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Background: The substantial heterogeneity of clinical symptoms and lack of reliable

progression markers in Parkinson’s disease (PD) present a major challenge in

predicting accurate progression and prognoses. Increasing evidence indicates that each

component of the neurovascular unit (NVU) and blood-brain barrier (BBB) disruption

may take part in many neurodegenerative diseases. Since some portions of CSF are

eliminated along the neurovascular unit and across the BBB, disturbing the pathways

may result in changes of these substances.

Methods: Four hundred seventy-four participants from the Parkinson’s Progression

Markers Initiative (PPMI) study (NCT01141023) were included in the study. Thirty-six initial

features, including general information, brief clinical characteristics and the current year’s

classical scale scores, were used to build five regression models to predict PD motor

progression represented by the coming year’s Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS) Part III score after redundancy removal and recursive feature elimination

(RFE)-based feature selection. Then, a threshold range was added to the predicted

value for more convenient model application. Finally, we evaluated the CSF and blood

biomarkers’ influence on the disease progression model.

Results: Eight hundred forty-nine cases were included in the study. The adjusted R2

values of three different categories of regression model, linear, Bayesian and ensemble,

all reached 0.75. Models of the same category shared similar feature combinations.

The common features selected among the categories were the MDS-UPDRS Part III

score, Montreal Cognitive Assessment (MOCA) and Rapid EyeMovement Sleep Behavior

Disorder Questionnaire (RBDSQ) score. It can be seen more intuitively that the model can

achieve certain prediction effect through threshold range. Biomarkers had no significant

impact on the progression model within the data in the study.

Conclusions: By using machine learning and routinely gathered assessments from

the current year, we developed multiple dynamic models to predict the following year’s
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motor progression in the early stage of PD. These methods will allow clinicians to tailor

medical management to the individual and identify at-risk patients for future clinical trials

examining disease-modifying therapies.

Keywords: Parksinon’s disease, motor progression, predictive model, Parkinson’s progression markers initiative,

machine learning

INTRODUCTION

Parkinson’s disease (PD) is a chronic progressive
neurodegenerative disorder characterized by a broad spectrum
of gradual motor and non-motor impairments (Selikhova et al.,
2009). In the clinical course of PD, both linear (Gottipati et al.,
2017; Holden et al., 2018) and non-linear (Vu et al., 2012; Reinoso
et al., 2015) progression have been reported in the advancement
of motor and non-motor symptoms. In an era of increasing focus
on individualized management and disease-modifying therapies,
there is a need to develop tools to predict motor progression
at the individual level. However, the substantial heterogeneity
(Foltynie et al., 2002; Selikhova et al., 2009; Ma et al., 2015;
Qian and Huang, 2019) of clinical symptoms and lack of reliable
progression markers present a major challenge in predicting
accurate progression and prognoses.

The current literature on PD progression consists largely
of associative analyses focusing on predictors such as gender,
age, clinical subtype (Aleksovski et al., 2018), genes (Deng
et al., 2019), cognitive status and baseline motor score (Reinoso
et al., 2015). Greater progression of motor scores has been
associated with several factors, such as male gender, older
age at diagnosis, akinetic-rigid subtype, cognitive impairment
(Reinoso et al., 2015), right-side onset (Baumann et al., 2014),
orthostatic hypotension, and rapid eye movement sleep behavior
disorder (Fereshtehnejad et al., 2015). Apart from associative
analyses, a few prognostic models have been developed that focus
on predicting different aspects of PD at the individual level,
including logistic regression and Bayesian classification models
to predict cognitive impairment (Schrag et al., 2017; Hogue
et al., 2018; Gramotnev et al., 2019), machine-learning, random
survival forests to predict time to initiation of symptomatic
treatment (Simuni et al., 2016) and Bayesian machine-learning
methods to predict motor progression (Latourelle et al., 2017)
and data mining and classification techniques to predicting
faster symptoms worsening at baseline patients evaluation
(Tsiouris et al., 2017). Based on the Parkinson’s Progression
Markers Initiative (PPMI) database, Latourelle et al. developed
comprehensive multivariable prognostic models to predict the
annual rate of change in PD (Latourelle et al., 2017). The authors
included relatively comprehensive indicators, including baseline
molecular and clinical variables, to construct an ensemble of
models to better clarify and analyze the predictors. However, due
to the large heterogeneity of motor symptoms and the complexity
of related factors, it was difficult to predict motor progression
with high accuracy. Themodels yielded a cross-validated R² value
of 41% for the PPMI cohort and 9% for the LABS-PD cohort.

