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One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come
from other domains, the medical text mining poses more challenges, for example, more unstructured text, the fast growing of new
terms addition, a wide range of name variation for the same drug, the lack of labeled dataset sources and external knowledge,
and the multiple token representations for a single drug name. Although many approaches have been proposed to overwhelm
the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data
representation techniques to overcome some of those challenges. We propose three data representation techniques based on the
characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated
with the standard NNmodel, that is, MLP.The second technique involves two deep network classifiers, that is, DBN and SAE.The
third technique represents the sentence as a sequence that is evaluated with a recurrent NNmodel, that is, LSTM. In extracting the
drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score
being 0.8645.

1. Introduction

The rapid growth of information technology provides rich
text data resources in all areas, including themedical field. An
abundant amount of medical text data can be used to obtain
valuable information for the benefit of many purposes. The
understanding of drug interactions, for example, is an impor-
tant aspect of manufacturing new medicines or controlling
drug distribution in the market. The process to produce a
medicinal product is an expensive and complex task. Inmany
recent cases, however, many drugs are withdrawn from the
market when it was discovered that the interaction between
the drugs is hazardous to health [1].

Information, or objects extraction, from an unstructured
text document, is one of the most challenging studies in the
text mining area. The difficulties of text information extrac-
tion keep increasing due to the increasing size of corpora,

continuous growth of human’s natural language, and the
unstructured formatted data [2]. Among such valuable infor-
mation are medical entities such as drug name, compound,
and brand; disease names and their relations, such as drug-
drug interaction and drug-compound relation. We need a
suitable method to extract such information. To embed those
abundant data resources, however, many problems have to
be tackled, for example, large data size, unstructured format,
choosing the right NLP, and the limitation of annotated
datasets.

More specific and valuable information contained in
medical text data is a drug entity (drug name). Drug name
recognition is a primary task of medical text data extraction
since the drug finding is the essential element in solving other
information extraction problems [3, 4]. Among derivative
work of drug name extractions are drug-drug interaction [5],
drug adverse reaction [6], or other applications (information
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retrieval, decision support system, drug development, or drug
discovery) [7].

Compared to other NER (name entity recognition) tasks,
such as PERSON, LOCATION, EVENT, or TIME, drug name
entity recognition facesmore challenges. First, the drug name
entities are usually unstructured texts [8] where the number
of new entities is quickly growing over time.Thus, it is hard to
create a dictionary which always includes the entire lexicon
and is up-to-date [9]. Second, the naming of the drug also
widely varies. The abbreviation and acronym increase the
difficulties in determining the concepts referred to by the
terms. Third, many drug names contain a combination of
nonword and word symbols [10]. Fourth, the other problem
in drug name extraction is that a single drug name might be
represented by multiple tokens [11]. Due to the complexity in
extracting multiple tokens for drugs, some researchers such
as [12] even ignore that case in the MedLine and DrugBank
training with the reason that the multiple tokens drug is
only 18% of all drug names. It is different with another
domain; that is, entity names in the biomedical field are
usually longer. Fifth, in some cases, the drug name is a
combination of medical and general terms. Sixth, the lack of
the labelled dataset is another problem; it has yet to be solved
by extracting the drug name entities.

This paper presents three data representation techniques
to extract drug name entities contained in the sentences of
medical texts. For the first and the second techniques, we
created an instance of the dataset as a tuple, which is formed
from 5 vectors of words. In the first technique, the tuple
was constructed from all sentences treated as a sequence,
whereas in the second technique the tuple is made from
each sentence treated as a sequence. The first and second
techniques were evaluated with the standardMLP-NNmodel
which is performed in the first experiment. In the second
experiment, we use the second data representation technique
which is also applied to the other NN model, that is, DBN
and SAE. The third data representation, which assumes the
text as sequential entities, was assessed with the recurrentNN
model, LSTM. Those three data representation techniques
are based on the word2vec value characteristics, that is, their
cosine and the Euclidean distance between the vectors of
words.

