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Abstract: The influence of different nitrate concentrations in combination with three 

cultivation temperatures on the total fatty acids (TFA) and eicosapentaenoic acid (EPA) 

content of Nannochloropsis salina was investigated. This was done by virtue of 

turbidostatic controlled cultures. This control mode enables the cultivation of microalgae 

under defined conditions and, therefore, the influence of single parameters on the fatty acid 

synthesis of Nannochloropsis salina can be investigated. Generally, growth rates decreased 

under low nitrate concentrations. This effect was reinforced when cells were exposed to 

lower temperatures (from 26 °C down to 17 °C). Considering the cellular TFA 

concentration, nitrate provoked an increase of TFA under nitrate limitation up to 70% of 

the biological dry mass (BDM). In contrast to this finding, the EPA content decreased 

under low nitrate concentrations. Nevertheless, both TFA and EPA contents increased 

under a low culture temperature (17 °C) compared to moderate temperatures of 21 °C and 

26 °C. In terms of biotechnological production, the growth rate has to be taken into 

account. Therefore, for both TFA and EPA production, a temperature of 17 °C and a nitrate 

concentration of 1800 µmol L-1 afforded the highest productivities. Temperatures of 21 °C 

and 26 °C in combination with 1800 µmol L-1 nitrate showed slightly lower TFA and EPA 

productivities. 
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1. Introduction 

Microalgae are capable of synthesizing marine drugs, such as antioxidants, antibiotics, vitamins, and 

toxins, which are of growing interest for the cosmetic, pharmacological, and food industry [1–3]. A 

further group of these marine drugs are fatty acids, a class of substances which can be synthesized and 

intracellularly accumulated in high amounts by microalgae [4–7]. 

Therefore, it has been widely discussed in recent years whether microalgae can be used for the 

production of biofuel and biodiesel [4,8–11]. Furthermore, the use of microalgae as a natural source of 

fatty acids for the aquaculture has also become the focus of industrial and scientific  

developments [12–14]. 

However, such approaches prefer two different kinds of fatty acids. Whereas for biodiesel 

production microalgae with high contents of saturated (SFA) and monounsaturated (MUFA) fatty acids 

(the main components of the total fatty acids (TFA)) are sought [4], the content of polyunsaturated fatty 

acids (PUFA) is crucial for the use of microalgae in aquaculture [15,16]. 

Actually, one of the most promising candidates of microalgae seems to be Nannochloropsis salina, 

because this microalga yields high amounts of TFA and/or PUFA [17,18]. Another important fact for 

the use of Nannochloropsis salina in aquaculture is that the main component of the PUFA in this alga 

is eicosapentaenoic acid (EPA; [19–21]), which is one of the favored fatty acids in the 

aquaculture [15]. 

Although scientific investigations have been published during the last two decades, considering the 

biotechnological potential of Nannochloropsis salina [17,21–23], a large scale production of this alga 

is not yet established. 

Nevertheless, in order to exploit the potential of Nannochloropsis salina as a producer for marine 

drugs an adequate cultivation is required. Generally, the cultivation of microalgae seems to be easy, but 

reality often shows a different picture. Difficulties can result for example from the need of avoiding 

contamination, high energy consumption and cultivation conditions which are hard to control 

(e.g., temperature and light intensity). 

The experimental setup presented here offers a detailed detection concerning the concentration of 

TFA and EPA under certain stress conditions. The investigated parameters are the cultivation 

temperature and nitrate concentration. This was done as it is difficult to control temperatures in 

outdoor cultivations (or at least requires high energy consumation and costly techniques) and nitrate is 

the highest concentrated and most expensive component in conventionally used f/2-medium for marine 

microalgae [24]. 

In contrast to other studies [17,21–23], a turbidostatic control mode was chosen. By virtue of this 

mode, defined conditions can be adjusted allowing the detection of the cellular influence of the 

investigated cultivation parameters and excluding possible changes of other parameters (e.g., pH, ratio 

of light intensity to cell number). The practical relevance of the investigated parameters and the 
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cultivation mode enables an estimation of the productivities of Nannochloropsis salina in large scale 

productions influenced by nitrate and temperature changes. 

2. Materials and Methods 

2.1. Cultivation of the microorganisms 

2.1.1. Batch processes 

Nannochloropsis salina (SAG 40.85) was obtained from the SAG culture collection in Göttingen 

(Germany). As inoculum for the turbidostatic processes, cells of Nannochloropsis salina were 

precultivated in batch cultures. After the end of these cultivations, the cells were transferred into the 

photobioreactor (see below). 

