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Abstract: Manifestations of infantile nephropathic cystinosis (INC) often include cachexia and
deficiency of circulating vitamin D metabolites. We examined the impact of 25(OH)D3 versus
1,25(OH)2D3 repletion in Ctns null mice, a mouse model of INC. Six weeks of intraperitoneal ad-
ministration of 25(OH)D3 (75 µg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) resulted in Ctns−/− mice
corrected low circulating 25(OH)D3 or 1,25(OH)2D3 concentrations. While 25(OH)D3 administra-
tion in Ctns−/− mice normalized several metabolic parameters characteristic of cachexia as well
as muscle function in vivo, 1,25(OH)2D3 did not. Administration of 25(OH)D3 in Ctns−/− mice
increased muscle fiber size and decreased fat infiltration of skeletal muscle, which was accompanied
by a reduction of abnormal muscle signaling pathways. 1,25(OH)2D3 administration was not as
effective. In conclusion, 25(OH)D3 supplementation exerts metabolic advantages over 1,25(OH)2D3

supplementation by amelioration of muscle atrophy and fat browning in Ctns−/− mice.

Keywords: infantile nephropathic cystinosis; cachexia; adipose tissue browning; muscle wasting;
vitamin D insufficiency; 25(OH)D3; 1,25(OH)2D3

1. Introduction

Infantile nephropathic cystinosis (INC), a genetic chronic kidney disease (CKD), re-
sults from cystinosin (CTNS) mutations and involves the deposition of cystine crystals
in multiple organs [1,2]. Children with INC present with myopathy and neuromuscular
abnormalities such as swallowing difficulty. Currently, there are no known treatments to
address these comorbidities [3,4]. We described the cachexic phenotype in Ctns null mice,
an animal model of INC, with extensive fat browning and muscle atrophy [5]. White fat
stores energy, whereas brown fat utilizes stored energy during thermogenesis to produce
heat [6]. White fat browning (a process in which white adipocytes phenotypically change
to brown-fat-like cells) has been implicated in the progression of cachexia, as demonstrated
by recent studies [7–10]. The metabolism of skeletal muscle and brown fat are connected as
brown fat modulates the function of skeletal muscle through the release of myostatin, a
powerful inhibitor of muscle function [11]. Importantly, fat browning precedes muscle wast-
ing in cancer and CKD [12,13]. Characterizing the complex interactions between various
energy-wasting pathways involved in cachexia represents a key step towards establishing
effective clinical therapies for this profound complication in patients with INC.
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Vitamin D acts as an anti-proliferative factor in various tissues (such as fat and muscle)
and physiological systems (such as renal, cardiovascular, and immune systems) [14]. In-
sufficiency of vitamin D is present in numerous pathological conditions [15]. INC patients
commonly present with insufficiency of 25(OH)D3 and 1,25(OH)2D3 [16–18]. Previously, we
found that the administration of 25(OH)D3 and 1,25(OH)2D3 reduced the effect of cachexia
and white adipose tissue (WAT) browning in Ctns−/− mice [19]. 1α-hydroxylase, which
is present in the kidney as well as locally in muscle, activates the metabolite 25(OH)D3
(the most prevalent metabolite in circulation) to circulating 1,25(OH)2D3, which binds
the vitamin D receptor (VDR) to exert the downstream responses [20–22]. Interestingly,
25(OH)D3 shows strong in vivo and ex vivo effects by itself [23–27]. Here, we compared
25(OH)D3 versus 1,25(OH)2D3 administration in Ctns−/− mice, specifically focusing on fat
and muscle abnormalities.

