds 
to N = 60, and the dotted line corresponds to N = 30 as the diluent chain.
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as a function of  (hollow symbols in Fig. 4C). This trend in entanglement 
density is consistent with the previous empirical scaling that sug-
gested the chain length between entanglements, Ne, increases for 
blends between long, entangled chains and short, unentangled 

chains: ​​N​ e​​(ϕ ) = ​​N​ e​​(ϕ  =  1) _ ϕ  ​​ (45, 46). However, this proposed scaling 

does not capture the full trend, as the rate of increase between 
load-bearing entanglements and blend volume fraction depends on 
the length of the short-chain components (Fig. 4C).

To more precisely account for changes in load-bearing entangle-
ments as the length of the short-chain component increases, we 
consider the average number of entanglements per chain in 
Fig.  4D. When all entanglements (load bearing and non–load 
bearing) are considered, the average number of entanglements per 
chain ⟨Z⟩ exhibits a linear relationship with . When we exclude the 
entanglement between the first and second PP and entanglements in 
the center of one chain whose partner is a chain end (⟨Zeff⟩), a nonlin-
ear relationship between ⟨Zeff⟩ and  emerges. This dependence can 
be described by a mean field model that assumes that the chains are 
homogenously mixed and that the PPs near the chain ends do not 
contribute as load-bearing entanglements. The model is given by

	​​
​  〈 ​Z​ eff​​ 〉  =  [(​Z​ l​​ − 2 ) + (1 −  ) (​Z​ s​​ − 2 ) ] × [​(​​ ​ ​Z​ l​​ − 2 ─ ​Z​ l​​

 ​​ )​​+​
​   

​(1 −  ) ​(​​ ​ ​Z​ s​​ − 2 ─ ​Z​ s​​
 ​​ )​​]​

 ​​          (1)

where Z represents the number of entanglements per chain, and 
s and l correspond to short and long chains, respectively. The first 
bracketed part of the equation is a volume fraction weighted 
average of the mechanically effective number of entanglements per 
chains, and the second bracketed term represents the probability 
that those entanglements are formed with another mechanically 
effective entanglement. This second term was not considered in the 
development of the Mikos and Peppas theory, and we show that it 
accounts for the nonlinear coupling that is critical for properly 
determining entanglements that contribute to strength and tough-
ness in polydisperse materials. For diluents too short to form 

entanglements, we treat the Zs as 2 so that the load-bearing possibility 
is neglected. As indicated by the dashed lines (one is for diluents of 
N  =  60 and one is for N  =  30) in Fig.  4D, the mean-field model 
agrees very well with the number of effective entanglements per 
chain measured in simulations in the different blend systems. This 
model can be successfully applied to both experiments and simula-
tions to study the relationship between entanglements and maximum 
stress or toughness, as shown in the next section. The experimental 
Mn values were measured for each blend using gel permeation chro-
matography (tables S1 and S2). For simulations, the average chain 
length was calculated for each simulated . The values used for 
chain length between entanglements are Me ≈ 18.1 kDa for experi-
ments (23) and Ne ≈ 16 for simulations (47).

Load-bearing entanglements only
Using the learned dependence of dilution on the entanglement net-
work, we replot our experimental and simulated data and compare 
to a modified Mikos and Peppas model where we introduce two 
changes. First, we only account for entanglements that are load 
bearing, so ⟨Z⟩⟶⟨Zeff⟩, and second, we allow for a nonzero strength 
(0) and toughness (0) for systems without load-bearing entangle-
ments ( = 0). The modified model is

	​​​  ​σ​ Max​​ ─ ​σ​ ∞​​ ​   = ​ (​​1 − ​ ​σ​ 0​​ ─ ​σ​ ∞​​ ​​)​​ ​e​​ ​(​​−​  2 _ <​Z​ eff​​>
​​)​​​ + ​(​​ ​ ​σ​ 0​​ ─ ​σ​ ∞​​ ​​)​​​​	 (2)

and

	​​​  Γ ─ ​Γ​ ∞​​ ​  = ​ (​​1 − ​ ​Γ​ 0​​ ─ ​Γ​ ∞​​ ​​)​​ ​e​​ ​(​​−​  2 _ <​Z​ eff​​>
​​)​​​ + ​(​​ ​ ​Γ​ 0​​ ─ ​Γ​ ∞​​ ​​)​​​​	 (3)

for the strength and toughness, respectively. The entire equation is 
normalized by maximum strength (∞) and toughness (∞) of an 
infinitely long chain. Figure 5 shows both normalized experimental 
(solid symbols) and simulation (open symbols) data plotted as a 
function of only the load-bearing entanglements (⟨Zeff⟩/2). We 
observe that the data from both experiment and simulation overlap 
and show good agreement with the modified model, Eqs. 2 and 3, 
which are plotted as a solid and dotted line for the experiment and 

