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Lung cancer is one of the most common causes of cancer death, for which no validated tumor biomarker is sufficiently accurate to
be useful for diagnosis. Additionally, the metabolic alterations associated with the disease are unclear. In this study, we investigated
the construction, interaction, and pathways of potential lung cancer biomarkers usingmetabolomics pathway analysis based on the
Kyoto Encyclopedia of Genes and Genomes database and the Human Metabolome Database to identify the top altered pathways
for analysis and visualization. We constructed a diagnostic model using potential serum biomarkers from patients with lung
cancer. We assessed their specificity and sensitivity according to the area under the curve of the receiver operator characteristic
(ROC) curves, which could be used to distinguish patients with lung cancer from normal subjects. The pathway analysis indicated
that sphingolipid metabolism was the top altered pathway in lung cancer. ROC curve analysis indicated that glycerophospho-N-
arachidonoyl ethanolamine (GpAEA) and sphingosine were potential sensitive and specific biomarkers for lung cancer diagnosis
and prognosis. Compared with the traditional lung cancer diagnostic biomarkers carcinoembryonic antigen and cytokeratin 19
fragment, GpAEA and sphingosine were as good or more appropriate for detecting lung cancer. We report our identification of
potential metabolic diagnostic and prognostic biomarkers of lung cancer and clarify the metabolic alterations in lung cancer.

1. Introduction

Lung cancer is one of the most common cancers worldwide;
the prognosis for many patients with lung cancer remains
poor. The high mortality and poor prognosis of lung can-
cer are mainly due to the difficulty of early diagnosis. If
patients were diagnosed early, the average 5-year survival rate
could be as high as 85% [1]. The development of molecular
biology has enabled tumor markers to become a common
means of diagnosing cancer. The most widely used lung
cancer biomarkers are carcinoembryonic antigen (CEA),
cancer antigen 125, cytokeratin 19 fragment (CYFRA21-1),
andneuron-specific enolase [2].However, no validated tumor
marker is sufficiently accurate to be useful for diagnosis to

date. Therefore, searching for novel diagnostic biomarkers of
lung cancer remains difficult.

Metabolomics is a powerful quantitative measurement
of low-molecular weight metabolites of an organism at a
specified time in specific environmental conditions. Funda-
mental analytical techniques are used to probe the chemical
fingerprint of samples and are an effective tool for screening
biomarkers [3, 4], diagnosis [5, 6], and biological pathway
characterization [7], specifically and accurately correlating
a particular pathway and hence any biomarkers in that
pathway with the disruption. Using a more precise selection
process for candidate marker identification, metabolomics
increases the likelihood of validation of candidate biomark-
ers in subsequent prospective validation studies [8–10].
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The approach also enhances the ability of researchers to use
themetabolomic data collected from the biomarker discovery
phase to gain insight into disease biology.

Metabolomic studies in lung cancer samples have gen-
erally employed techniques such as nuclear magnetic reso-
nance [11], high-performance liquid chromatography/mass
spectrometry (HPLC/MS andLC/MS/MS) [12], and gas chro-
matography/MS (GC/MS). HPLC coupled with quadrupole
time-of-flight MS (HPLC-Q-TOF/MS) is widely used in
metabolomics because it yields accurate qualitative analysis.
Given its high sensitivity, peak resolution, and reproducibil-
ity, GC/MS is robust metabolomic tool also widely used in
metabolite identification and quantification [13].

Previously [14], we used LC-Q-TOF/MS and GC/MS to
compare the metabolite profiles of serum from preoperative
patients with lung cancer (PRLC), postoperative patients with
lung cancer (POLC), and healthy volunteers (controls). We
characterized differences in the metabolomic profiles of the
three groups using multivariate statistical analyses: principal
components analysis (PCA) and partial least squares dis-
criminant analysis (PLS-DA). From the pattern recognition
results, we identified ten potential metabolic biomarkers for
lung cancer diagnosis.