2. Materials and Methods
2.1. Study Design

Twelve-month-old male, c57BL/6 wild-type (WT) mice and Ctns−/− mice (c57BL/6
genetic background) [28] were subcutaneously supplemented with 25(OH)D3 (Sigma,
Northbrook, IL, USA, Catalog 739,650-1ML, 25, 50 or 75 µg/kg/day), 1,25(OH)2D3 (Sigma,
Northbrook, IL, USA, Catalog 740,578-1ML, 20, 40 or 60 ng/kg/day) or vehicle (ethylene
glycol) for six weeks by using Alzet mini-osmotic pump model 2006 (Durect Corporation,
Cupertino, CA, USA). We used both ad libitum and pair-feeding strategy. Mice were fed
with rodent diet 5015 (catalog 0001328, LabDiet, St Louis, MO, USA). This study was
approved and performed at University of California, San Diego.

2.2. Measuremnt of Lean and Fat Mass

Body composition was determined by using EchoMRI-100™ (Echo Medical System,
Huston, TX, USA) [5,19].

2.3. Resting Metabolic Rate

This was assessed by using Oxymax calorimetry (Columbus Instruments, Columbus,
OH, USA) during the daytime (0900-1700) [5,19].

2.4. Mouse Muscle Function

Rotarod activity (model RRF/SP, Accuscan Instrument, Columbus, OH, USA) and
forelimb grip strength (Model 47106, UGO Basile, Gemonio, VA, Italy) in mice [5,19]
were assessed.

2.5. Serum and Blood Chemistry

At sacrifice, BUN, electrolytes, 25(OH)D3, and 1,25(OH)2D3 were measured
(Supplemental Table S1). Serum creatinine was measured as previously reported [28].

2.6. Protein Assay for Muscle and Adipose Tissue

Protein concentration of the tissue homogenate was analyzed using a Pierce BAC
Protein Assay Kit (catalog 23227, Thermo Scientific, Waltham, MA, USA).

2.7. Fiber Size and Fatty Infiltration of Gastrocnemius

We used Image J software (https://imagej.nih.gob/ij/download.html) (accessed on
13 January 2021) to determine gastrocnemius muscle fiber size [5,19]. In addition, Oil
Red O incubation was used to quantify fatty infiltration in skeletal muscle using ImageJ
software [29,30].

2.8. Muscle Cystine Content Measurement

Muscle cystine contents of gastrocnemius was measured according to published
protocols [31,32] by mass spectrometry.

https://imagej.nih.gob/ij/download.html
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2.9. Muscle RNAseq Analysis

RNAseq analysis previously identified differentially expressed muscle genes in Ctns−/−

mice relative to WT mice [19]. In this study, we performed qPCR analysis for these muscle
genes in the different experimental groups.

2.10. Quantitative Real-Time PCR

We reverse transcribed 3 µg of total RNA to cDNA. Quantitative real-time RT-PCR of
target genes was performed as previously published [5,19]. Information for primers are
provided (Supplemental Table S2).

2.11. Statistics

Statistics analysis was performed using GraphPad Prism version 9.3.1 (GraphPad
Software, San Diego, CA, USA). Post hoc analysis was performed with Tukey’s test.

3. Results
3.1. Supplementation of 25(OH)D3 or 1,25(OH)2D3 Replenishes Serum 25(OH)D3 or
1,25(OH)2D3 Concentration in Ctns−/− Mice

Twelve-month-old Ctns−/− mice showed significantly lower serum concentration of
both 25(OH)D3 and 1,25(OH)2D3. We determined the optimal doses of 25(OH)D3 and
1,25(OH)2D3 needed to normalize serum concentrations of these molecules in Ctns−/−

mice, (Supplemental Tables S3–S5). We observed that supplementation of 25(OH)D3
(75 µg/kg/day for 6 weeks) normalized serum concentration of 25(OH)D3 as well as
significantly increased but not normalized serum concentration of 1,25(OH)2D3 in Ctns−/−

mice whereas supplementation of 1,25(OH)2D3 (60 ng/kg/day for 6 weeks) normalized
serum concentration of 1,25(OH)2D3 but did not increase serum concentration of 25(OH)D3
in Ctns−/− mice.