Fig. 5. Strength and toughness of materials as a function of load-bearing entanglements. Normalization is carried out by the undiluted maximum stress of polystyrene 
at Mn = 1.928 MDa and the undiluted toughness of N = 250 for the experimental and simulation results, respectively. Experimental data are represented by solid symbols, 
and simulation data are represented by hollow symbols. The lines represent the modified Mikos and Peppas model calculated for both the experiment (solid line) and 
simulation (dashed line) including only load-bearing entanglements. Each shaded region represents 1 SD of error in each line. The schematic on the right shows a system 
of entanglements with long chains (dark blue) and short chains (light blue). Solid orange dots represent load-bearing entanglements. Orange hollow dots represent 
entanglements that cannot bear load because they contain a first PP. Green hollow dots represent non–load-bearing entanglements that are made with a short species 
of chain. Ends of long chains are highlighted in red.
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simulation, respectively. There are no fitting parameters in this 
comparison between the model and the data, only measured values 
averaged for multiple runs. The value for 0 is the maximum stress 
of 59.5-kDa polystyrene ( = 0), and 0 is measured for chains of 
N = 10 ( = 0). The shaded regions represent 1 SD of the values used 
for 0, 0, ∞, and ∞ for each line. These results show that on a 
molecular level, both experiment and simulation scale in the same 
manner when considering the load-bearing fraction of entanglements 
in the system. The data also show a quantitative link between 
maximum stress and toughness when comparing experiment and 
simulation in thin glassy polymer films.

DISCUSSION
This work uses a combination of experiment and simulations to 
demonstrate the importance of considering load-bearing entangle-
ments in the toughness of materials. By systematically tuning the 
entanglement density using bidisperse and chemically identical 
blends, tensile tests of polystyrene exhibit a decrease in maximum 
stress as a short-chain diluent is added, while MD simulations show 
a decrease in the toughness with added diluent. The microscopic 
analysis enabled by the simulations shows that entanglements be-
tween the first and second PP are unable to carry substantial stress 
at large deformation, and this leads to the development of a model 
to describe the number of effective, or load-bearing, entanglements 
as a function of the blend ratio. We find an exponential scaling 
between the film toughness in our simulations and the maximum 
stress in experiments when compared to the number of effective 
entanglements per chain. These findings match well with the model, 
which builds upon physics introduced by Mikos and Peppas, and 
now accounts for the load-bearing fraction of entanglements in 
polydisperse systems based on our results by accounting for chain 
ends in both chains involved in the formation of a potential entan-
glement. Our combination of experiments and simulations provides 
enhanced understanding of polymer failure on multiple length 
scales and provides a framework for tuning mechanical properties 
based on molecular makeup. In addition to the fundamental 
insights into the origin of toughness in polymer glasses, our results 
will also have practical implications for numerous technologies, most 
notably, in additive manufacturing, where droplets of polymer are 
deposited in sequence to build a three-dimensional structure, and 
the mechanical integrity of the structure depends on the formation 
of a tough interface between the two layers. Our results suggest that 
chains will need to diffuse multiple tube diameters to provide 
bulk-like mechanical support, although more detailed study of the 
consequences of our observations during interfacial healing would 
be necessary.