Increasing evidence indicates that each component of the
neurovascular unit and blood-brain barrier (BBB) disruption

may take part in many neurodegenerative diseases (Yamazaki
and Kanekiyo, 2017). Since some portions of Cerebrospinal Fluid
(CSF) are eliminated along the neurovascular unit and across
the BBB, disturbing the pathways may result in changes of these
substances. CSF biomarkers in PD, such as α-synuclein species,
lysosomal enzymes, markers of amyloid and tau pathology,
and neurofilament light chain, have been suggested to possess
potential diagnostic and prognostic value of PD (Parnetti et al.,
2019). In large areas of undeveloped countries, costly tests, such
as genetic and CSF testing, and image detection for PD (PET
and MIBG), could exert a great burden on patients and medical
security systems. Furthermore, the corresponding variables are
not data routinely used for common clinical activities and are
difficult to obtain. Considering clinical needs and utility, by using
machine-learning methods with PD patient data from the PPMI
database, we aim to develop multiple dynamic models to predict
motor progression based on general information and classical
clinical scales, displayed in the form of the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
Part III score. We also explore the influence of CSF and
blood biomarkers on the prediction model. The use of baseline
assessments (e.g., age, gender, disease duration, motor and
non-motor examination, validated self-report questionnaires),
which are either already routinely performed or could be
reasonably implemented during a typical neurologist’s office visit,
can facilitate widespread implementation of this cost-efficient
predictive model in real world applications.

METHODS

Participants
Data used in the preparation of the article were obtained from
the PPMI database. The PPMI is an international, multicenter,
prospective study designed to discover, and validate biomarkers
of disease progression in newly diagnosed PD participants
(National Clinical Trials identifier NCT01141023). Each PPMI
recruitment site received approval from an institutional review
board or ethics committee on human experimentation before
study initiation. Written informed consent for research was
obtained from all individuals participating in the study. The
PPMI database was accessed on December 9, 2020, to obtain
data from baseline visits (n = 474) and follow-up visits (the
numbers of follow-up visits for five separate years are 380, 323,
257, 259, 230). For up-to-date information on the study, please
visit www.ppmi-info.org.

Model Variables
The main model outcomes of interest were motor function in the
coming year. The primary outcome was the MDS-UPDRS Part
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III score. Predictive variables included demographics, disease
duration, and measures of motor (off state) and non-motor
function. Motor assessments included the MDS-UPDRS Parts
II-IV, Hoehn and Yahr Stage (H&Y), PD subtype evaluations
(tremor dominant (TD), postural instability and gait difficulty
(PIGD) and TD/PIGD scores). For non-motor evaluation,
the Epworth Sleepiness Scale Score (ESS) and REM Sleep
Behavior Disorder Screening Questionnaire Score (RBDSQ) were
applied to measure a patient’s sleep quality and disturbances.
The Questionnaire for Impulsive-Compulsive Disorders in
Parkinson’s Disease (QUIP) score was used to evaluate PD
impulse control disorders. The Geriatric Depression Scale (GDS)
score was designed specifically to screen for depression in
geriatric patients. The total score of the assessment of autonomic
dysfunction in Parkinson’s disease (SCOPA-AUT) was used to
evaluate autonomic nervous function in the prior month. The
MDS-UPDRS Part I score and component scores were used to
evaluate mood and mentation.

In addition, we assessed whether biomarkers including CSF
amyloid, CSF α-synuclein (and its ratio to CSF amyloid), serum
uric acid had an impact on the progression model in the study.