The pre-cultures of Nannochloropsis salina were cultivated in 1L-bottles (Schott, Mainz, Germany) 

at a temperature of 22 °C and a photosynthetically active radiation (PAR) of 150 µmol photons m-2 s-1 

(measured with a light sensor (US-SQS/LI, Walz, Effeltrich, Germany)). An 8-fold enriched 

f/2-concentration [24] in artificial sea water (32‰, Tropic Marin, Tagis Tropical Marin, Dreieich, 

Germany) was employed as medium for the batch cultures. Via a gas flow controller (DK800N, 

Krohne, Germany) the CO2-concentration in the aeration was adjusted at 1%, whereby at the end of the 

batch cultivations the pH-values reached 8.5 ± 0.5. The aeration entered the reactor at the top and a 

silicon tube transferred the gas to the bottom, so that the aeration was also responsible for the mixing 

of the cell suspension.  

After 10 to 14 days, the batch cultivations were stopped and the cells were transferred into the 

photobioreactors for the turbidostatic experiments. The optical density (OD) at the end of the batch 

cultures was measured in a spectrophotometer (U-1100, HITACHI, Tokyo, Japan). In order to receive 

convenient OD values, samples with OD values above 1 were diluted with medium. The optical 

density was then calculated by using the dilution volume. The OD reached values of 11 to 16 

determined at a wavelength of 750 nm and biological dry masses between 2.2 mg L-1 and 3.1 mg L-1 

were measured according to the method described below. 

2.1.2. Turbidostatic experiments 

The transferred cells of Nannochloropsis salina were cultivated in a photobioreactor [25] under 

turbidostatic control (see below). The pH-value was adjusted to 8.1. Two glass tubes (SIMAX-glass, 

Kavalier, Savaza, Czech Republic, length 1.5 m, diameter 50 mm) of the photobioreactor enabled the 

illumination of the microalgae generated by two fluorescence tubes (TL58W/25, Osram, Munich, 

Germany) with continuous PAR of 200 µmol photons m-2 s-1. 

Under turbidostatic control, the biomass concentration (and thus the cell density) in the reactor was 

kept constant (at 0.18 ± 0.02 mg L-1). By diluting the suspension of microorganisms with fresh medium 

in the reactor under the control of a feed-back loop, growth of the microorganisms was compensated, 

via an overflow outlet, the volume of the suspension (with constant biomass) which is equal to the 

added volume of fresh nutrient solution leaving the reactor. The fresh medium was taken from medium 
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reservoirs, which provided different nitrogen concentrations (see below). For further information of the 

photobioreactor’s design and the turbidostatic control mode see Marxen et al. [25]. 

Nevertheless, it is important for the interpretation of results presented here, that due to the 

turbidostatic control, the ratios of cells and PAR irradiation were equal in all experiments and therefore 

the PAR irradiance could be excluded for the determined effects. 

2.2. Experimental nitrate and temperature setup 

For the turbidostatic cultures of Nannochloropsis salina, a doubled concentration of 

f/2-medium [24] was applied. In order to investigate the influence of nitrogen, different concentrations 

of nitrate were tested. The highest nitrate concentration of 1800 µmol L-1 NO3
- corresponded to the 

normal nitrate concentration according to the reference mentioned above. Therefore, this nitrate 

concentration was applied to simulate “unstressed” growth of Nannochloropsis salina. Nitrate 

concentrations of 600 and 300 µmol L-1 were employed in order to simulate moderate nitrate stress, 

whereas nitrate concentrations of 150 and 75 µmol L-1 NO3
- should provide high stress conditions. 

The different nitrate concentrations were provided in the medium reservoirs from which the 

turbidostatic control mode pumped fresh medium into the reactor to keep the optical density of the cell 

suspension constant.  

Additionally, the experimental nitrate setup was tested at two temperatures (21 °C and 26 °C). In 

order to simulate higher stress conditions, the lowest nitrogen concentration of 75 µmol L-1 was 

additionally tested at a temperature of 17 °C. As reference for this temperature, a full nitrate 

concentration of 1800 µmol L-1 NO3
- was also applied. 

All experiments were conducted for 340 h. 

2.3. Determination of growth rate (µ) and biological dry mass (BDM) 

The growth rates µ of the microorganisms were calculated during the turbidostatic processes as 

follows [26]:  

R

L

V

V t
µ

∆
=

× ∆
 (1) 

In this equation, VL was the liquid reactor volume, ∆VR was the difference of the added volume of 

fresh medium (due to the turbidostatic process) and ∆t was the considered time interval. Every 24 h the 

growth rates were calculated. 

A glass microfibre filter (∅ 25 mm, Whatman, Brentfort, UK) was combusted and weighed. 

Afterwards, a 2 mL sample from the reactor vessel was taken and filtered. After heating (104 °C) for 

24 h the filter was weighed again. The resulting difference was used for calculating the biological dry 

mass. Samples for the determination of BDM were taken in triplicate. Average and standard deviation 

were calculated. 