In this study, we analyzed the construction, interaction,
and pathways of potential lung cancer biomarkers using
metabolomics pathway analysis (MetPA) based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and
Human Metabolome Database to identify the top altered
pathways for analysis and visualization. We constructed a
diagnostic model using potential serum biomarkers from
patients with lung cancer. We assessed their classification
performance (specificity and sensitivity) using the area under
the curve (AUC) of the receiver operator characteristic
(ROC) curve, which might be used to distinguish patients
with lung cancer from normal subjects.

2. Materials and Methods

2.1. Subjects. The Huzhou Central Hospital Ethics Commit-
tee approved this prospective study; we obtained informed
consent from each participant. Serum samples were collected
from 30 healthy volunteers without serious medical illness
(controls) and from 30 patients with lung cancer without
previous history of other cancers at Huzhou Central Hospital
from January 2012 to January 2013. Patients and volunteers
were matched according to sex and age. Of the 30 patients, 15
had adenocarcinoma, 12 had squamous cell carcinoma, and
three had large cell carcinoma. The patients were also staged
according to the 1997 World Health Organization tumor-
nodes-metastasis (TNM) staging system by Huzhou Central
Hospital pathologists: 15 had stage I disease, seven had stage
II disease, and eight had stage III disease. All patients had
been newly diagnosed and did not receive any form of
medical treatment during the sampling period. Preoperative
serum was collected before radical correction. Postoperative
serum was collected seven days after surgery. Serum was
collected from the controls and patients in the morning
after fasting. No anticancer agents were administered to

the enrolled patients prior to serum collection. Serum sam-
ples were collected at the Huzhou Central Hospital Depart-
ment of Laboratory Medicine; CEA and CYFRA21-1 levels
were determined using a Roche COBAS 6000 automated
electrochemiluminescence immunoassay analyzer (Roche
Diagnostics GmbH; Mannheim, Germany).

2.2. LC-Q-TOF/MS. Serum metabolite profiling was per-
formed on an Agilent 1290 Infinity Liquid Chromatogra-
phy System (Agilent Technologies, Santa Clara, CA, USA)
equippedwith a 2.1 × 100mmC18 reverse-phase columnwith
1.8 𝜇m particle size (Waters Corp., Milford, MA, USA). The
column was maintained at 40∘C; the injected sample volume
was 4 𝜇L. Gradient conditions were 0–2min 5% B, 2–17min
linear gradient from 5 to 95%B, and 17–19min 95%B. Solvent
A was 0.1% formic acid-water; solvent B was 0.1% formic
acetonitrile. The flow rate was 400𝜇L/min. MS experiments
were performed on an Agilent 6530 Accurate-Mass Q-
TOF/MS (Agilent Technologies) equipped with electrospray
ionization source. Data for each ionization technique were
acquired in positive ion mode. The measurement conditions
were capillary voltage 4.0 kV, cone voltage 35 kV, ion source
temperature 100∘C, and vaporizer temperature 350∘C. Nitro-
gen was used as the nebulizer gas and delivered at a flow rate
of 50 L/h; the desolvation gas (nitrogen) was delivered at a
flow rate of 600 L/h. The scan range was𝑚/𝑧 50–1000.

2.3. GC/MS. A 1 𝜇L aliquot of derivatized sample was
injected splitless into an Agilent 7890A GC system equipped
with a 30.0m × 0.25mm i.d. fused-silica capillary column
with 0.25-𝜇m HP-5ms stationary phase (Agilent Technolo-
gies). The injector temperature was set at 280∘C. Helium was
used as the carrier gas at a constant flow rate of 1mL/min
through the column. The initial column temperature was
80∘C; after 2min, the temperature was increased to 320∘C
at a rate of 10∘C/min and was held at 320∘C for 6min. The
column effluent was introduced into the ion source of an
Agilent 5975C Mass Selective Detector. The MS quadrupole
temperature was 150∘C; the ion source temperature was
230∘C. Masses were acquired at𝑚/𝑧 50–550.