In the first and second techniques, we apply three dif-
ferent scenarios to select the most possible words which
represent the drug name. The scenarios are based on the
characteristics of training data, that is, drug words distri-
bution that is usually assumed to have a smaller frequency
of appearance in the dataset sentences. The drug name
candidate selections are as follows. In the first case, all test
dataset is taken. In the second case, 2/3 of all test dataset is
selected. In the third case, 𝑥/𝑦 (𝑥 < 𝑦) of the test dataset
(where 𝑥 and 𝑦 are arbitrary integer numbers) are selected
after clustering the test dataset into 𝑦 clusters.

In the third experiment, based on the characteristics of
the resulting word vectors of the trained word embedding,
we formulate a sequence data representation applied to RNN-
LSTM.We used the Euclidian distance of the current input to
the previous input as an additional feature besides its vector of

words. In this study, the vector of words is provided by word
embedding methods proposed by Mikolov et al. [13].

Our main important contributions in this study are

(1) the new data representation techniques which do
not require any external knowledge nor handcrafted
features,

(2) the drug extraction techniques based on the words
distribution contained in the training data.

Our proposed method is evaluated on DrugBank and
MedLine medical open dataset obtained from SemEval 2013
Competition task 9.1; see https://www.cs.york.ac.uk/semeval-
2013/task9/, which is also used by [11, 12, 14]. The format of
bothmedical texts is in Englishwhere some sentences contain
drug name entities. In extracting drug entity names from
the dataset, our data representation techniques give the best
performance with F-score values 0.687 for MLP, 0.6700 for
DBN, and 0.682 for SAE, whereas the third technique with
LSTM gives the best F-score, that is, 0.9430. The average
F-score of the third technique is 0.8645, that is, the best
performance compared to the other previous methods.

By applying the data representation techniques, our pro-
posed approach provides at least three advantages:

(1) The capability to identify multiple tokens as a single
name entity

(2) The ability to deal with the absence of any external
knowledge in certain languages

(3) No need to construct any additional features, such
as characters type identification, orthography feature
(lowercase or uppercase identification), or token posi-
tion

The rest of the sections of this paper are organized as
follows: Section 2 explains some previous works dealing with
name entity (and drug name as well) extraction frommedical
text sources. The framework, approach, and methodology
to overcome the challenges of drug name extraction are
presented in Section 3. The section also describes dataset
materials and experiment scenarios. Section 4 discusses the
experiment results and its analysis while Section 5 explains
the achievement, the shortcoming, and the prospects of this
study. The section also describes several potential explo-
rations for future research.

2. Related Works

The entity recognition in a biomedical text is an active
research, and many methods have been proposed. For exam-
ple, Pal and Gosal [9] summarize their survey on various
entity recognition approaches. The approaches can be cate-
gorized into three models: dictionary based, rule-based, and
learning based methods [2, 8]. A dictionary based approach
uses a list of terms (term collection) to assist in predicting
which targeted entity will be included in the predicted group.
Although their overall precision is more accurate, their recall
is poor since they anticipate less new terms. The rule-based
approach defines a certain rule which describes such pattern
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formation surrounding the targeted entity. This rule can be a
syntactic term or lexical term. Finally, the learning approach
is usually based on statistical data characteristics to build
a model using machine learning techniques. The model is
capable of automatic learning based on positive, neutral, and
negative training data.

Drug name extraction and their classification are one
of the challenges in the Semantic Evaluation Task (SemEval
2013). The best-reported performance for this challenge was
71.5% in F-score [15]. Until now the studies to extract drug
names still continue and many approaches have been pro-
posed. CRF-based learning is the most commonmethod uti-
lized in the clinical text information extraction. CRF is used
by one of the best [11] participants in SemEval challenges in
the clinical text ( https://www.cs.york.ac.uk/semeval-2013/).
As for the use of external knowledge aimed at increasing the
performance, the author [11] uses ChEBI (Chemical Entities
of Biological Interest), that is, a dictionary of small molecular
entities.The best achieved performance is 0.57 in F-score (for
the overall dataset).