3.2. Repletion of 25-Hydroxyvitamin D3 Normalizes Caloric Intake and Weight Gain in
Ctns−/− Mice

In the first series of experiments, all mice were fed ad libitum. Serum chemistry of the
mice is listed in Table 1. While supplementing 1,25(OH)2D3 did not have an effect, repletion
of 25(OH)D3 in Ctns−/− mice corrected anorexia (Figure 1A) and normalized weight gain
(Figure 1B).

Table 1. Serum and blood chemistry of mice. Twelve-month-old Ctns−/− mice and WT mice were
treated with 25(OH)D3 (75 µg/kg/day), 1,25(OH)2D3 (60 ng/kg/day), or vehicle control (ethylene
glycol) for six weeks. Data are expressed as mean ± SEM. Results of all five groups of mice were
compared to those of WT + Vehicle mice, respectively. a p < 0.05, significantly different than WT +
Vehicle mice. b p < 0.05, significantly different in Ctns−/− + 25(OH)D3 mice or Ctns−/− + 1,25(OH)2D3

mice relative to Ctns−/− + Vehicle mice.

WT
+ Vehicle

(n = 8)

WT
+ 25(OH)D3

(n = 8)

WT
+ 1,25(OH)2D3

(n = 8)

Ctns−/−

+ Vehicle
(n = 8)

Ctns−/−

+ 25(OH)D3
(n = 8)

Ctns−/−

+ 1,25(OH)2D3
(n = 8)

BUN (mg/dL) 26.3 ± 4.3 27.9 ± 2.6 23.1 ± 4.3 67.6 ± 12.4 a 57.6 ± 9.8 a 65.7 ± 7.9 a

Creatinine (mg/dL) 0.09 ± 0.02 0.08 ± 0.03 0.09 ± 0.02 0.24 ± 0.05 a 0.23 ± 0.04 a 0.21 ± 0.05 a

Bicarbonate (mmol/L) 27.6 ± 2.3 27.8 ± 2.4 26.7 ± 2.7 26.7 ± 2.3 27.1 ± 5.6 26.7 ± 2.7
25(OH)D3 (ng/mL) 104.2 ± 13.5 105.3 ± 13.9 113.6 ± 12.8 43.6± 3.4 a 109.4 ± 13.7 b 58.9 ± 5.7 a

1,25(OH)2D3 (pg/mL) 263.6 ± 31.5 201.7 ± 21.5 243.7 ± 12.8 125.6 ± 17.8 a 193.4 ± 14.3 a,b 276.1 ± 17.8 b
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Figure 1. Repletion of 25(OH)D3 corrects cachexia in Ctns−/− mice. We have performed two studies.
For the first study, Ctns−/− and WT mice were given 25(OH)D3 (75 µg/kg/day), 1,25(OH)2D3

(60 ng/kg/day), or vehicle (ethylene glycol), respectively, for six weeks. All mice were fed ad libitum.
We calculated ad libitum caloric intake (A) and recorded weight change in mice (B). For the second
experiment, we employed a diet restrictive strategy. Ctns−/− + Vehicle mice were given an ad libitum
amount of food whereas other groups of mice were given an equivalent amount of food (C). Weight
gain, fat and lean content, resting metabolic rate, and in vivo muscle function (rotarod and grip
strength) were measured in mice (D–I). Data are expressed as mean ± SEM. Results of Ctns−/− +
Vehicle, Ctns−/− + 25(OH)D3, and Ctns−/− + 1,25(OH)2D3 mice were compared to those of WT +
Vehicle, WT + 25(OH)D3, and WT + 1,25(OH)2D3 mice, respectively. In addition, results of Ctns−/− +
Vehicle were compared to those of Ctns−/− + 25(OH)D3 and Ctns−/− + 1,25(OH)2D3 mice, respectively.
Furthermore, results of Ctns−/− + 25(OH)D3 mice were compared to those of Ctns−/− + 1,25(OH)2D3

mice. Specific p-values are shown above the bar. ns signifies not significant, * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.3. Repletion of 25-Hydroxyvitamin D3 Improves Energy Homeostasis in Ctns−/− Mice