There are numerous differences between the simulations and 
experiments that remain to be addressed. While Mikos and Peppas 
(23) speculate in their work that their model should apply equally 
well to strength and toughness, a more concrete and theoretical 
connection between these mechanical properties is lacking. The 
ultimate failure mode may also be different in the simulations and 
experiments. While the presumed failure mode in the experiments 
is primarily through chain scission, the polymer chains in the sim-
ulations never experience a stress comparable to that expected to 
break a covalent bond. Whether this distinction is due to the rapid 
quenching used in the simulations or to the coarse-grained model 
with its reduced friction remains unclear. Tests of our simulation 

model using breakable bonds (48) observed no bond scission, and 
the maximum energy of any bond during our simulations was 
observed to be approximately 60 times the Lennard-Jones (LJ) bond 
strength, which is less than the energy needed to break a covalent 
bond. It may be that the ratio expected in coarse-grained models 
should be reduced and that will lead to a similar failure mode in 
simulations and experiments, but this remains an outstanding 
question. Last, it is known that failure in polymer glasses can be 
seeded near defects and contaminants that are necessarily present 
in experiments performed outside of a cleanroom. While the simu-
lations are “clean,” the small length scales of the simulated samples 
may also lead to differences in the failure mode (36).

MATERIALS AND METHODS
Materials
Polystyrene with an Mn of 150.9 kDa [weight-average molecular 
weight (Mw) = 157.2 kDa and polydispersity index (PDI) = 1.04] 
was obtained from Scientific Polymer Products Inc. The two short-
chain species are polystyrene Mn = 59.5 kDa (Mw = 70.7 kDa, PDI = 
1.19; Scientific Polymer Products Inc.) and monohydroxy-terminated 
polystyrene Mn = 13.7 kDa (Mw = 14.2 kDa, PDI = 1.04; Polymer 
Source). The invariant degree of polymerization ​​√ 

_
 ​   N ​ ​​ is ~68.4, 43, 

and 20.6 for Mn = 150.9, 59.5, and 13.7 kDa, respectively. Each of 
the above polymers’ glass transition temperature was measured 
with differential scanning calorimetry. Gel permeation chromatog-
raphy was used to verify the molecular weight of each polymer 
above and each tested blend (both in the Supplementary Materials). 
Polystyrene of Mn = 1.928 MDa (Mw = 2.257 MDa and PDI = 1.17) 
was purchased from Scientific Polymer Products Inc. All materials 
were used as received.

Sample preparation
Blend samples of 100 nm thickness were prepared by spin coating 
[3000 revolutions per minute (rpm)] 2.5 vol % polystyrene in toluene 
solutions onto freshly cleaved mica substrates. Films were then 
vacuum annealed in a 170°C oven for 25 min and cooled to room 
temperature at 0.4°C per min. Polystyrene films of 1.928 MDa 
required spin coating at 4000 rpm from a 1.5 vol % polystyrene in 
toluene solution to achieve the same thickness as the blended 
samples and were annealed for 24 hours at 170°C under vacuum. 
After annealing, a dog-bone shape was cut into the film using a laser 
(laser wavelength: 10.6 m, infrared; Universal Laser Systems ULS3.50) 
at 3% power, 40% speed, and 706 points per inch.

TUTTUT experiments
Samples were floated off into TUTTUT’s reverse osmosis water 
bath for uniaxial testing. They were subject to a strain rate of 
0.0077 s−1. Between five and nine samples for each blend were mea-
sured. Film thickness was measured by ellipsometry (refractive 
index = 1.59) in eight locations and averaged. Further details about 
the TUTTUT instrument can be found in previous work (16, 18). In 
a previous study, measurements of freestanding films of poly-
styrene have been compared to those of water-supported films 
using the same instrument that we used in this current study. The 
only difference observed was that water acts as a craze stabilizer, 
enhancing the breaking strain slightly (34). Accordingly, we do not 
anticipate a water effect on the comparisons and conclusions made 
in the current study.
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Simulation design
Our MD simulations used a modified version of the coarse-grained 
bead-spring KG model (43), where nonbonded monomers interact 
through the LJ potential

	​​ (​U​ ij​​)​​ nb​  =  4ε [ ​​(​​ ​ σ ─ r ​​)​​​​ 
12

​ − ​​(​​ ​ σ ─ r ​​)​​​​ 
6
​ ] − 4ε [ ​​(​​ ​  σ ─ ​r​ cut​​ ​​)​​​​ 

12
​ − ​​(​​ ​  σ ─ ​r​ cut​​ ​​)​​​​ 

6
​]​	 (4)

for r ≤ rcut = 2.5. All the units were made dimensionless using the 
potential strength, ; the monomer size, ; and the unit time, ​
τ  =  σ ​​(​​ ​m _ ε ​​)​​​​ ​