2.4. LC-Q-TOF/MS and GC/MS Data Processing. LC data
were acquired and processed using Mass Hunter Qual-
itative Analysis Software (version B.03.01; Agilent Tech-
nologies). The MS analysis system was used to identify
metabolites corresponding to those in the METLIN database
(http://metlin.scripps.edu).

GC total ion chromatograms and fragmentation patterns
were autoacquired using GC/MSD ChemStation software
(Agilent Technologies). The mass charge ratios and their
abundance were compared with a standard mass chro-
matogram in theNational Institute of Standards andTechnol-
ogy (NIST) mass spectra library using ChemStation, which
generated a list of similarities per peak as compared with
those in the NIST library.

2.5. Multivariate Data Analysis. Data were exported into
SIMCA-P+ 11.0 software (Umetrics AB, Umeå, Sweden) for
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multivariate analysis, that is, PCA and PLS-DA. Data are
expressed as themean± SD.An independent 𝑡-test (𝑝 < 0.05)
was used to determine whether the candidate biomarkers
obtained fromPLS-DAmodelingwere statistically significant
between groups at univariate analysis level.

2.6. Construction of Metabolic Pathway and Functional Score
Analysis. MetPA was used to analyze the construction,
interaction, and pathways of the 10 potential lung cancer
biomarkers. The MetPA is based on several databases and
aids in identifying the top altered pathways for analysis
and visualization. In this study, we based the MetPA on
the KEGG database (http://www.genome.jp/kegg/) and the
Human Metabolome Database (http://www.hmdb.ca/).

2.7. Statistical Analysis. Sample distribution was determined
using the Kolmogorov-Smirnov test. Data are expressed as
means ± SD. Analysis of variance was used to analyze the
significance of differences between the three groups. We
constructed a diagnostic model using the potential serum
biomarkers alone or CEA and CYFRA21-1 combined and
used the linear discrimination analysis method for analysis.
We assessed specificity and sensitivity using the AUC of the
ROC curves. All data were analyzed using SPSS version 19.0
(SPSS Inc., Armonk, NY, USA); the significance level was set
to 𝑝 < 0.05. All 𝑝 values were two-sided.

3. Results

3.1. Identification of Potential Biomarkers. Pattern recogni-
tion results identified 10 potential metabolic biomarkers for
diagnosing lung cancer (Tables 1 and 2). The serum levels
of the potential biomarkers were significantly different in
PRLC patients compared with the controls and/or POLC
patients. Sphingosine, phosphorylcholine, glycerophospho-
N-arachidonoyl ethanolamine (GpAEA), 𝛾-linolenic acid,
9,12-octadecadienoic acid, oleic acid, and serine levels were
significantly different in the PRLC patients as compared with
those of the controls and POLC patients. Prasterone sulfate,
𝛼-hydroxyisobutyric acid, and 2,3,4-trihydroxybutyric acid
levels were statistically different in PRLC and POLC patients
as compared with the controls.

3.2. Comparison of CEA and CYFRA21-1 between Control and
Lung Cancer Groups. Table 3 lists the clinical characteristics
of the control, PRLC, and POLC groups. Serum CEA and
CYFRA21-1 levels of the PRLC group were higher than those
of the control and POLC groups.

3.3. Metabolic Pathway and Function Analysis. Pattern recog-
nition analysis of metabolites enabled clear separation of the
metabolic profiles of the lung cancer groups and the control
group [14]. MetPA was used to perform more detailed analy-
sis of the most relevant lung cancer pathways and networks.
MetPA of the potential target metabolic pathways revealed
that metabolites detected together were important for the
host response to lung cancer. Figure 1 summarizes the path-
way analysis, which revealed that the identified metabolites
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Figure 1: Summary of pathway analysis.

important for lung cancer were mainly responsible for the
following metabolism pathways: sphingolipid metabolism,
glycine, serine, and threonine metabolism, arginine and
proline metabolism, galactose metabolism, and linoleic acid
metabolism. Table 4 lists the detailed results of the pathway
analysis. Figure 2 illustrates the construction of the pathways
in detail.