In the second series of experiments, we utilized a food restrictive strategy to study
the effects of restoring 25(OH)D3 versus 1,25(OH)2D3 levels in Ctns−/− mice without the
effects of different nutritional intake. Ctns−/− + Vehicle mice were fed ad libitum and we
determined their daily ad libitum caloric intake. The other mouse groups received an energy
intake amount equal to that of Ctns−/− + Vehicle (Figure 1C). Serum chemistry of the mice
is listed in Table 2. Replenishing serum 25(OH)D3 concentration normalized weight gain,
fat mass content, resting metabolic rate, lean mass content, and muscle function (shown
by rotarod and grip strength) in Ctns−/− mice; whereas replenishing serum 1,25(OH)2D3
concentration improved but not normalize these parameters in Ctns−/− mice (Figure 1D–I).

3.4. Repletion of 25-Hydroxyvitamin D3 Improves Adipose Tissue and Skeletal Muscle Energy
Homeostasis in Ctns−/− Mice

We analyzed the effects of vitamin D repletion in Ctns−/− mice on energy homeostasis
in adipose tissue and skeletal muscle. In WAT, BAT, and the gastrocnemius of Ctns−/−

mice, the protein content of UCPs was significantly higher whereas ATP content was
significantly lower relative to WT control mice (Figure 2). The protein content of UCPs
was normalized in WAT, BAT, and the gastrocnemius with the repletion of 25(OH)D3 in
Ctns−/− mice (Figure 2A–C). Additionally, the improvement in ATP content in WAT, BAT,
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and the gastrocnemius was significantly better with the repletion of 25(OH)D3 compared
to the repletion of 1,25(OH)2D3 in Ctns−/− mice (Figure 2D–F).

Table 2. Serum and blood chemistry of mice. Twelve-month-old Ctns−/− mice and WT mice were
treated with 25(OH)D3 (75 µg/kg/day), 1,25(OH)2D3 (60 ng/kg/day), or vehicle control (ethylene
glycol) for six weeks. Ctns−/− + Vehicle mice were fed ad libitum whereas all other groups of mice
were given the equivalent amount of energy intake as those of Ctns−/− + Vehicle mice. Results are
expressed and analyzed as in Table 1. a p < 0.05, significantly different than WT + Vehicle mice.
b p < 0.05, significantly different in Ctns−/− + 25(OH)D3 mice or Ctns−/− + 1,25(OH)2D3 mice relative
to Ctns−/− + Vehicle mice.

WT
+ Vehicle

(n = 9)

WT
+ 25(OH)D3

(n = 9)

WT
+ 1,25(OH)2D3

(n = 9)

Ctns−/−

+ Vehicle
(n = 9)

Ctns−/−

+ 25(OH)D3
(n = 9)

Ctns−/−

+ 1,25(OH)2D3
(n = 9)

BUN (mg/dL) 27.3 ± 4.3 22.7 ± 6.5 24.5 ± 2.5 65.9 ± 22.1 a 75.4 ± 11.1 a 76.9 ± 12.7 a

Creatinine (mg/dL) 0.08 ± 0.04 0.09 ± 0.02 0.08 ± 0.03 0.21 ± 0.06 a 0.26 ± 0.07 a 0.28 ± 0.04 a

Bicarbonate (mmol/L) 27.5 ± 2.6 27.1 ± 3.3 27.3 ± 2.4 26.7 ± 2.3 27.5 ± 4.3 26.9 ± 3.3
25(OH)D3 (ng/mL) 121.8 ± 23.5 124.1 ± 21.5 109.5 ± 17.6 48.2 ± 6.9 a 125.4 ± 23.7 b 64.5 ± 11.3 a