A hybrid approach model, which combines statistical
learning and dictionary based, is proposed by [16]. In their
study, the author utilizes word2vec representation, CRF
learning model, and DINTO, a drug ontology. With this
word2vec representation, targeted drug is treated as a current
token in context windows which consists of three tokens on
the left and three tokens on the right. Additional features
are included in the data representation such as pos tags,
lemma in the windows context, and an orthography feature
as uppercase, lowercase, and mixed cap.The author also used
Wikipedia text as an additional resource to performword2vec
representation training. The best F-score value in extracting
the drug name provided by the method is 0.72.

The result of CRF-based active learning, which is applied
toNERBIO (Beginning, Inside,Output) annotation token for
extracting name entity in the clinical text, is presented in [17].
The framework of this active learning approach is a sequential
process: initial model generation, querying, training, and
iteration.The CRF Algorithm BIO approach was also studied
by Ben Abacha et al. [14]. The features for the CRF algorithm
are formulated based on token and linguistics feature and
semantic feature. The best F-score achieved by this proposed
method is 0.72.

Korkontzelos et al. studied a combination of aggregated
classifier, maximum entropy-multinomial classifier, and
handcrafted feature to extract drug entity [4]. They classified
drug and nondrug based on the token features formulation
such as tokens windows, the current token, and 8 other
handcrafted features.

Another approach for discovering valuable information
from clinical text data that adopts event-location extraction
model was examined by Bjorne et al. [12]. They use an SVM
classifier to predict drug or nondrug entity which is applied
to DrugBank dataset.The best performance achieved by their
method is 0.6 in F-score. The drawback of their approach is
that it only deals with a single token drug name.

To overcome the ambiguity problem in NERmined from
a medical corpus, a segment representation method has also
been proposed by Keretna et al. [8]. Their approach treats

each word as belonging to three classes, that is, NE, not NE,
and an ambiguous class. The ambiguity of the class member
is determined by identifying whether the word appears in
more than one context or not. If so, this word falls into the
ambiguous class. After three class segments are found, each
word is then applied to the classifier learning. Related to their
approach, in our previous work, we propose pattern learning
that utilizes the regular expression surrounding drug names
and their compounds [18]. The performance of our method
is quite good with the average F-score being 0.81 but has a
limitation in dealing with more unstructured text data.

In summarizing the related previous works on drug
name entity extraction, we noted some drawbacks which
need to be addressed. In general, almost all state-of-the-art
methods work based on ad hoc external knowledge which
is not always available. The requirement of the handcrafted
feature is another difficult constraint since not all datasets
contain such feature. An additional challenge that remained
unsolved by the previous works is the problem of multiple
tokens representation for a single drug name. This study
proposes a new data representation technique to handle those
challenges.

Our proposed method is based only on the data distribu-
tion pattern and vector of words characteristics, so there is no
need for external knowledge nor additional handcrafted fea-
tures. To overcome themultiple tokens problem,we propose a
new technique which treats a target entity as a set of tokens (a
tuple) at once rather than treating the target entity as a single
token surrounded by other tokens such as those used by [16]
or [19]. By addressing a set of the tokens as a single sample,
our proposed method can predict whether a set of tokens
is a drug name or not. In our first experiment, we evaluate
the first and second data representation techniques and apply
MLP learning model. In our second scenario, we choose the
the second technique which gave the best result with MLP
and apply it to two different machine learningmethods: DBN
and SAE. In our third experiment, we examined the third
data representation technique which utilizes the Euclidian
distance between successive words in a certain sentence of
medical text. The third data representation is then fed into
an LSTM model. Based on the resulting F-score value, the
second experiment gives the best performance.

3. Method and Material

3.1. Framework. In this study, using the word2vec value
characteristics, we conducted three experiments based on
different data representation techniques.The first and second
experiment examine conventional tuple data representation,
whereas the third experiment examines sequence data rep-
resentation. We describe the organization of these three
experiments in this section. In general, the proposed method
to extract drug name entities in this study consists of two
main phases. The first phase is a data representation to for-
mulate the feature representation. In the second phase, model
training, testing, and their evaluation are then conducted to
evaluate the performance of the proposed method.

https://www.cs.york.ac.uk/semeval-2013/
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Figure 1: Proposed approach framework of the first experiment.