Data Preprocessing
Each patient had a maximum of five samplings performed at
different intervals. During data processing, we excluded negative
differences in the MDS-UPDRS Part III score between the
coming year and the prior year. According to the PPMI protocol,
the “off state” was evaluated as more than 6 h after the last dose of
dopaminergic therapy. Considering that the disease was always in
a progressive state for all patients, a decrease in the MDS-UPDRS
Part III score with increasing disease duration was thought
to be unrealistic; therefore, patient samples that displayed this
trend were discarded. Furthermore, as eliminating redundant
information can improve the quality of the prediction model,
we performed Spearman rank correlation analysis to ensure that
no variables were correlated with a correlation coefficient of
more than 0.5. Prior to model construction, all variables were
transformed to a z-score by subtracting themean value from each
of the observed values and dividing by the standard deviation
because the clinical phenotypes weremeasured on different scales
and with different score ranges.

Regression Model Construction
First, the preprocessed data were divided into training and test
sets. There were two dividing principles: (1) After ordering by
diagnosis date, the first 75% of patients were included in the
training data set; the remaining patients were included in the test
set. (2) To avoid data overlapping, samples from the same patient
were placed into either the training or test set.

We used five regression algorithms, including linear, ridge,
Bayesian, random forest, and gradient boosting decision tree
regression, to build the model with the training set. Features were
selected using the recursive feature elimination (RFE) method.
By evaluating model performance, the most irrelevant variables
were eliminated in each iteration of the regression, and then
the contributions of the remaining variables to the model were
ranked. To select the best combination of features, RFE was

performed with cross-validation to calculate the verification error
of all subsets of features. The subset with the smallest error
was regarded as the final feature combination. Next, regression
models were built with parameter adjustment to achieve the best
performance. Finally, the models were validated with the test set.

Assessment of Biomarkers’ Influence on
Parkinson’s Disease Progression Model
Due to the great difference between the absence of
biomarkers and other clinical variables, the initial
inclusion would result in smaller amounts of data. So,
biomarkers were added after model construction based
on the clinical and scale scores data to evaluate their
influence on the basic model. First, correlation analysis was
performed between biomarkers and disease progression.
Then the variables with significant correlation were
selected to improve the models and we compared the
model difference between before and after adding the
biomarkers variables.

Statistical Analysis and Performance
Measures
Descriptive statistics of the patients’ demographic and clinical
characteristics are summarized in Table 1. The Kolmogorov-
Smirnov test was used to test the normality of continuous
data. Continuous variables are described by the mean,
standard deviation, maximum, and minimum. Categorical
variables are expressed as percentages. The t-test was used to
compare regression models before and after adding biomarkers
variables. Two-tailed p < 0.05 were considered to indicate
statistical significance.

The performance of the models was assessed by the root
mean square error (RMSE) and the adjusted coefficient of
determination (adjusted R-squared coefficient or adjusted R2).
R2 is a statistical measure in the regression model, equal to the
ratio of the regression sum of squares to the total sum of squares
and which reflects the degree of agreement between the data
and the model. The influence of the number of variables on
the goodness is excluded in the adjusted R2. Because doctors
may score the same patient with minor differences in terms of
the clinical significance of the symptom, we added a threshold
range to each predicted value, which acted as the midpoint of
the range, observed whether the true value fell within the range
and calculated the accuracy for more convenient application of
the model.

RESULTS

Patient Demographic and Clinical
Characteristics
In this study, 474 (312 males and 162 females; M:F ratio 1.926:1;
mean age 61.473 ± 9.753 years) PD patients were enrolled.
The mean age of disease onset was 59.460 years, and the
mean disease duration was 6.710 months at baseline. None
of the continuous data were normally distributed according
to the Kolmogorov–Smirnov test. Descriptive statistics of the
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TABLE 1 | Descriptive statistics of the demographic and clinical variables of the Parkinson’s progression markers initiative study participants.

Variables Mean (SD; Min; Max) Percentage (%)

Age 61.473 (9.753; 33.498; 84.884)

Gender Male: 65.823

Female: 34.177

Age at symptom onset 59.460 (10.054; 25.370; 83.008)

Side most affected at PD onset Left: 39.873

Right: 56.962

Symmetric: 3.165

Family History of PD First degree family w/PD: 14.768

Non-1st degree family w/PD: 11.392

No family w/PD: 73.840

Duration (Months) 6.710 (6.664; 0.400; 37.000)

Total rigidity score 3.508 (2.703; 0.000; 13.000)