1,25(OH)2D3 (pg/mL) 254.3 ± 24.3 213.6 ± 16.5 235.4 ± 23.6 126.4 ± 24.3 a 189.8 ± 25.4 a,b 254.3 ± 14.3 b
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Figure 2. Energy homeostasis improved in skeletal muscle and adipose tissue following repletion
of 25-hydroxyvitamin D3 in Ctns−/− mice. UCP content (A–C) and ATP content (D–F) in various
tissues were measured. Results are expressed and analyzed as in Figure 1. ns signifies not significant,
* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.5. Repletion of 25-Hydroxyvitamin D3 Mitigates White Adipose Tissue Browning in
Ctns−/− Mice

Beige adipocyte cell surface markers (CD137, Tbx1, and Tmem26) expression in in-
guinal WAT was significantly more reduced with the repletion of 25(OH)D3 levels than
with the repletion of 25(OH)D3 Ctns−/− mice (Figure 3A–C). In WAT, de novo browning
recruitment is promoted by the activation of Cox2/Pgf2α pathway and Toll-like receptor
Tlr2 and adaptor molecules, such as Myd88 and Traf6 [33]. The expression of inguinal WAT
Cox2, Pgf2α, Tlr2, Myd88, and Traf6 was significantly more reduced with the repletion of
25(OH)D3 than with the repletion of 1,25(OH)2D3 in Ctns−/− mice (Figure 3D–H).
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Figure 3. White adipose tissue browning in Ctns−/− mice was reduced with the repletion of 25-
hydroxyvitamin D3. qPCR was used to measure gene expression levels in inguinal WAT, specifi-
cally for beige adipocyte markers (CD137, Tbx−1 and Tmem26) (A–C, respectively) and important
molecules that mediate WAT browning (Cox2, Pgf2α, Tlr2, Myd88 and Traf6) (D–H, respectively). Fi-
nal results were expressed in arbitrary units, with one unit being the mean level in WT + Vehicle mice.
Results are expressed and analyzed as in Figure 1. ns signifies not significant, * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.6. Repletion of 25-Hydroxyvitamin D3 Decreases WAT Thermogenic Gene Expression in
Ctns−/− Mice

Compared to WT mice, there was significantly increased expression of thermogenesis
genes (Ppargc1α, Pgc1α, Cidea, Prdm16, and Dio2) in inguinal WAT of Ctns−/− mice. The
expression of inguinal WAT genes was normalized (Ppargc1α, Pgc1α, and Dio2) or de-
creased (Cidea and Prdm16) with the repletion of 25(OH)D3. With repletion of 1,25(OH)2D3
in Ctns−/− mice, there was improvement but not normalization of these genes. (Figure 4).
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Figure 4. White adipose tissue thermogenic gene expression was normalized or decreased with the
repletion of 25-hydroxyvitamin D3 in Ctns−/− mice. In inguinal WAT, qPCR was used to measure
thermogenic gene (Ppargc1α, Pgc1α, Cidea, Prdm16 and Dio2) expression (A–E, respectively). Results
are expressed and analyzed as in Figure 3. ns signifies not significant, * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.7. Repletion of 25-Hydroxyvitamin D3 Ameliorates Muscle Wasting Signaling Pathways in
Ctns−/− Mice

Gastrocnemius expression of inflammatory cytokine was normalized (IL-1β and IL-6)
or significantly decreased (TNF-α) with the repletion of 25(OH)D3 in Ctns−/− mice
(Figure 5A–C). Additionally, the expression of negative regulators of skeletal muscle mass
(Atrogin-1, Murf-1, and Myostatin) in the gastrocnemius was normalized or decreased by
the repletion of 25(OH)D3 in Ctns−/− mice (Figure 5D–F), which was a significantly stronger
effect than observed with the repletion of 1,25(OH)2D3. Furthermore, there was increased
expression of pro-myogenic factors (Myod, Myogenin and Pax7) with the repletion of
25(OH)D3 (Figure 5G–I). There were no significant changes in expression of these genes
with the repletion 1,25(OH)2D3.