The proposedmethod of the first experiment consists of 4
steps (see Figure 1). The first step is a data representation for-
mulation. The output of the first step is the tuples of training
and testing dataset.The second step is dataset labelling which
is applied to both testing and training data.The step provides
the label of each tuple.The third step is the candidate selection
which is performed to minimize the noises since the actual
drug target quantity is far less compared to nondrug name.
In the last step, we performed the experiment with MLP-NN
model and its result evaluation. The detailed explanation of
each step is explained in Sections 3.4, 3.6, and 3.9, whereas
Sections 3.2 and 3.3 describe training data analysis as the
foundation of this proposed method. As a part of the first
experiment, we also evaluate the impact of the usage of the
Euclidean distance average as themodel’s regularization.This
regularization term is described in Section 3.7.1.

The framework of the second experiment which involves
DBN and SAE learning model to the second data represen-
tation technique is illustrated in Figure 2. In general, the
steps of the second experiment are similar to the first one,
with its differences being the data representation used and
the learning model involved. In the second experiment, the
second technique is used only with DBN and SAE as the
learning model.

The framework of the third experiment using the LSTM
is illustrated in Figure 3. There are tree steps in the third
experiment. The first step is sequence data representation
formulation which provides both sequence training data and
testing data.The second step is data labelling which generates
the label of training and testing data. LSTM experiment
and its result evaluation are performed in the third step.
The detailed description of these three steps is presented in
Sections 3.4, 3.4.3, and 3.9 as well.

3.2. Training Data Analysis. Each of the sentences in the
dataset contains four data types, that is, drug, group, brand,
and drug-n. If the sentence contains none of those four types,
the type value is null. In the study, we extracted drug and
drug-n. Overall in both DrugBank andMedLine datasets, the
quantity of drug name target is far less compared to the non-
drug target. Segura-Bedmar et al. [15] present the first basic
statistics of the dataset. Amore detailed exploration regarding
token distribution in the training dataset is described in this
section. The MedLine sentences training dataset contains
25.783 single tokens, which consist of 4.003 unique tokens.
Those tokens distributions are not uniformbut are dominated
by a small part of some unique tokens. If all of the unique
tokens are arranged and ranked based on the most frequent
appearances in the sentences, the quartile distribution will
have the following result presented in Figure 4.𝑄1 represents
token numbers 1 to 1001 whose total of frequency is 20.688.𝑄2 represents token numbers 1002 to 2002 whose total of
frequency is 2.849.𝑄3 represents token numbers 2003 to 3002
whose total of frequency is 1.264, and 𝑄4 represents token
numbers 3003 to 4003 whose total of frequency is 1.000. The
figure shows that the majority of appearances are dominated
by only a small amount of the total tokens.

Further analysis of the dataset tokens shows that most of
the drug names of the targeted token rarely appear in the
dataset. When we divide those token collections into three
partitions based on their sum of frequency, as presented in
Table 1, it is shown that all of the drug name entities targeted
are contained in 2/3 part with less frequent appearances of
each token (a unique token in the same sum of frequency).
A similar pattern of training data token distribution also
emerged in the DrugBank dataset as illustrated in Figure 5
and Table 2. When we look into specific token distributions,
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the position of most of the drug name targets is in the third
part, since the most frequently appearing words in the first
and the secondparts are themost commonwords such as stop
words (“of”, “the”, “a”, “end”, “to”, “where”, “as”, “from”, and
such kind of words) and common words in medical domain
such as “administrator”, “patient”, “effect”, and “dose”.

3.3. Word Embedding Analysis. To represent the dataset we
utilized the word embedding model proposed by Mikolov
et al. [13]. We treated all of the sentences as a corpus after
the training dataset and testing dataset were combined. The
used word2vec training model was the CBOW (Continuous

Bag Of Words) model with context window length 5 and the
vector dimension 100. The result of the word2vec training
is the representation of word in 100 dimension row vectors.
Based on the row vector, the similarities or dissimilarities
between words can be estimated.The description below is the
analysis summary of word2vec representation result which is
used as a base reference for the data representation technique
and the experiment scenarios. By taking some sample of drug
targets and nondrug vector representation, it is shown that
drug word has more similarities (cosine distance) to another
drug than to nondrug and vice versa. Some of those samples
are illustrated in Table 3. We also computed the Euclidean
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Figure 4: Distribution of MedLine train dataset token.