3.4. Diagnostic Value of Potential Serum Biomarkers of
Lung Cancer. The ROC curve analysis of potential serum
biomarker and other tumor marker (CEA and CYFRA21-1)
levels for differentiating the control group from the PRLC
groups is shown in Figure 3 (high levels of biomarkers in
the PRLC group) and Figure 4 (low levels of biomarkers in
the PRLC group). The optimal cutoff points as calculated
by Youden’s index, sensitivities, specificities, and AUC values
are listed in Table 5 (high levels of biomarkers in the PRLC
group) and Table 6 (low levels of biomarkers in the PRLC
group).TheAUC value of GpAEAwas 0.983 (95% confidence
interval [CI] = 0.960–1.000). The optimal cutoff point was
1752.6, indicating 96.67% sensitivity and 90.00% specificity
between the control and PRLC groups. The AUC value of
sphingosine was 0.957 (95% CI = 0.894–1.000). The optimal
cutoff point was 102.76, indicating 90.00% sensitivity and
96.67% specificity between the control and PRLC groups.
The GpAEA and sphingosine AUC were significantly greater
than those of the other eight potential biomarkers, CEA, or
CYFRA21-1 and had similar diagnostic value to that of CEA,
allowing differentiation of the PRLC from the control group.
These data indicate that GpAEA and sphingosine are high-
performance diagnostic biomarkers of lung cancer, where
high GpAEA levels and low sphingosine levels indicate lung
cancer risk.

ROC curve analysis of the potential serum biomarker
levels for differentiating POLC and PRLC patients is shown
in Figure 5 (high levels of biomarkers in the PRLC group)
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Table 1: LC-Q-TOF/MS identification of potential serum biomarkers in lung cancer.

Number Retention
time (min) m/z Metabolites

Relative mass intensity

Control group Preoperative lung
cancer group (PRLC)

Postoperative lung
cancer group (POLC)

1 9.47 368.1655 Prasterone sulfate 106.80 ± 31.70 71.99 ± 38.72* 50.93 ± 22.26*

2 11.89 299.2816 Sphingosine 139.60 ± 38.75 53.33 ± 35.95*# 141.78 ± 42.42
3 12.17 169.0481 Phosphorylcholine 72.70 ± 14.16 133.28 ± 75.49*# 82.17 ± 28.31

4 13.06 501.2862 Glycerophospho-N-arachidonoyl
ethanolamine 1355.53 ± 282.89 2722.76 ± 769.63*# 1714.79 ± 399.47

5 16.06 278.2241 𝛾-Linolenic acid 500.34 ± 204.80 1245.99 ± 595.41*# 602.06 ± 226.28
*Compared with control group, 𝑝 < 0.05; #compared with postoperative lung cancer group, 𝑝 < 0.05.
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Figure 2: System analysis ofmetabolomic alterations in lung cancer.TheKEGGdatabasewas searched for each disruptedmetabolite detected;
each KEGG pathway was scored according to the pathway impact. The map was generated using the KEGG reference map. Green boxes
indicate enzymatic activities with putative analogous cases in humans.

and Figure 6 (low levels of biomarkers in the PRLC group).
The optimal cutoff points as calculated by Youden’s index,
sensitivities, specificities, and AUC values are listed in Table 7
(high levels of biomarkers in the PRLC group) and Table 8
(low levels of biomarkers in the PRLC group).TheAUC value
of GpAEA was 0.916 (95% CI = 0.847–0.984). The optimal
cutoff point was 1988.46, indicating 76.67% sensitivity and
93.33% specificity between the POLC and PRLC groups.