3.8. Repletion of 25-Hydroxyvitamin D3 Increases Muscle Fiber Size in Ctns−/− Mice

While investigating the effect of vitamin D repletion on skeletal muscle morphology in
Ctns−/− mice, we found that the average cross-sectional area of the gastrocnemius increased
significantly when restoring the levels of 25(OH)D3 but not 1,25(OH)2D3 (Figure 6).

3.9. Repletion of 25-Hydroxyvitamin D3 Decreases Muscle Fat Infiltration in Ctns−/− Mice

Fatty infiltration in skeletal muscle was significantly decreased with the repletion of
25(OH)D3 compared to repletion of 1,25(OH)2D3 (Figure 7).

3.10. Muscle Content of Cystine in Ctns−/− Mice

We measured gastrocnemius cystine in the experimental mice. Muscle cystine content
was significantly increased in Ctns−/− mice (Figure 8). Supplementation of 25(OH)D3 or
1,25(OH)2D3 did not influence muscle cystine content in Ctns−/− mice.

3.11. Molecular Mechanism of 25-Hydroxyvitamin D3 Repletion by RNAseq Analysis

In a previous study, we identified twenty different genes that play a role in energy
metabolism, organismal injury and abnormalities, as well as the development and function
of skeletal, muscular, and nervous systems by performing RNAseq analysis on gastrocne-
mius samples from Ctns−/− mice and WT mice [19]. For Myl3 and Tnni1, no significant
changes were detected. Notable, repletion of 25(OH)D3 improved or normalized (Ankrd2,
Csrp3, Cyfip2, Fhl1, Ly6a, Mup1, Myl2, Pdk4, Sell, Sln, Spp1, Tnnc1 and Tpm3) as well as
(Atf3, Cidea, Fos, Sncg and Tbc1d1) muscle gene expression, but repletion of 1,25(OH)2D3
did not, in Ctns−/− mice (Figure 9). Potential functional significance of these specific 18
differentially expressed muscle genes has been previously discussed [19].
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Figure 5. Signaling pathway abnormalities implicated in muscle wasting were improved or nor-
malized with repletion of 25-hydroxyvitamin D3 in Ctns−/− mice. qPCR was used to determine
expression levels of negative regulators of skeletal muscle mass (IL-1β, IL-6, TNF-α, Atrogin-1, Murf-
1, and Myostatin) and pro-myogenic factors (Myod, Myogenin, and Pax7) in gastrocnemius muscle
(A–I, respectively). Results are expressed and analyzed as in Figure 3. ns signifies not significant,
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 6. Gastrocnemius fiber size significantly increased with repletion of 25-hydroxyvitamin D3

in Ctns−/− mice. Representative photomicrographs of the gastrocnemius with H&E staining (A–F).
Average gastrocnemius cross-sectional area was measured (G). Results are expressed and analyzed
as in Figure 1. ns signifies not significant, * p < 0.05, ** p < 0.01.
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Figure 7. Fatty infiltration in skeletal muscle was reduced with repletion of 25-hydroxyvitamin D3

in Ctns−/− mice. Visualization of the quantification of fatty infiltration by Oil Red O analysis in the
gastrocnemius muscle (A–F). Final results were expressed in arbitrary units, with one unit being the
mean staining intensity in WT + Vehicle mice (G). Results are expressed and analyzed as in Figure 1.
* p < 0.05, *** p < 0.001.
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Figure 9. Gastrocnemius muscle gene expression was decreased with repletion of 25-hydroxyvitamin
D3 in Ctns−/− mice. Repletion of 25-hydroxyvitamin D3 significantly decreased or normalized
(Ankdr2, Csrp3, Cyfip2, Fhl1, Ly6a, Mup1, Myl2, Pkd4, Sell, Sln, Spp1, Tnnc1, and Tpm3)
(A–O, respectively) as well as (Atf3, Cidea, Fos, Sncg, and Tbc1d1) (P–T, respectively) muscle
gene expression, but repletion of 1,25(OH)2D3 did not, in Ctns−/− mice. Nonsignificant changes were
observed in Myl3 and Tnni1. qPCR was used to measure the expression of targeted molecules in
gastrocnemius muscle. Results are analyzed and expressed as in Figure 3. ns signifies not significant,
* p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