2.4. Fatty acids determination 

For the determination of both the fatty acid composition and concentrations the protocol of 

Garcés and Mancha [27] was applied. 
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Sample volumes of 45 mL were taken from the reactor, freeze dried and mixed with 2 mL of a 

chemical solution containing four different components: methanol, toluol, concentrated sulphuric acid, 

and 2,2-dimethoxypropane (39:10:2:1 (v:v:v:v)). Internal fatty acid standards (nonadecanoic acid 

(C19:0, 1000 ppm) and tricosan acid (C23:0, 500 ppm)) and 1.5 mL of pure hexan were added to the 

prepared sample. After overlaying the samples with pure nitrogen, the samples were treated in an 

ultrasonic bath (RK100H, Bandelin, Berlin, Germany) for 5 min. Afterwards, the samples were stored 

in a thermo block (2050-1CESUP, Barnstead/Lab-Line, Melrose Park, IL, USA) at 80 °C for 2 h. After 

cooling down to room temperature, the upper phase of the samples were taken and evaporated with 

pure nitrogen. Immediately prior to the analysis, 0.5 mL of pure hexane was added to the 

prepared sample. 

Subsequently, the analysis was performed using a gas chromatograph (GC-14B, Shimadzu, Kyoto, 

Japan). The temperature of the injector and detector were adjusted at 250 °C and 280 °C respectively. 

The separation of single fatty acids was carried out with a capillary column (FS-CW 20M-CB,  

30 m × 0.25 mm × 0.31 µm, CS-Chromatographie; Langerwehe, Germany). Helium was used as carrier 

gas at a flow rate of 1.3 mL min-1. The temperature program was as follows: 80 °C for 0.5 min, 

25 °C min-1 up to 200 °C, and 3 °C min-1 up to 230 °C for 17 min. 

In this study the fatty acids were divided into two groups: total fatty acid content (TFA) which 

contains the complete fatty acid concentration, and the polyunsaturated fatty acid eicosapentaenoic acid 

(EPA) was presented separately. 

Samples for the determination of fatty acid concentrations and compositions were taken in 

duplicate. In case of the experiment conducted at 21 °C samples were taken every 24 h, whereas, at the 

two other experiments samples were taken only at the end, when steady state conditions of the 

microalgae were reached (see below). 

In order to eliminate slight differences of the BDM-values, fatty acid concentrations were 

normalized to measured BDM-values. Average and standard deviation were calculated from  

the duplicates. 

2.5. Fatty acid productivity (Px) 

For the calculation of productivity, the normalized concentrations of the fatty acid measurements 

were implemented in the following equation: 

 (2) 

In Equation 2, Px represents the productivity and x was used as an index for the different fatty acid 

groups, µ is the growth rate (see above) and cx is the considered concentration of the product (TFA 

or EPA). 

3. Results 

3.1. Biological dry mass (BDM) and growth rate (µ) 

In Figure 1 some representative time courses of the measured BDM-values during the turbidostatic 

experiments at 21 °C are shown. There are no trends with respect to the different nitrate concentrations 

detectable. This holds also for the two other culture temperatures of 26 °C and 17 °C. 
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Figure 1. Biological dry mass (BDM) of some representative turbidostatic experiments at 

21 °C. Different nitrate concentrations (µmol NO3
- L-1): (♦) 75; (□) 150; (▲) 300; (○) 600. 

 

Table 1 summarizes all measured BDM-values for all experiments. It is obvious that none of the 

investigated parameters (nitrate concentration and cultivation temperature) led to a significant 

influence. The constancy of BDM in Figure 1 and the results presented in Table 1 demonstrates the 

reliability of the turbidostatic control. 

By means of Equation 2 the time courses of the calculated growth rates showed a complete different 

picture in Figure 2. At the beginning of the experiments µ started in a range between 0.3 and 0.15 d-1 

(Figure 2). After about 150 h of the process time, µ showed a more or less pronounced adaptation 

phase for all experiments after the transfer of cells from the batch cultures into the turbidostatic 

processes (Figure 2A–C). 

Table 1. Data represents the steady-state conditions at the end of the experiments. 

Temperature 

[°C] 

Nitrate concentration 

[µmol NO3
-
 L

-1
] 

BDM 

[g L
-1

] 

µ 

[d
-1

] 

TFA 

[% w/w BDM] 

EPA 

[% w/w BDM] 

 

 

26 

1800 0.22 ± 0.02 0.53 12 ± 2 2.5 ± 0.1 

600 0.17 ± 0.01 0.28 29 ± 3 2.8 ± 0.1 

300 0.16 ± 0.01 0.20 42 ± 4 2.1 ± 0.2 

150 0.16 ± 0.01 0.07 47 ± 2 1.4 ± 0.1 

75 0.16 ± 0.01 0.05 43 ± 3 1.1 ± 0.1 

 

 