The AUC value of sphingosine was 0.966 (95% CI = 0.911–
11.000).Theoptimal cutoffpointwas 86.48, indicating 96.67%
sensitivity and 90.00% specificity between the PRLC and
POLC groups. The AUC values for GpAEA and sphingosine
were significantly greater than those of the other eight
potential biomarkers, CEA, or CYFRA21-1 and had similar
diagnostic value to that of CEA for differentiating PRLC
and POLC patients. These data indicate that GpAEA and
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Table 2: GC/MS identification of potential serum biomarkers in lung cancer.

Number Retention
time (min) m/z Metabolites

Relative mass intensity

Control group Preoperative lung
cancer group (PRLC)

Postoperative lung
cancer group (POLC)

1 9.21 131.1089 𝛼-Hydroxyisobutyric acid 306.84 ± 153.64 556.54 ± 220.00* 803.58 ± 329.41*

2 12.23 132.1187 Serine 183.48 ± 96.63 114.92 ± 89.30*# 284.16 ± 184.76
3 18.99 292.2003 2,3,4-Trihydroxybutyric acid 71.89 ± 30.60 24.63 ± 24.13* 23.02 ± 14.47*

4 30.27 122.1582 9,12-Octadecadienoic acid 9.88 ± 5.79 24.90 ± 18.09*# 13.57 ± 9.30
5 30.38 117.0664 Oleic acid 244.99 ± 131.32 605.66 ± 361.44*# 346.58 ± 164.66
*Compared with control group, 𝑝 < 0.05; #compared with postoperative lung cancer group, 𝑝 < 0.05.

Table 3: Clinical characteristics of subjects at baseline.

Samples Control group Preoperative lung cancer group (PRLC) Postoperative lung cancer group (POLC)
Sample number 30 30 30
Age 60.35 ± 12.48 61.58 ± 10.67 61.58 ± 10.67
Sex (F/M) 19/11 21/9 21/9
CEA (ng/mL) 1.66 ± 0.72 3.29 ± 1.60*# 2.24 ± 1.42
CYFRA21-1 (ng/mL) 1.30 ± 0.46 3.37 ± 2.66*# 1.53 ± 0.72
*Compared with control group, 𝑝 < 0.05; #compared with postoperative lung cancer group, 𝑝 < 0.05.

Table 4: Pathway analysis results.

Total Expected Hits Raw 𝑝 FDR Impact
Sphingolipid metabolism 25 0.74 3 0.036 0.47 0.66
Glycine, serine, and threonine metabolism 48 1.42 3 0.17 0.78 0.42
Arginine and proline metabolism 77 2.27 5 0.074 0.66 0.27
Galactose metabolism 41 1.21 4 0.031 0.47 0.26
Linoleic acid metabolism 15 0.44 3 0.36 1.00 0.23

Table 5: ROC curves of potential serum biomarker levels for differentiating the control group from the PRLC group.

Marker Cutoff value Sensitivity (%) Specificity (%) AUC p value* 95% CIa

Phosphorylcholine 78.32 90.00 80.00 0.874 <0.001 0.780–0.969
Glycerophospho-N-arachidonoyl ethanolamine 1752.60 96.67 90.00 0.983 <0.001 0.960–1.007
𝛾-Linolenic acid 805.17 76.67 93.33 0.889 <0.001 0.806–0.972
𝛼-Hydroxyisobutyric acid 365.23 80.00 80.00 0.860 <0.001 0.764–0.956
9,12-Octadecadienoic acid 13.56 66.67 83.33 0.704 <0.001 0.562–0.847
Oleic acid 402.22 70.00 86.67 0.749 <0.001 0.614–0.884
CEA 2.54 76.67 93.33 0.867 <0.001 0.765–0.969
CYFRA21-1 2.02 56.67 96.67 0.803 <0.001 0.690–0.916
*Asymptotic significance, null hypothesis: true area = 0.5.
a95% confidence interval of the difference.