Hoehn & Yahr stage Stage 1:45.992

Stage 2:53.376

Stage 3: 0.633

TD/PIGD classification (OFF) TD: 71.730

PIGD: 17.300

Indeterminate: 10.970

Tremor score (OFF) 4.340 (3.105; 0.000; 18.000)

MDS-UPDRS part III score (OFF) 19.937 (9.141; 2.000; 51.000)

ESS score 6.162 (3.758; 0.000; 20.000)

RBDSQ score 4.162 (2.686; 0.000; 12.000)

MOCA score 27.133 (2.325; 17.000; 30.000)

QUIP score 0.325 (0.697; 0.000; 4.000)

GDS score 2.464 (2.672; 0.000; 14.000)

SCOPA-AUT total score 10.103 (6.760; 0.000; 44.000)

MDS-UPDRS part I score 5.956 (4.571; 0.000; 27.000)

Initial symptom (at diagnosis)—resting tremor Symptom present at diagnosis: 78.692

Initial symptom (at diagnosis)—rigidity Symptom present at diagnosis: 73.840

Initial symptom (at diagnosis)—bradykinesia Symptom present at diagnosis: 82.068

Initial symptom (at diagnosis)—postural instability Symptom present at diagnosis: 7.595

SD, Standard deviation; Min, Minimum; Max, Maximum; TD, Tremor Dominant; PIGD, Postural Instability/Gait Difficulty; MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s

Disease Rating Scale; ESS, Epworth Sleepiness Scale; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; MOCA, Montreal Cognitive Assessment; QUIP, Questionnaire

for Impulsive-Compulsive Disorders in Parkinson’s Disease; GDS, Geriatric Depression Scale; SCOPA-AUT, Assessment of autonomic dysfunction in Parkinson’s disease.

general and total score variables are shown in Table 1 and other
detailed score variables are shown in Supplementary Table 1.

A heatmap of the Spearman correlation coefficients between

the variables are depicted in Figure 1. To reduce redundant

information, we eliminated variables with strong correlations.
So, most of the individual items were removed and the

total scores were retained. In total, 24 features remained and
are shown in Table 2. Apart from these, we also calculated
the correlations between the 24 individual variables and
the outcome event. The variables with the top five highest
correlations were MDS-UPDRS Part III Score (0.882), Duration
of Disease since Diagnosis (0.269), MDS-UPDRS Part I
Apathy (0.197), SCOPA-AUT Total Score (0.196), and MDS-
UPDRS Part I Fatigue (0.154). The correlation coefficients
and probability values of all 24 variables are shown in
Supplementary Table 2.

Prediction Model Construction and
Performance Measures
After eliminating the missing data, a total of 849 cases were left,
among which 633 cases were placed in the training set and 216 in
the test set according to the aforementioned dividing principles.
The disease progression as expressed by theMDS-UPDRS Part III
score of the coming year was predicted based on the information
from the previous year. We built regression models based on five
algorithms, and their performances are shown in Table 3. The
models can be divided into three categories: linear, Bayesian and
ensemble methods. The adjusted R2 of all the models reached
above 0.75. The feature combinations obtained by the RFE
method for models in the same category were similar and the
feature importance or coefficient of each model is shown in
Table 4. The models from each of the categories jointly selected
the same three features: MDS-UPDRS Part III score, MOCA
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FIGURE 1 | Correlation heatmap between all variables.

TABLE 2 | The remaining 24 features after eliminating features with strong

correlation.

Category Features

General Age at symptom onset gender side most

affected at PD onset

Duration (Months) family history of PD

Motor Four initial symptoms at diagnosis

TD/PIGD classification

MDS-UPDRS Part III Score

Non-motor ESS score

RBDSQ score

QUIP score

GDS score

SCOPA-AUT total score

MOCA score

MDS-UPDRS part I analytic score

Score and RBDSQ score. All coefficients of regression models are
shown in Table 5.

Taking as an example, the random forest (RF) regression had
an adjusted R2 of 0.770 and an RMSE of 5.678. The importance
of each feature in the model is computed as the total reduction in

TABLE 3 | The performance of five regression models.