21 

1800 0.21 ± 0.03 0.41 20 ± 1 3.3 ± 0.2 

600 0.18 ± 0.01 0.27 32 ± 1 2.8 ± 0.1 

300 0.16 ± 0.01 0.15 47 ± 1 2.2 ± 0.1 

150 0.16 ± 0.01 0.08 48 ± 5 1.4 ± 0.1 

75 0.16 ± 0.01 0.04 56 ± 3 1.4 ± 0.1 

17 1800 0.18 ± 0.02 0.32 39 ± 5 3.5 ± 0.5 

75 0.18 ± 0.03 0.06 70 ± 2 2.3 ± 0.1 
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Nevertheless, it seemed clear that the temperature influenced µ for the experiments with the highest 

nitrate concentration of 1800 µmol NO3
- L-1 (Figure 2 A–C). After 340 h of the experiments µ fell 

from 0.55 d-1, at the highest temperature of 26 °C (Figure 2A), down to 0.3 d-1, at the lowest 

temperature of 17 °C (Figure 2C). 

More pronounced than the temperature was the influence of nitrate limitation on µ. Independent of 

the applied temperature (26 °C or 21 °C), the growth rates of nitrate limited experiments fell according 

to the employed nitrate concentrations. Whereas moderate nitrate concentrations of 600 and 300 µmol 

NO3
- L-1 resulted in a µ-range of between 0.3 and 0.2 d-1 (Figure 2A, B); the lowest nitrate 

concentrations of 150 and 75 µmol NO3
- L-1 forced µ-values lower than 0.1 d-1 at the end of the 

experiments (Figure 2A–C). 

Figure 2. Growth rate µ of the turbidostatic experiments with different nitrate concentrations 

at (A) 26 °C; (B) 21 °C and (C) 17 °C. Nitrate concentrations (µmol NO3
- L-1): (♦) 75;  

(□) 150; (▲) 300; (○) 600; (●) 1800. 
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3.2. Fatty acids 

In Figure 3 representative time courses of TFA and EPA at a cultivation temperature of 21 °C and 

different nitrate concentrations were depicted. It was obvious that, after the transfer into the 

turbidostatic controlled photobioreactor, cells adapted to the new cultivation conditions during the first 

75–125 h of the process time. Afterwards different developments of the TFA and EPA concentrations 

were observable. 

Figure 3. Representative time courses of the total fatty acid concentration (TFA) and 

eicosapentaenoic acid (EPA) at 21°C and different nitrate concentrations. (A) TFA 

concentration [% w/w BDM]; (B) EPA concentration [% w/w BDM] Nitrate 

concentrations [µmol NO3
- L-1]: (♦) 75; (□) 150; (▲) 300; (○) 600; ● 1800. 
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Figure 4. Results of the total fatty acid concentration (TFA) and eicosapentaenoic acid 

(EPA) at 26 °C, 21 °C and 17 °C and different nitrate concentrations at the end of the 

experiments: (A) TFA concentration [% w/w BDM]; (B) EPA concentration  

[% w/w BDM].  

 

The TFA concentration of the cells provided with 1800 µmol L-1 NO3
- decreased from 50% w/w 

BDM down to 20% w/w BDM (Figure 3A), whereas the EPA content increased to 3% w/w BDM 

(Figure 3B). 

Figure 3 revealed another important fact, which is necessary for the understanding of the 

experiments and the interpretation of the data. At the end of the experiments (t > 300 h of the process 
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time), TFA and EPA concentrations reached steady state values. Therefore, only these values could be 

taken into consideration for the comparison of both nitrate influenced synthesis of TFA and EPA and 

the calculated productivities by means of Equation 2. 

In Figure 4, the strong influence of different nitrate levels in combination with different cultivation 

temperatures (see Materials and Methods section) on final cellular concentrations of TFA and EPA in 

Nannochloropsis salina was depicted. 

The TFA concentrations tended towards nitrate limitation and low cultivation temperatures. For 

example, a temperature of 17 °C and the lowest nitrate concentration of 75 µmol L-1 induced a TFA 

content of 70% w/w BDM, which is nearly 6-times higher than final TFA concentrations (12% w/w 

BDM) reached with full nitrate supplement and highest temperature of 26 °C (Figure 4A). 

Table 2. Percentage values of all detected fatty acids in [% w/w TFA] of Nannochloropsis 

salina. Samples were taken at the end of the experiments. Values with standard deviations. 

Sat = Saturated, Unsat = Unsaturated. 