Table 1: The frequency distribution and drug target token position,
MedLine.

1/3# Σ sample Σ frequency Σ single token of drug entity
1 28 8,661 —
2 410 8,510 50
3 3,563 8,612 262

Table 2:The frequency distribution and drug target token position,
DrugBank.

1/3# Σ sample Σ frequency Σ single token of drug entity
1 27 33,538 —
2 332 33,463 33
3 5,501 33,351 920

distance between all of thewords. Table 4 shows the average of
Euclidean distance and cosine distance between drug-drug,
drug-nondrug, and nondrug-nondrug. These values of the
average distance showus that, intuitively, it is feasible to group
the collection of the words into drug group and nondrug
group based on their vector representations value.

3.4. Feature Representation, Data Formatting, andData Label-
ling. Based on the training data and word embedding anal-
ysis, we formulate the feature representation and its data
formatting. In the first and second techniques, we try to
overcome the multiple tokens drawback left unsolved in [12]
by formatting single input data as an 𝑁-gram model with𝑁 = 5 (one tuple piece of data consists of 5 tokens) to
accommodate the maximum token which acts as a single
drug entity target name. The tuples were provided from the
sentences of both training and testing data. Thus, we have a
set of tuples of training data and a set of tuples of testing data.
Each tuple was treated as a single input.

To identify a single input, whether it is a nondrug or drug
target, we use a multiclassification approach which classifies
the single input into one of six classes. Class 1 represents
nondrug whereas the other classes represent drug target
which also identified how many tokens (words) perform the
drug target. To identify which class a certain tuple belongs to
the following is determined:The drug tuple is the tuple whose
first token (token-1) is the drug type. If token-1 is not a drug,

90550

6162 2199 14410

20000

40000

60000

80000

100000

Q1 Q2 Q3 Q4

Figure 5: Distribution of DrugBank train dataset token.

regardless of whatever the rest of the 4 tokens are, then the
tuple is classified as no drug.This kind of tuple is identified as
class 1. If token-1 is a drug and token-2 is not a drug, regardless
of the last 3 tokens, the tuple will be identified as class 2 and
so on.

Since we only extracted the drug entity, we ignored the
other token types, whether it is a group, brand, or another
common token. To provide the label of each tuple, we only
use the drug and drug-n types as the tuple reference list.
In general, if the sequence of token in each tuple in dataset
contains the sequence which is exactly the same with one
of tuple reference list members, then the tuple in dataset is
identified as drug entity. The detail of the algorithm used
to provide the label of each tuple in both training data and
testing data is described in Algorithm 1.

We proposed two techniques in constructing the tuple
set of the sentences. The first technique treats all sentences
as one sequence, whereas in the second technique, each
sentence is processed as one sequence. The first and the
second techniques are evaluated with MLP, DBN, and SAE
model. The third technique treats the sentences of dataset
as a sequence where the occurrence of the current token is
influenced by the previous one. By treating the sentence as
a sequence not only in the data representation but also in
the classification and recognition process, the most suitable
model to be used is RNN.We appliedRNN-LSTM to the third
technique.

3.4.1. First Technique. The first dataset formatting (one se-
quence for all sentences) is performed as follows. In the first
step, all sentences in the dataset are formatted as a token
sequence. Let the token sequence be

𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7𝑡8 ⋅ ⋅ ⋅ 𝑡𝑛 (1)

with 𝑛 being number of tokens in the sequences; then the
dataset format will be

𝑡1𝑡2𝑡3𝑡4𝑡5; 𝑡2𝑡3𝑡4𝑡5𝑡6; ⋅ ⋅ ⋅ 𝑡𝑛−4𝑡𝑛−3𝑡𝑛−2𝑡𝑛−1𝑡𝑛. (2)

A sample of sentences and their drug names are presented
in Table 5. Taken from DrugBank training data Table 5 is
the raw data of 3 samples with three relevant fields, that
is, sentences, character drug position, and the drug name.
Table 6 illustrates a portion of the dataset and its label as the
result of the raw data in Table 5. Referring to the drug-n name
field in the dataset, dataset number 6 is identified as a drug,
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Table 3: Some of the cosine distance similarities between two kinds of words.