Model category Model Adjusted R2 RMSE

Linear methods Linear regression 0.779 5.585

Ridge regression 0.779 5.584

Bayesian method Bayesian regression 0.778 5.579

Ensemble methods Random forest 0.770 5.678

Gradient boosting 0.753 5.918

the criterion introduced by that feature and is shown in Table 4.
Figure 2 presents the evaluation of the predictions on the test
set, with the predicted value as the midpoint of threshold ranges
with half-range widths of 5, 6, and 7 for adjustment. Finally, we
calculated the proportion of the true value that fell into the range
as the accuracy.

Biomarkers Influence on Parkinson’s
Disease Progression Model
At the end of the study, the influence of biomarkers on
Parkinson’s disease progression model was analyzed. First, we
performed spearman correlation analysis between biomarkers
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TABLE 4 | The feature importance or coefficient of features selected through RFE method in five regression models.

Features selected

through RFE method

Feature importance or coefficient

Linear regression Ridge regression Bayesian regression Random forest Gradient boosting

MDS-UPDRS part III

score (OFF)

0.970 0.970 0.976 0.929 0.958

Age at symptom onset / / / 0.009 0.002

Duration (months) / / / 0.028 0.030

Family history of PD 0.523 0.521 0.326 / /

MDS-UPDRS part I

anxious mood

0.484 0.479 0.209 / /

RBDSQ score 0.151 0.151 0.103 0.010 0.007

MDS-UPDRS part I

features of dopamine

dysregulation syndrome

−1.780 −1.738 −1.302 / /

Initial symptom (at

diagnosis)—postural

instability

/ / 0.427 / /

ESS score / / / 0.010 /

SCOPA-AUT total score / / / 0.007 /

MOCA score −0.031 −0.031 −0.001 0.007 0.003

TABLE 5 | All coefficients of regression models.

Model Coefficients

Linear regression /

Ridge regression Regularization strength = 1.32

Bayesian regression Maximum number of iterations = 300

Random forest The number of trees in the forest = 260

The maximum depth of the tree = 4

The function to measure the quality of a split = “the

mean absolute error”

Gradient boosting The number of boosting stages to perform = 30

Learning rate = 0.1

The function to measure the quality of a split = “the

mean squared error with improvement score by

Friedman”

and disease progression and found that the CSF amyloid
and CSF α-synuclein were significantly associated with
disease progression, of which the correlation coefficient
were, respectively, −0.132, −0.160. The correlation analysis
results of other variables are shown in Supplementary Table 1.
After incorporating the two variables into feature combinations
selected by feature selection based on clinical characters and
scales scores and eliminating the missing data, a total of
441 cases were left. The models were reconstructed based
on the feature combinations before and after the inclusion
of biomarkers variables and the performance of two sets of
models were compared by t-test. The P-value were 0.408
and 0.883 respectively, showing no significant difference and
indicating that these biomarkers had no significant impact
on the progression model within the data in the study. The

FIGURE 2 | Prediction results and intervals of different widths in the RF

regression model. Note that half width represents half of the width of the

threshold range and acc represents the proportion of the true value that falls

into the range.

R2 and RMSE of different regression models are shown in
Supplementary Table 3.

DISCUSSION

In this study, we analyzed longitudinal data from the PPMI
database to develop a predictive model for motor progression in
patients with early PD. Five algorithms representing three model
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categories (linear, ensemble and Bayesian) were developed; and
the adjustedR2 values of themodels all reached 0.75. Our findings
indicate that the models can practically predict the MDS-UPDRS
Part III score of the coming year based on the clinically available
characteristics obtained in the current year.

Our results suggest that all five algorithms (linear, ridge,
Bayesian, RF and gradient boosting decision tree), categorized
into linear, Bayesian and ensemble methods, have similar
accuracies and features. Three common predictors were selected
among the three categories: MDS-UPDRS Part III score,
MOCA Score, and RBDSQ. In particular, functional status
in the current year as measured by the MDS-UPDRS Part
III (correlation coefficient 0.882; for more details, see the
Supplementary Table 2) was consistent with and a relatively
strong predictor of motor performance for the coming year. This
is understandable, given that motor symptoms progress based
on prior clinical features. Essentially, the results indicate that
the worse one’s baseline motor dysfunction is, the higher the
MDS-UPDRS Part III score will be the following year.