Fatty 

acid 

group 

Cultivation conditions: temperature [°C] and nitrate concentration [µmol L
-1

] 

17 21 26 

1800 75 1800 600 300 150 75 1800 600 300 150 75 

C14:0 3.97 

±0.13 

2.94 

±0.10 

4.79 

±0.12 

3.53 

±0.14 

3.46 

±0.10 

3.01 

±0.12 

3.12 

±0.12 

7.60 

±0.51 

4.72 

±0.20 

3.85 

±0.07 

3.18 

±0.39 

3.03 

±0.26 

C16:0 37.51 

±0.69 

38.06 

±0.56 

34.71 

±0.58 

42.18 

±0.66 

43.35 

±0.54 

43.18 

±0.77 

43.06 

±0.37 

31.26 

±1.24 

42.20 

±0.53 

46.82 

±0.81 

46.48 

±0.96 

46.11 

±1.24 

C16:1 36.80 

±0.89 

37.74 

±0.16 

33.77 

±0.51 

35.17 

±0.58 

35.79 

±0.51 

34.89 

±0.60 

35.21 

±0.51 

32.12 

±1.33 

31.57 

±0.36 

31.51 

±0.82 

32.29 

±0.25 

32.14 

±0.69 

C18:1n9 2.85 

±0.05 

11.18 

±0.05 

1.48 

±0.04 

2.60 

±0.06 

4.35 

±0.11 

7.62 

±0.14 

9.60 

±0.16 

1.10 

±0.49 

2.55 

±0.06 

4.39 

±0.28 

7.12 

±0.65 

8.09 

±0.50 

C18:2n6 0.48 

±0.01 

0.47 

±0.02 

0.52 

±0.01 

0.53 

±0.01 

0.52 

±0.02 

0.4 

±0.01 

0.31 

±0.01 

0.81 

±0.06 

0.59 

±0.02 

0.64 

±0.01 

0.59 

±0.05 

0.51 

±0.03 

C18:3n6 0.91 

±0.03 

0.89 

±0.09 

1.05 

±0.19 

1.45 

±0.38 

1.60 

±0.14 

1.36 

±0.26 

1.03 

±0.20 

0.93 

±0.25 

1.46 

±0.45 

1.33 

±0.27 

1.10 

±0.31 

1.35 

±0.23 

C20:4n6 1.44 

±0.07 

0.82 

±0.04 

2.73 

±0.08 

1.78 

±0.09 

1.23 

±0.08 

0.98 

±0.04 

0.86 

±0.04 

2.78 

±0.02 

2.25 

±0.15 

1.46 

±0.08 

1.37 

±0.12 

1.27 

±0.09 

C20:5n3 

(EPA) 

8.65 

±0.54 

3.34 

±0.10 

16.32 

±0.46 

8.77 

±0.30 

4.76 

±0.27 

2.91 

±0.14 

2.43 

±0.11 

17.39 

±2.02 

10.05 

±0.55 

4.95 

±0.15 

3.21 

±0.06 

2.70 

±0.15 

Others 

(Sat) 

3.75 

±0.42 

2.8 

±0.07 

2.93 

±0.21 

2.35 

±0.08 

2.82 

±0.24 

2.89 

±0.17 

2.75 

±0.16 

4.17 

±1.44 

2.68 

±0.43 

2.79 

±0.30 

2.61 

±0.24 

3.33 

±1.73 

Others 

(Unsat) 

3.57 

±2.34 

1.73 

±0.53 

1.70 

±0.14 

1.65 

±0.23 

2.13 

±0.33 

2.76 

±1.03 

2.63 

±0.19 

1.85 

±0.94 

1.94 

±0.60 

2.26 

±0.57 

2.07 

±0.66 

1.47 

±0.78 

∑Sat 45.13 

±0.70 

43.80 

±0.73 

42.43 

±0.06 

48.06 

±0.54 

49.63 

±0.22 

49.08 

±0.90 

48.92 

±0.65 

43.03 

±0.55 

49.60 

±0.91 

53.46 

±0.87 

52.26 

±0.34 

52.47 

±0.71 

∑Unsat 54.87 

±0.70 

56.18 

±0.70 

57.57 

±0.58 

51.94 

±0.61 

50.37 

±0.41 

50.92 

±0.64 

51.08 

±0.24 

56.97 

±0.83 

50.40 

±0.49 

46.54 

±0.66 

47.74 

±0.64 

47.53 

±1.11 

∑Unsat 

/∑Sat 

1.92 

±0.12 

1.39 

±0.06 

1.36 

±0.03 

1.08 

±0.02 

1.01 

±0.01 

1.04 

±0.03 

1.04 

±0.01 

1.32 

±0.05 

1.02 

±0.02 

0.87 

±0.03 

0.91 

±0.01 

0.91 

±0.03 
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A different trend was observable considering the EPA concentrations. Similar to the TFA contents, 

low temperatures again provoked an increase of the EPA content (Figure 4B). However, in contrast to 

the nitrate induced effect mentioned above, Nannochloropsis salina reacted to low nitrate supply by a 

down regulation of the cellular EPA concentrations (Figure 4B). For example the cellular EPA content 

at 21 °C was 2.5-times lower at 75 µmol L-1 NO3
- (1.3% w/w BDM) compared to 1800 µmol L-1 NO3

- 

(3.3% w/w BDM). 

Nevertheless, it has to be mentioned that in both cases the increase of TFA and the decrease of EPA 

seemed to correlate with the provided nitrate concentration (Figure 4A, B). 