Table 6: ROC curves of potential serum biomarker levels for differentiating the control group from the PRLC group.

Marker Cutoff value Sensitivity (%) Specificity (%) AUC p value* 95% CIa

Prasterone sulfate 91.07 76.67 80.00 0.787 <0.001 0.670–0.905
Sphingosine 102.76 90.00 96.67 0.957 <0.001 0.894–1.019
Serine 113.21 83.33 73.33 0.774 <0.001 0.645–0.904
2,3,4-Trihydroxybutyric acid 45.87 86.67 83.33 0.880 <0.001 0.794–0.966
*Asymptotic significance, null hypothesis: true area = 0.5.
a95% confidence interval of the difference.
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Table 7: ROC curves of potential serum biomarker levels for differentiating the POLC group from the PRLC group.

Marker Cutoff value Sensitivity (%) Specificity (%) AUC p value* 95% CIa

Phosphorylcholine 84.69 76.67 70.00 0.781 <0.001 0.666–0.896
Glycerophospho-N-arachidonoyl ethanolamine 1988.46 76.67 93.33 0.916 <0.001 0.847–0.984
𝛾-Linolenic acid 808.24 76.67 90.00 0.847 <0.001 0.744–0.949
9,12-Octadecadienoic acid 21.29 53.33 86.67 0.645 <0.001 0.499–0.791
Oleic acid 489.02 60.00 80.00 0.694 <0.001 0.550–0.838
CEA 2.90 70.00 83.33 0.772 <0.001 0.646–0.898
CYFRA21-1 1.64 70.00 70.00 0.737 <0.001 0.646–0.863
*Asymptotic significance, null hypothesis: true area = 0.5.
a95% confidence interval of the difference.

Table 8: ROC curves of potential serum biomarker levels for differentiating the POLC group from the PRLC group.

Marker Cutoff value Sensitivity (%) Specificity (%) AUC p value* 95% CIa

Sphingosine 86.48 96.67 90.00 0.966 <0.001 0.911
Serine 130.97 80.00 76.67 0.825 <0.001 0.721
*Asymptotic significance, null hypothesis: true area = 0.5.
a95% confidence interval of the difference.
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control group from the PRLC group (high levels of biomarkers in
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sphingosine are high-performance prognostic biomarkers of
lung cancer, where high GpAEA levels and low sphingosine
levels indicate the risk of lung cancer recurrence.
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4. Discussion

With its rates of incidence and death being the highest,
lung cancer is the most common malignant tumor world-
wide. Despite improvements in lung cancer diagnosis and
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treatment in recent years, the rate of 5-year survival rate
remains as low as 16%. Identifying tumor markers can poten-
tially improve lung cancer diagnosis, prognostication, and
therapy. Biomarkers are conventionally defined as biological
molecules that represent health and disease states. They are
typically measured in readily available body fluids, lie outside
the causal pathway, and can be used to detect and monitor
disease burden and response to treatment [15]. Pathway
analysis has been used in metabolomics analysis, vastly
extending its clinical relevance and effects [16]. However,
the metabolic pathways involved in lung cancer have not
been well studied. Emerging techniques in metabolomics
have provided a powerful platform for the discovery of novel
biomarkers and biochemical pathways that can potentially
distinguish diseased and healthy subjects.

In this study, we analyzed the construction, interaction,
and pathways of potential lung cancer biomarkers using
MetPA based on the KEGG database and the Human
Metabolome Database and determined that sphingolipid
metabolism was the top altered pathway in lung cancer. ROC
curve analysis indicated that GpAEA and sphingosine were
potential sensitive and specific diagnostic and prognostic
biomarkers of lung cancer. Compared with the traditional
diagnostic biomarkers of lung cancer, that is, CEA and
CYFRA21-1, GpAEA and sphingosine were as good or more
appropriate for detecting lung cancer.