In this paper, we report novel findings of the metabolic advantages of 25(OH)D3
over 1,25(OH)2D3 repletion in Ctns−/− mice, a genetic model of INC. Importantly, the
25(OH)D3 supplementation protocol normalized serum concentration of 25(OH)D3 and
significantly increased but not normalize serum concentration of 1,25(OH)2D3 in Ctns−/−

mice whereas the 1,25(OH)2D3 supplementation protocol normalized serum concentration
of 1,25(OH)2D3 but did not change the serum concentration of 25(OH)D3 in Ctns−/−



Cells 2022, 11, 3264 11 of 15

mice. At these administration dosages, 25(OH)D3 repletion corrected cachexia as well as
attenuated fat and muscle pathologies in Ctns−/− mice, but 1,25(OH)2D3 repletion did not.

The metabolic advantages that accompanied 25(OH)D3 repletion over 1,25(OH)2D3
repletion in Ctns−/− mice involve many pathways. The main mechanism of 25(OH)D3
action likely results from local hydroxylation to 1,25(OH)2D3. Autocrine and paracrine
effects may be involved as 1α-hydroxylase as well as VDR are present locally in target
tissues such as skeletal muscle and fat. In addition, provision of more substrate such as
25(OH)D3 to the kidney will increase renal 1α-hydroxylation, accounting for the increase
of circulating 1,25(OH)2D3. Thus, 25(OH)D3 supplementation has dual effects of increasing
1,25(OH)2D3 both locally and systemically. Furthermore, due to its hydrophobic nature,
25(OH)D3 potentially has increased cellular uptake compared to 1,25(OH)2D3. Cellular
uptake of 25(OH)D3 occurs through the endocytosis of 25(OH)D3 to its binding complex
mediated by megalin [34,35]. Furthermore, circulating 25(OH)D3 has much longer half-life
(approximately two to three weeks) than 1,25(OH)2D3 (less than four hours) [20,36]. In
several cell types, 25(OH)D3 at physiological concentrations has a similar level of potency
compared with 1,25(OH)2D3 at pharmacological concentrations [22–27]. Even when it
is not hydroxylated, 25(OH)D3 is an active hormone (as shown by the inhibition of 1-
α hydroxylase) in various types of cells [22,25–27,37]. 25(OH)-19-nor-D3, a 25(OH)D3
analog exhibits anti-proliferative activity that is dependent on VDR but independent of
1α-hydroxylation [37]. Furthermore, 24-hydroxylase catalyzes the conversion of 25(OH)D3
and 1,25(OH)2D3 to 24R,25(OH)2D and 1,24,25-(OH)3D3, respectively [36,37]. Since distinct
biological effects have been described for both 24R,25(OH)2D and 1,24,25-(OH)3D3 in nu-
merous tissues and cell lines [37,38], the extent to which 25(OH)D3 acts directly or through
its metabolites, such as 24R,25(OH)2D and 1,24,25-(OH)3D3, is unclear [39]. Therefore, a
comprehensive system biology analysis is needed in future studies to further characterize
the beneficial metabolic effects that resulted from 25(OH)D3 supplementation.

We showed the impact of 25(OH)D3 repletion in correcting cachexia and in vivo muscle
function in Ctns−/− mice. These results may have translational importance. Anorexia
and increased energy use at rest are associated with poor survival in subjects on chronic
dialysis [40,41].