To investigate the ratio of unsaturated to saturated fatty acids, we focused on the content of fatty 

acids in Nannochloropsis salina. The major components were C14:0, C16:0, C16:1, C18:1n9, 

C18:2n6, 18:3n6, C20:4n6 and C20:5n3 and their total amount was approximately 95% w/w TFA 

(Table 2). Other fatty acids (saturated and unsaturated) were minor components with approximately  

5% w/w TFA. 

The fatty acids C16:0 and C16:1 represent about 70% to 80% of TFA and thus, they define the ratio 

unsaturated/saturated in a crucial way. With declining nitrate concentrations C16:0 showed a marginal 

increasing trend, whereas the content of C16:1 remains nearly constant. Solely, the fatty acid C18:1n9 

in the group of unsaturated fatty acids, showed an increased concentration with decreasing nitrate 

concentration. 

The environmental factors nitrate and temperature have only a little influence on the ratio of 

unsaturated to saturated fatty acids in Nannochloropsis salina (Table 2). The overall average ratio of 

all experiments was 1.16 (±0.3). The highest ratio with 1.92 is detectable in the non-N-depleted culture 

at 17 °C and the lowest ratio with 0.87 was calculated in the culture with 300 µmol NO3
- at 26 °C. 

3.3. Productivities 

By means of Equation 2, the calculated productivities of TFA and EPA at the end of the 

experiments were depicted in Figure 5. It has to be taken into account that Equation 2 summarizes the 

effects of nitrate concentrations and culture temperature on both fatty acid concentrations and growth 

rates. Therefore, the positive influence of nitrate limitation on the TFA concentration in 

Nannochloropsis salina (Figures 3A and 4A) did not necessarily lead to an increased TFA productivity 

since µ strongly decreased under nitrate limitation (Figure 2). 

For example, the cellular TFA content reached a maximum of 70% w/w BDM at a temperature of 

17 °C and the lowest nitrate concentration of 75 µmol L-1 NO3
- (Figure 4A), but the low growth rate at 

this point of 0.55 d-1 (Table 1) resulted in productivity of 3.5% w/w BDM d-1. At the same temperature, 

when cells were exposed to a nitrate concentration of 1800 µmol L-1, the TFA content was only half 

(37% w/w BDM) of the concentration mentioned above, but the growth rate of 0.32 d-1 (Table 1) 

enhanced the TFA productivity up to 13% w/w BDM d-1. 

From full nitrate concentrations of 1800 µmol L-1 down to moderate nitrate limitation of 

300 µmol L-1, the TFA productivities showed nearly same values of 6–8% w/w BDM d-1 at 21 °C and 

26 °C (Figure 5A), which are 2.2- to 1.6-times lower than the maximum TFA productivity of 

13% w/w BDM d-1. 
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This finding was even more pronounced concerning the EPA productivity (Figure 5B). At all three 

temperatures nitrate concentrations of 1800 µmol L-1 induced the highest productivities. Although at 

17 °C EPA productivity of 1.3% w/w BDM d-1 was below the values of 21 °C and 26 °C, which are 

nearly identical (1.7% w/w BDM d-1), these three productivities were much higher than the other 

productivities provoked by nitrate limitations (Figure 5B). 

Figure 5. Productivity of the total fatty acid (TFA) and eicosapentaenoic acid (EPA) at  

26 °C, 21 °C and 17 °C and different nitrate concentrations at the end of the experiments.  

(A) TFA productivity [% w/w BDM d-1]; (B) EPA productivity [% w/w BDM d-1]. 
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Therefore, the summarized observation is that in the experiments presented in this study nitrate 

limitation did not lead to a remarkable increase of TFA or EPA productivity due to dependence on µ 

(Equation 2). 

4. Discussion 

4.1. Biological dry mass (BDM) and growth rate (µ) 

Since changes of culture conditions could influence both the fatty acid concentrations and 

compositions [4,12,28], defined experimental conditions have to be adjusted and controlled for 

experiments investigating the influence of single parameters on fatty acid synthesis. This was done by 

virtue of both instrumental setup of the used photobioreactor [25] and turbidostatic control mode 

[25,29]. Therefore, changes of controlled parameters, for example, pH-value, the PAR-intensity per 

cell ratio could be excluded as stimuli for the determined effects. As mentioned above the constancy of 

the BDM values indicated the reliability of the turbidostatic control mode and ensured that the 

measured effects at the end of the experiments could be assigned to the employed different nitrate 

concentrations and temperatures. 

Considering the points mentioned above, the constant growth rates at the end of the experiments 

(Figure 1) revealed some remarkable points. After transferring the cells from the batch cultures into the 

turbidostatic processes µ decreased and recovered within the first 150 h of the process time. This could 

be interpreted as an adaptation phase in which the cells adapt to new PAR intensity per cell ratios; a 

cellular response, which seems to be typical for phototrophic microorganisms [30,31]. 