Sleep disturbances such as disrupted circadian rhythm,
insomnia, excessive daytime sleepiness (EDS), and rapid eye
movement sleep behavior disorder (RBD) correlate with faster
progression of motor symptoms and lower quality of life (Arnulf,
2005; Dulovic and Vos, 2018; Pagano et al., 2018). In our study,
the scores of the scales used to evaluate RBD and EDS were
important predictors for the progression of motor symptoms in
the RF regression model, with RBD evaluation being a common
predictor among the five algorithms. Subjective EDS in PD has
been associated with advanced motor impairment and disease
progression, male gender and the use of anti-parkinsonian
medications (Arnulf, 2005; Dulovic and Vos, 2018). RBD is an
aggravating factor of motor symptoms (Pagano et al., 2018),
autonomic dysfunction, and dementia (Chahine et al., 2016). In a
longitudinal analysis of early PD, the presence of RBD was found
to predispose a patient toward a more aggressive phenotype
characterized by a rapid progression of motor symptoms
(Pagano et al., 2018). The promotion of neurodegeneration
caused by sleep dysfunction has been proposed to drive further
sleep alterations, creating a detrimental self-perpetuating cycle
(Musiek and Holtzman, 2016).

Cognitive impairment at baseline is also significantly
associated with faster disease progression and greater motor
impairment, which has been identified in other studies
(Velseboer et al., 2013; Fereshtehnejad et al., 2015; Reinoso et al.,
2015). Fereshtehnejad et al. (2015) found that, besides UPDRS
values, signs of cognitive impairment, orthostatic hypotension
and rapid eye movement sleep behavior disorder at baseline
evaluation, could suggest that patients will express a much faster
decline in motor symptoms. This is mainly due to an increase
in L-dopa non-responsive symptoms, which suggest a diffuse
destruction of extra-nigrostriatal pathways in parallel with the
nigrostriatal pathway (Velseboer et al., 2013).

There are some differences in the predictors selected among
the models, which may be related to their different operating
principles. The core idea underlying ensemble learning is to learn
a series of basic classifiers from training data and then combine
these relatively weak classifiers into a strong classifier. Then, the

predictive ability of the categorical variables can be given full play,
allowing the ensemble learning model to achieve a predictive
effect with fewer variables. We observed this behavior among our
ensemble learning models as well.

Parkinson’s disease is a clinically heterogeneous disease with
varied progression patterns (Qian and Huang, 2019; Beheshti
et al., 2020; Haumesser et al., 2020; LeWitt et al., 2020; Shen
et al., 2020). In addition to genetic factors (Gao et al., 2020), the
availability of objective fluid biomarkers specifically associated
with motor or cognitive trajectories of PD subtypes could allow
reliable prediction of clinical outcomes (Qian and Huang, 2019;
Xie et al., 2019). As for blood biomarkers, studies on blood
oligomeric α-synuclein showed increased quantities in patients
with PD both in serum (Williams et al., 2016) and in red blood
cells(RBCs) (Wang et al., 2015; Zhao et al., 2016; Daniele et al.,
2018). Similarly, plasma phosphorylated α-synuclein is higher
in patients with Parkinson’s disease compared with controls
(Foulds et al., 2013). In addition to α-synuclein, there are several
substances playing essential roles in PD. The lower plasma
levels of serum superoxide dismutase (SOD), total cholesterol,
high-density lipoprotein cholesterol (HDL-C), and low-density
lipoprotein cholesterol (LDL-C) and increased level of high-
sensitivity C-reactive protein (hsCRP) were found in PD, which
might be important markers to assess the PD severity (Yang
et al., 2020). One study showed a significant decrease in the
ubiquitous mitochondrial creatine kinase (uMtCK) activity in
the PD group and a correlation between serum uMtCK activities
and the disease progression rate, duration, and age at onset in
PD patients (Xu et al., 2019). Compared with healthy subjects,
the serum levels of Trefoil factor 3 (TFF3) and cholinesterase
activity were lower, while homocysteine (Hcy) was higher in
patients with Parkinson’s disease dementia (PDD) and vascular
parkinsonism with dementia (VPD). Significant correlations
between TFF3/ChE activity/Hcy levels and PDD/VPD severities
were found, including motor dysfunction, declining cognition,
and mood/gastrointestinal symptoms (Zou et al., 2018). To
explore the vascular, inflammatory, metabolic risk factors of
dementia in PD with type 2 diabetes mellitus (DM) (PD-DM),
lower LDL, and higher fibrinogen were the most significant risk
factors in PD-DM with dementia (Wang et al., 2020).