UCPs regulates energy metabolism for the entire body [42]. Upregulation of adipose
and muscle UCPs has been described in cachexia from different diseases and thought to be
mechanistic involved in hypermetabolism in these disorders [43,44]. UCPs, mitochondrial
inner membrane proteins, produce heat while ATPases, proton channels located in the same
membrane, generate ATP. Increased expression of UCPS not only stimulates the process
of thermogenesis but also inhibits the synthesis of ATP [42]. Compared to the repletion
of 1,25(OH)2D3, 25(OH)D3 repletion in Ctns−/− mice not only normalized fat UCP1 and
muscle UCP3 levels but also significantly increased their ATP content. Murine fat and
human cells all expressed VDR and 1α hydroxylase, the local enzyme that hydroxylates
25(OH)D3 to 1,25(OH)2D3 [45–47]. When mouse 3T3-L1 pre-adipocytes were incubated
with 25(OH)D3, the media showed a buildup of 1,25(OH)2D3 [48]. 25(OH)D3 also binds to
the UCP3 promoter region to modulate its expression in muscle [49]. WAT of Ctns−/− mice,
there show upregulated thermogenic genes (Ppargc1α, Pgc1α, Cidea, Prdm16, and Dio2)
(Figure 4), which was attenuated or normalized with 25(OH)D3 repletion.

Injury stimulates muscle satellite cells to differentiate and regenerate muscle fibers
through activation of the transcription factor pair box 7 (Pax7) [50]. Compared to 1,25(OH)2D3
repletion, 25(OH)D3 repletion not only significantly decreased atrophy-related molecules but
also significantly increased regenerative molecules in Ctns−/− mice (Figure 5).

Additionally, we documented morphological features in skeletal muscle of mice by
measuring fiber diameter and fat deposition in gastrocnemius muscle. In Ctns−/− mice,
25(OH)D3 significantly improved muscle diameter and decreased fat deposition whereas
1,25(OH)2D3 did not (Figures 6 and 7).

INC results from cystine accumulation primarily in kidney with many comorbidities [2,3].
Myopathy is prevalent in long term follow up studies in INC patients, including those who
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were treated with cysteamine. Gahl et al. [51] reported myopathy in 50% of 100 patients with
INC; the incidence rising to 80% as the time of off-cysteamine therapy increased. Brodin-
Sartoruius et al. reported myopathy in 22 out of 86 adult INC patients who were treated with
cysteamine in a more recent long-term follow up study [52]. We measured muscle cystine
content in our experimental animals. Muscle cystine content was significantly increased
in Ctns−/− mice and repletion of 25(OH)D3 or 1,25(OH)2D3 did not change muscle cystine
content in Ctns−/− mice (Figure 8). This would suggest that muscle wasting in INC is not the
direct consequence of cystine accumulation.

Repletion of 25(OH) normalized or decreased muscle inflammatory cytokine expres-
sion in Ctns−/− mice (Figure 5). Inflammation may interact with oxidative stress, abnormal
autophagy, apoptosis, defective endocystic trafficking, impaired proteolysis as well as mi-
tochondrial dysfunction in cystinotic cells [53,54]. We will plan future research to address
these potential pathways.

Finally, we used RNAseq analysis to assess the muscle transcriptome. Importantly,
25(OH)D3, but not 1,25(OH)2D3, significantly improved the abnormal signature of muscle
genes (13 upregulated and 5 downregulated) in Ctns−/− mice (Figure 9). Ankrd2, Csrp3,
Cyfip2, Fhl1, Ly6a, Spp1, and Tpm3 as well as Fos and Tbc1d1 are important determinants
of muscle mass [19]. Mup1, Myl2, Pdk4, and Sln as well as Cidea and Sncg have been
associated with energy metabolism.

5. Conclusions

Patients with INC exhibit diminished serum concentrations of 25(OH)D3 and 1,25(OH)2D3.
In this study we demonstrated several metabolic advantages of 25(OH)D3 repletion over
1,25(OH)2D3 in Ctns−/− mice, a mouse model of INC, involving various cellular pathways
(Figure 10). Monitoring and maintaining sufficient levels of circulating 25(OH)D3 and appropri-
ate supplementation should be highlighted as a crucial treatment strategy in patients with INC
to mitigate the devastating complications of adipose tissue browning and cachexia.
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