The constant growth rates at the end of the experiments (Figure 1) were smaller compared to growth 

rates presented in other studies [32–34]. But it has to be taken into account that different process 

strategies and experimental designs provoke different growth rates of phototrophic growing 

microorganisms. Therefore, it is hardly possible for a direct comparison of the growth rates, but 

changes of the growth rate induced by different temperatures [32,33] and nitrogen concentrations [33] 

were similar to the findings presented in this study (Figure 1). 

Furthermore, the influence of nitrate limitation on growth rates seems to be more pronounced than 

under temperature changes (Figure 2 and [33]). The calculated µ-values (Figure 2) implied the strong 

dependence of cell replication on the provided nitrate concentration. This might have been caused by 

the decreased activity of proteins, for example, Rubisco [35], and reduced synthesis of proteins and 

chlorophyll a under nitrate limitation [36]. This loss of chlorophyll a led to a reduced efficiency of 

energy collection which is required for cell replication [36]. 

Nevertheless, considering the results presented in Figures 2 and 4, nitrogen starvation led to an 

enhanced synthesis of the TFA content, which seems to be coupled with the decline of the 

growth rates. 

4.2. Fatty acids and temperature  

Both, cellular TFA and EPA concentrations are known to be parameters strongly influenced by 

temperatures. Temperatures below the optimal cultivation temperature seem to lead to a decreased 

synthesis of saturated fatty acids and increased concentrations of unsaturated fatty acids [4,21,37,38]. 
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However, in this study the TFA content, which predominantly represented the saturated and 

monounsaturated fatty acids [20], increased with decreasing temperatures (Figure 4A). This could have 

been an effect provoked by a temperature induced limited uptake of nitrogen. Both, nitrate uptake and 

the reduction of the absorbed nitrate to ammonia are known to be temperature sensitive [39]. These 

processes could lead to a nitrogen induced loss of chlorophyll a [35], which results in an overreduced 

state of the electron transport chain (ETC). Nevertheless, the cells counteract this problem by an 

enhanced accumulation of short-chain saturated and monounsaturated fatty acid containing 

triacyglycerols (TAGs) [20], a reaction which also occurs under purely nitrate limitation (described 

below) and which is a possible reason for the enhanced TFA concentrations (Figure 4A).  

Low temperatures negatively affect the membrane fluidity and cells counteracted by increased 

synthesis of polyunsaturated fatty acids and therefore EPA [40,41]. Furthermore, an enhanced EPA 

content in glycerol lipids of the thylakoid membranes protects the photosynthetic apparatus against low 

temperatures [42]. This is corroborated by the fact, that photosystem II is the most temperature 

sensitive component of the photosynthetic apparatus [43,44]. Therefore, the enhanced EPA 

concentration seemed to be a protection mechanism of Nannochloropsis salina against low 

temperature conditions. 

Nevertheless, the influence of temperature on Nannochloropsis salina seemed to be complex and 

still difficult to explain in detail [45]. For example, the negative influence of temperature on TFA 

content described by Boussiba et al. [22] is contrary to the findings presented in this study or in 

Sukenik et al. [19] and Hu and Gao [21]. Further investigations are required for a more detailed insight 

into temperature induced physiological adaptions in Nannochloropsis salina. 

4.3. Fatty acids and nitrate 

Nannochloropsis salina counteracts nitrate limitation by the enhanced synthesis of the TFA 

concentration. A 5.8-fold higher concentration up to 70% of the BDM at 17 °C and lowest nitrate 

concentration of 75 µmol L-1, compared to an unstressed culture at 26 °C (with only 12% of the BDM), 

were observed (Figure 4A, Table 1). These findings were consistent with the results of 

Sukenik et al. [20] and Hu and Gao [21], although both studies employed different cultivation 

processes and extraction methods for the measurement of TFA contents than the ones presented here. 

Generally, under nitrate limitations microalgae favor the synthesis of neutral lipids more than of 

polar lipids [46,47]. These neutral lipids are located in lipid bodies in the cytoplasm of the cells. They 

serve for the maintenance of cells under nitrate limitation [32,48]. 

Another important aspect of the high TFA content could be a protection of the photosynthetic 

apparatus of Nannochloropsis salina. Nitrate limitation might be responsible for the excess 

accumulation of electrons in the electron transport chain (ETC) generated by the light driven 

photosystems. This accumulation induces an overproduction of reactive oxygen species (ROS) [49,50], 

which negatively affect both photosynthesis and membrane lipids [51]. 

The synthesis of a C18 fatty acid requires approximately 24 molecules of NADPH, which were 

generated by the ETC, which is twice as much as for the synthesis of, for example, carbohydrates and 

protein molecules [4]. Therefore, the fatty acid synthesis leads to a relaxation of an overreduced ETC 

[4,52,53], which may occur under nitrate limitations. 
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However, in case of the EPA contents, nitrate deficiencies led to a completely different picture 

(Figure 4). EPA belongs to a group of fatty acids which are part of the glycerol lipids and serve as 

structural components within the cells [17]. 