Word 1 Word 2 Similarities (cosine dist) Remark
dilantin tegretol 0.75135758 drug-drug
phenytoin dilantin 0.62360351 drug-drug
phenytoin tegretol 0.51322415 drug-drug
cholestyramine dilantin 0.24557819 drug-drug
cholestyramine phenytoin 0.23701277 drug-drug
administration patients 0.20459694 non-drug - non-drug
tegretol may 0.11605539 drug - non-drug
cholestyramine patients 0.08827197 drug - non-drug
evaluated end 0.07379115 non-drug - non-drug
within controlled 0.06111103 non-drug - non-drug
cholestyramine evaluated 0.04024139 drug - non-drug
dilantin end 0.02234770 drug - non-drug

Table 4: The average of Euclidean distance and cosine similarities
between groups of words.

Word group Euclidean dist. avg Cosine dist. avg
drug - non-drug 0.096113798 0.194855980
non-drug - non-drug 0.094824332 0.604091044
drug-drug 0.093840800 0.617929002

Table 5: Sample of DrugBank sentences and their drug name target.

Sentence Drug
position Drug name

modification of surface histidine
residues abolishes the cytotoxic
activity of clostridium difficile toxin a

79–107 clostridium
difficile toxin a

antimicrobial activity of ganoderma
lucidum extract alone and in
combination with some antibiotics.

26–50 ganoderma
lucidum extract

on the other hand, surprisingly, green
tea gallocatechins,
(−)-epigallocatechin-3-o-gallate and
theasinensin a, potently enhanced the
promoter activity (182 and 247%
activity at 1 microm, resp.).

33–56 green tea
gallocatechins

whereas the others are classified as a nondrug entity. The
complete label illustration of the dataset provided by the first
technique is presented in Table 7. As described in Section 3.4,
the value of vector dimension for each token is 100.Therefore,
for single data, it is represented as 100 ∗ 5 = 500 lengths of a
one-dimensional vector.

3.4.2. Second Technique. The second technique is used for
treating one sequence that comes from each sentence of the
dataset. With this treatment, we added special characters ∗,
as padding, to the last part of the token when its dataset
length is less than 5. By applying the second technique the
first sentence of the sample provided a dataset as illustrated
in Table 8.

3.4.3. Third Technique. Naturally, the NLP sentence is a se-
quence in which the occurrence of the current word is
conditioned by the previous one. Based on the word2vec
value analysis, it is shown that intuitively we can separate the
drug word and nondrug word by their Euclidean distance.
Therefore, we used the Euclidean distance between the cur-
rent words with the previous one to represent the influence.
Thus, each current input 𝑥𝑖 is represented by [𝑥V𝑖𝑥𝑑𝑖] which
is the concatenation of word2vec value 𝑥V𝑖 and its Euclidian
distance to the previous one, 𝑥𝑑𝑖. Each 𝑥 is the row vector
with the dimension length being 200, the first 100 values are
its word2vector, and the rest of all 100 values are the Euclidian
distance to the previous. For the first word all values of 𝑥𝑑𝑖
are 0. With the LSTM model, the task to extract the drug
name from the medical data text is the binary classification
applied to each word of the sentence. We formulate the
word sequence and its class as described in Table 9. In this
experiment, each word that represents the drug name is
identified as class 1, such as “plenaxis”, “cytochrome”, and “p-
450”, whereas the other words are identified by class 0.

3.5. Wiki Sources. In this study we also utilize Wikipedia as
the additional text sources in word2vec training as used by
[16]. The Wiki text addition is used to evaluate the impact of
the training data volume in improving the quality of word’s
vector.