1 _ 2​​​, where 𝑚 is the monomer mass. The bonded interac-
tions connecting two successive monomers were governed by a 
finitely extensible nonlinear elastic potential with ​k  = ​ 30ε _ 

​σ​​ 2​
 ​​ and 

R0 = 1.5. This bond type does not allow bond breaking during the 
uniaxial deformation process. We additionally added an angular 
harmonic potential of the form ​​U​ ang​​  = ​ ​K​ θ​​ _ 2 ​ ​(θ − ​θ​ 0​​)​​ 2​​ where K = 
10 per radian2 is the strength of this interaction and 0 = 120 is the 
equilibrium bond angle (47). The angular potential, which is not in 
the original KG model, was introduced to increase the average 
number of entanglements per chain without having very long–
polymer chain lengths, and the resulting average number of mono-
mers between the entanglements is ⟨Ne⟩ ≈ 16. The number of 
monomers per chain in our simulations were N = 10, 30, 60, or 250, 
with N/Ne approximately equal to 0, 1.8, 3.75, and 15.9, respectively. 
Binary polymer blends were constructed by incorporating short 
chains N = 10, 30, or 60, which are treated as diluents, into long-
chain N = 250 systems at thickness H = 20. The invariant degree of 
polymerization ​ ​√ 

_
 ​   N ​  ​​ is ~44.7, 18.9, 13, and 7.2 for N = 250, 60, 30, 

and 10, respectively. The simulation box size was 70 × 70 × H, 
with a density of the system ~0.85/−3  in the melted state. The 
free-standing films were generated by random growth of polymers 
in the simulation box with walls on the top and bottom, and soft 
potentials were applied to push the overlapped monomers away 
from each other. Next, the walls were removed to create free-standing 
films along the z direction, which was normal to the film. We note 
that our N = 250 chains have an equilibrium end-to-end distance of 
approximately 23.6, so we only expect minimal changes to the 
chain conformations due to confinement (49, 50). In addition, the 
calculated elastic modulus, E, from the stress-strain curve is in 
reduced units from our simulations. It has the units of /3, where 
 and  are the LJ parameters of a polymer monomer. To convert to 
real units, we chose our length scale to be  ≈ 1 nm, and the energy 
scale is taken from the glass transition  = kBTg,expt/Tg,sim. Using 
our simulated Tg ≈ 0.6 and Tg,expt = 400 K to correspond to a very 
high cooling rate, our dimensionless Young’s modulus of Ey ≈ 30 
corresponds to approximately 0.3 GPa in laboratory units, which is 
in reasonable agreement with the expected magnitude of gigapascal  
moduli.

To accelerate the equilibration of the free-standing thin film 
systems, connectivity-altering Monte Carlo moves were applied in 
the simulations (51–53). The equilibration proceeded with a time 
step of ∆t = 0.002 until we observed diffusive behavior of the center 
of mass mean squared displacement (MSD), and the MSD was 
calculated with a moving time origin to improve the statistics. 
Three independent configurations of the films for each system were 
generated at high temperatures, and we then cooled those poly-
mer films from ​​T  =  1.0​(​​ ​ T _ ​T​ g​​​  =  1.67​)​​​​ to ​​T  =  0.4​(​​ ​ T _ ​T​ g​​​  =  0.67​)​​​​ at a 
cooling rate of ∆T/∆t = 0.1 per 2000 to generate our glassy polymer 
thin films. Subsequently, we deformed each film under a constant 
temperature at a constant true rate ​​​ε ˙ ​  =  1 × ​10​​ −4​ ˙ ​​  by applying 

uniaxial tension in the x direction. All the simulations were performed 
with Large-scale Atomic/Molecular Massively Parallel Simulator 
MD simulation package with the Velocity Verlet algorithm and a 
Nosé-Hoover thermostat (54). Canonical ensemble (NVT) ensemble 
with periodic directions x and y was used for all the processes. We 
note that the nonperiodic direction (z) is free to exhibit fluctuations 
in thickness and contract during deformation, and hence the 
sample behaves as though it is held at a constant pressure of 0 in the 
z direction.

SUPPLEMENTARY MATERIALS
Supplementary Material for this article is available at https://science.org/doi/10.1126/
sciadv.abg9763
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