Previous studies have demonstrated that sphingolipids
such as sphingosine, ceramide, and sphingosine-1-phosphate
are important cellmembrane components that play an impor-
tant role in tumorigenesis [17]. Ceramide is a negative regula-
tor of cell proliferation, inhibiting cell proliferation and pro-
moting apoptosis. Conversely, its metabolite sphingosine-1-
phosphate inhibits apoptosis and promotes cell proliferation.
Sphingosine, ceramide, and sphingosine-1-phosphate are
mutually transformative and maintain homeostasis through
enzymatic reactions. Sphingosine kinase, a major rate-
limiting enzyme in the cellular synthesis of sphingosine-
1-phosphate, regulates both ceramide and sphingosine-1-
phosphate by reducing ceramide to generate sphingosine-
1-phosphate. Thus, ceramide and sphingosine-1-phosphate
homeostasis determines apoptosis and cell proliferation.
Inhibiting sphingosine kinase activity increases ceramide and
sphingosine levels and decreases sphingosine-1-phosphate
levels, inhibiting cell proliferation and promoting apoptosis
[18]. Using HPLC-Q-TOF/MS, Yu et al. [19] found that,
compared with healthy volunteers, patients with lung cancer
had decreased levels of sphingosine. Consistent with this
finding, we previously reported that sphingosine levels were
significantly decreased in PRLC patients compared with
healthy volunteers and POLC patients [5]. In this study,
sphingolipid metabolism was the top altered pathway in lung
cancer. Sphingosine, ceramide, and sphingosine-1-phosphate
are involved in this metabolic pathway, and the decreased
sphingosine levels in the PRLC patients may have led to
the decreased ceramide levels and increased sphingosine-1-
phosphate levels. We believe that the alteration in the levels
of these three components in the PRLC patients could have
resulted from abnormal activation of the sphingosine kinase
pathway, previously implicated in tumor development.
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In our study, GpAEAwas the other potential sensitive and
specific diagnostic and prognostic biomarker of lung cancer.
Previous studies have demonstrated that GpAEA could be
hydrolyzed by a metal-dependent phosphodiesterase to pro-
duce the archetypal endocannabinoid anandamide (AEA),
which belongs to the long-chain lipids [20]. A neurotrans-
mitter, AEA, is rapidly hydrolyzed to arachidonic acid and
ethanolamine by fatty acid amide hydrolase, which is present
very briefly in the nervous system. AEA has two membrane
receptors, brain (CB1-R) and spleen (CB2-R) [21], and medi-
ates cellular signal transduction by activating the receptors.
On the other hand, AEA affects the physiological function
of cells by disrupting cell membrane lipids. After binding
CB1-R, AEA activates sphingomyelinase and hydrolyzes sph-
ingomyelin to generate ceramide [22]. In this study, GpAEA
levels were increased in PRLC patients compared with that of
the controls andPOLCpatients.We assume that the increased
GpAEA levels lead to decreased AEA production and, sub-
sequently, decreased ceramide production. Due to sphin-
gosine, ceramide, and sphingosine-1-phosphate homeostasis,
the decreased ceramide levels could lead to decreased sphin-
gosine levels, which is consistent with our previous results.
In our metabolic pathway analysis, sphingolipid metabolism
was the top altered pathway in lung cancer. Combined with
the above analysis, we believe that GpAEA and sphingosine
may both be involved in sphingolipid metabolism and hope
that they can be developed as sensitive and specific diagnostic
and prognostic biomarkers of lung cancer, which require
confirmation in further functional studies and large-sample
validation.

In conclusion, we demonstrate that studying metabo-
lomics is a simple and noninvasive approach andmay be used
for identifying diagnostic and prognostic biomarkers of lung
cancer. However, as the sample size in this study was small,
further studies involving larger populations of patients with
lung cancer should be performed to confirm our findings.
These investigations would provide important information
on the potential of GpAEA and sphingosine as noninvasive
markers of lung cancer.
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