Evidence suggests that measures of CSF Aβ1-42, T-tau, P-
tau181, and α-synuclein have prognostic and diagnostic potential
in early-stage PD (Kang et al., 2013). Levels of α-synuclein in
CSF are decreased in PD and other synucleinopathies and may
serve as a marker to assist in diagnosis and prognosticating
progression (Hong et al., 2010; Mollenhauer et al., 2011).
Research has revealed that the NLR family pyrin domain
containing 3 protein (NLRP3) inflammasome may facilitate
the secretion of extracellular vesicles, as well as exosomal
transmission of proteins like aggregated α-synuclein (Si et al.,
2020). However, in prodromal and early PD, CSF α-synuclein
does not correlate with PD’s progression and does not reflect
ongoing dopaminergic neurodegeneration (Mollenhauer et al.,
2019). In our study, CSF biomarkers and serum uric acid had
no significant impact on the progression model, indicating that
easily accessible clinical assessments have sufficient capacity to
predict disease progression.
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Previouly, based on the PPMI database, Latourelle et al.
developed comprehensive multivariable prognostic models to
predict the annual rate of change in PD (Latourelle et al., 2017).
There are several differences between the two studies. The first
one concerns to be the methodology and objectives. The previous
study mainly focused on causal analysis, which differs from our
research on prediction analysis. Although the value of R2 was
small in the previous study, causal analysis can also be conducted
to determine the effect of independent variables on dependent
variables (Latourelle et al., 2017). In Latourelle’s study, the R2

value of the model was 41% for the PPMI database and 9% for
the Lab-PD cohort. The shortcomings of a small R2 can be offset
by a large sample size. In our work, maximization of the R2

value was critical for prediction. The adjusted R2 value for the
models in each of the three categories reached 0.75, indicating
that the selected features had a good predictive ability for motor
scores. In general, predicting the patient’s future condition can
assist doctors in making decisions on when to intervene. Second,
the selected features varied between the two studies. The model
variables in Latourelle et al.’s study included many clinical,
genetic and laboratory examinations. However, the variables in
our study were all general data and clinical evaluation indicators,
which could be obtained by a single doctor in the outpatient
department without the need for relatively complex laboratory
and imaging examinations. Thus, the use of these variables can
greatly enhance the clinical practicality of our model.

Our research possesses a number of strengths. First, our
prediction model was developed based on data from the previous
year in order to predict annual motor symptoms, a dynamic
process that has a high degree of practical clinical application
value. Additionally, this study included information that was
easy to obtain in the patient interview process as model features,
making the model feasible for practical application. Doctors can
embed themodel creation process in an electronicmedical record
system to predict the next year’s motor function automatically
based on the patient’s current clinical data. Second, the PPMI
database contains data from different hospitals in different
regions, which helps improve the accuracy of prediction.

However, there are also several limitations in our study. First,
the subtypes of PD were not considered, and only uniform
predictions across subtypes were made. Second, only the MDS-
UPDRS Part III total score was predicted as the model result, and
no subdivision prediction was made for a single item or symptom
category score (such as limb rigidity, central axis slowing, tremor,
gait, etc.). It is possible that the relevant trends in variability
would not be reflected in the total score. Third, our study focused
on the early stage of PD. Thus, the model does not apply to
patients with advanced PD.

CONCLUSIONS

In the present study, by using machine learning and routinely
gathered assessments, we developed convenient predictive
models synthesizing multiple clinical characteristics to provide
75% accuracy in predicting motor progression. CSF biomarkers
and serum uric acid had no significant impact on the progression

model, indicating that easily accessible clinical assessments have
sufficient capacity to predict disease progression. The use of these
models can predict motor evaluations at the individual level,
allowing clinicians to tailor medical management for each patient
and identify at-risk patients for future clinical trials investigating
delaying motor progression. Future predictive models based on
other large cohorts, assigned into training, and validation sets are
needed to verify the accuracy of our results.
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