3.6. Candidates Selection. The tokens as the drug entities
target are only a tiny part of the total tokens. In MedLine
dataset, 171 of 2.000 tokens (less than 10%) are drugs, whereas
in DrugBank, the number of drug tokens is 180 of 5.252 [15].
So the major part of these tokens is nondrug and other noises
such as a stop word and special or numerical characters.
Based on this fact, we propose a candidate selection step to
eliminate those noises. We examine two mechanisms in the
candidate selection. The first is based on token distribution.
The second is formed by selecting 𝑥/𝑦 part of the clustering
result of data test. In the first scenario, we only used 2/3 of the
token, which appears in the lower 2/3 part of the total token.
This is presented in Tables 1 and 2. However, in the second
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Result: Labelled dataset
Input: array of tuple, array of drug;
output: array of label {Array of drug contains list of drug and drug-n only};
label[] <= 1 Initialization;
for each t in tuple do

for each d in drug do
if length (d) = 1 then

if t[1] = d[1] then
//match 1 token drug;
label <= 2, break, exit from for each d in drug;

else
end

else
if length (d) = 2 then

if t[1] = d[1] and t[2] = d[2] then
//match 2 tokens drug;
label <= 3, break, exit from for each d in drug;

else
end

else
if length (d) = 3 then

if t[1] = d[1] and t[2] = d[2] and t[3] = d[3] then
label <= 4, break, exit from for each d in drug;

else
end

else
if length (d) = 4 then

if t[1] = d[1] and t[2] = d[2] and t[3] = d[3] and t[4] = d[4] then
label <= 5, break, exit from for each d in drug;

else
end

else
if length (d) = 5 then

if t[1] = d[1] and t[2] = d[2] and t[3] = d[3] and t[4] = d[4] and t[5] = d[5] then
label <= 6, break, exit from for each d in drug;

else
end

else
end

end
end

end
end

end
end

Algorithm 1: Dataset labelling.

Table 6: A portion of the dataset formulation as the results of DrugBank sample with first technique.

Dataset number Token-1 Token-2 Token-3 Token-4 Token-5 Label
1 modification of surface histidine residues 1
2 of surface histidine residues abolishes 1
3 surface histidine residues abolishes the 1
4 histidine residues abolishes the cytotoxic 1
5 the cytotoxic activity of clostridium 1
6 clostridium difficile toxin a antimicrobial 5
7 difficile toxin a antimicrobial activity 1
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Table 7: First technique of data representation and its label.

Token-1 Token-2 Token-3 Token-4 Token-5 Label
“plenaxis” “were” “performed” “cytochrome” “p-450” 2
“testosterone” “concentrations” “just” “prior” “to” 2
“beta-adrenergic” “antagonists” “and” “alpha-adrenergic” “stimulants,” 3
“carbonic” “anhydrase” “inhibitors,” “concomitant” “use” 3
“sodium” “polystyrene” “sulfonate” “should” “be” 4
“sodium” “acid” “phosphate” “such” “as” 4
“clostridium” “difficile” “toxin” “a” “—” 5
“nonsteroidal” “anti” “inflammatory” “drugs” “and” 5
“casein” “phosphopeptide-amorphous” “calcium” “phosphate” “complex” 6
“studies” “with” “plenaxis” “were” “performed.” 1
“were” “performed.” “cytochrome” “p-450” “is” 1

Table 8: Second technique of data representation and its label.

Token-1 Token-2 Token-3 Token-4 Token-5 Label
“modification” “of” “surface” “histidine” “residues” 1
“of” “surface” “histidine” “residues” “abolishes” 1
surface histidine residues abolishes the 1
“histidine” “residues” “abolishes” “the” “cytotoxic” 1
“the” “cytotoxic” “activity” “of” “clostridium” 1
“clostridium” “difficile” “toxin” “a” “∗” 5
“difficile” “toxin” “a” “∗” “∗” 1
“a” “atoxin” “∗” “∗” “∗” 1
“toxic” “∗” “∗” “∗” “∗” 1

mechanism we selected 𝑥/𝑦 (𝑥 < 𝑦) which is a part of total
token after the tokens are clustered into 𝑦 clusters.