These components are part of the chloroplasts and under nutritional limitations, such as nitrogen, 

cells are unable to resynthesize them and/or even keep the concentration of these components 

constant [54]. 

However, with adequate nutrition, cells are capable to synthesize high amounts of energy rich 

PUFAs, such as EPA [54]. Sukenik et al. [19,20] also described this trend, but Hu and Gao [21] 

published results which showed an increase of the EPA concentration of Nannochloropsis salina in 

batch cultures supplied with both high and low nitrate concentrations. It has to be taken into account 

that during discontinuous cultures the light per cell ratio changes due to cell growth. This might be a 

reason for the contrary results of Hu and Gao [21] and Sukenik et al. [19,20]. In this study, the 

turbidostatic process excludes the influence of changing light per cell ratios and the measured 

increased EPA content of Nannochloropsis salina could be explained by the employed nitrate 

concentrations. 

The ability of Nannochloropsis salina to synthesize and accumulate high concentrations of EPA 

could be based on their contribution to some cell components. EPA is essential for the structure and 

stability of cell membranes [32]. Due to the high content of EPA in these membrane lipids [55,56], the 

synthesis of EPA delivers the basis for cell components which are the location of the photosynthetic 

apparatus [32,57] and, therefore, EPA is one essential substance which enables Nannochloropsis salina 

to generate energy by photosynthesis. 

The utilization of bio-oil as a renewable energy resource and chemical feedstock requires certain 

properties; thereof, the ratio of unsaturated to saturated fatty acids is one of the most relevant. 

Dimian et al. [58] describes the heterogeneous catalysis for the production of biodiesel. For this 

process, a low ratio of unsaturated to saturated fatty acids in the feedstock is preferred because 

unsaturation slows down the reaction of the catalysis by steric and physical effects. The constancy of 

the ratios obtained at the end of the experiments and the comparison of the low overall average ratio 

(~1.16) of Nannochloropsis salina (Table 2) with the ratios of e.g., 9 for rapeseed, 5.25 for soya oil, or 

5.8 for peanut oil (data from [58]) indicate the potential of this alga for the production of biodiesel. 

4.4. Productivities 

Two of the most crucial problems of using microalgae as source for commercial applications are the 

cellular concentrations and the productivity of the desired microalgal components. 

In this case it has been clearly demonstrated, that nitrate and temperature can be used as stimuli for 

Nannochloropsis salina to synthesize and accumulate high TFA and EPA concentrations (Figures 3 

and 4). In terms of commercial implementations of these results, Figure 5 summarizes by means of 

Equation 2 the impact of both parameters on the productivity. In both cases, TFA and EPA 

productivities, nitrate limitations led to a dramatic decrease of the growth rate (Figure 2) and therefore 

to low productivities (Figure 5). In contrast to this, different cultivation temperatures in combination 

with an appropriate nitrate concentration (e.g., 1800 µmol NO3
- L-1) stimulated TFA and EPA synthesis 

(Figure 4). For lower unsaturated fatty acids Ota et al. [59] described an increased productivity after 
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nitrate depletion. This could not be validated in this study. The constancy of C16:1, the increase of 

C18:1n9 in Table 2 and the strong decrease of µ (shown in Table 1) result in a lowering of the 

productivities (Equation 2). 

The resulting productivities of TFA and EPA (Figure 5) could be used for the estimation of outdoor 

cultivations (e.g., in green houses) which are often not temperature controlled. At moderate 

environmental temperatures, commercial productions could be shifted towards a TFA production, 

whereas at warm temperatures EPA production could be focused on the production process. 

However, it has to be mentioned that the productivities presented in this study did not result from 

optimized cultivation protocols, and due to the low BDM values (Figure 1), the calculated 

productivities of TFA and EPA were below the values presented in other studies [18,21,33,60]. It has 

to be taken into account that these productivities were reached during batch processes. Due to the 

diversity of factors which were involved (e.g., continuously or discontinuously culture, light per cell 

ratio, pH value, temperature), no direct comparison of the productivities presented here and by others 

published recently [18,21,60] could be made. However, basic trends are comparable and verify the 

results presented in this study. 

5. Conclusions 

The experimental setup presented in this study showed that Nannochloropsis salina is able to 

synthesize high cellular concentrations of TFA and EPA and this ability could be stimulated via nitrate 

limitation and/or cultivation temperatures. However, in terms of a biotechnological implementation, 

both parameters negatively influenced the growth rate of Nannochloropsis salina and therefore lowered 

the TFA and EPA productivities during the turbidostatic experiments. 

Nevertheless, the low ratios of the sums of unsaturated to saturated fatty acids in Table 2 indicate 

the suitability of Nannochloropsis salina as a potential source for the production of biodiesel. 
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