3.7. Overview of NN Model

3.7.1. MLP. In the first experiment, we used multilayer per-
ceptron NN to train the model and evaluate the performance
[20]. Given a training set of𝑚 examples, then the overall cost
function can be defined as

𝐽 (𝑊, 𝑏) = [ 1𝑚
𝑚∑
𝑖=1

𝐽 (𝑊, 𝑏; 𝑥𝑖, 𝑦𝑖)]

+ 𝜆2
𝑛𝑙−1∑
𝑙=1

𝑠𝑙∑
𝑖=1

𝑠𝑙−1∑
𝑗=1

(𝑊𝑗(𝑙)𝑖 )2 ,

𝐽 (𝑊, 𝑏) = [ 1𝑚
𝑚∑
𝑖=1

(12 ℎ𝑤𝑏 (𝑥(i)) − 𝑦𝑖2)]

+ 𝜆2
𝑛𝑙−1∑
𝑙=1

𝑠𝑙∑
𝑖=1

𝑠𝑙−1∑
𝑗=1

(𝑊𝑗(𝑙)𝑖 )2 .

(3)

In the definition of 𝐽(𝑊, 𝑏), the first term is an average
sum-of-squares error term, whereas the second term is a
regularization term which is also called a weight decay term.
In this experiment we use three kinds of regularization: #0,

L0 with 𝜆 = 0, #1, L1 with 𝜆 = 1, and #2 with 𝜆 =
the average of Euclidean distance. We computed the L2’s𝜆 based on the word embedding vector analysis that drug
target and nondrug can be distinguished by looking at their
Euclidean distance.Thus, for L2 regularization, the parameter
is calculated as

𝜆 = 1𝑛 ∗ (𝑛 − 1)
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

dist (𝑥𝑖, 𝑥𝑗) , (4)

where dist(𝑥𝑖, 𝑥𝑗) is the Euclidean distance of 𝑥𝑖 and 𝑥𝑗.
The model training and testing are implemented by

modifying the code from [21] which can be downloaded at
https://github.com/rasmusbergpalm/DeepLearnToolbox.

3.7.2. DBN. DBN is a learning model composed of two or
more stacked RBMs [22, 23]. An RBM is an undirected
graph learningmodel which associates withMarkov Random
Fields (MRF). In the DBN, the RBM acts as feature extractor
where the pretraining process provides initial weights values
to be fine-tuned in the discriminative process in the last
layer. The last layer may be formed by logistic regression
or any standard discriminative classifiers [23]. RBM was
originally developed for binary data observation [24, 25]. It is
a popular type of unsupervisedmodel for binary data [26, 27].
Some derivatives of RBM models are also proposed to tackle
continuous/real values suggested in [28, 29].

https://github.com/rasmusbergpalm/DeepLearnToolbox
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Table 9: Third technique of data representation and its label.

Sent.#1 Class 0 0 0 0 1 0 0
Word “drug” “interaction” “studies” “with” “plenaxis” “were” “performed”

Sent.#2 Class 1 1 0 0 0 0 0
Word “cytochrome” “p-450” “is” “not” “known” “in” “the”

3.7.3. SAE. An autoencoder (AE) neural network is one of
the unsupervised learning algorithms.TheNN tries to learn a
function ℎ(𝑤, 𝑥) ≈ 𝑥. The autoencoder NN architecture also
consists of input, hidden, and output layers. The particular
characteristic of the autoencoder is that the target output is
similar to the input. The interesting structure of the data is
estimated by applying a certain constraint to the network,
which limits the number of hidden units. However, when
the number of hidden units has to be larger, it can be
imposed with sparsity constraints on the hidden units [30].
The sparsity constraint is used to enforce the average value
of hidden unit activation constrained to a certain value.
As used in the DBN model, after we trained the SAE, the
trained weight was used to initialize the weight of NN for the
classification.

3.7.4. RNN-LSTM. RNN (Recurrent Neural Network) is an
NN, which considers the previous input in determining the
output of the current input. RNN is powerful when it is
applied to the dataset with a sequential pattern or when the
current state input depends on the previous one, such as the
time series data, sentences of NLP. An LSTM network is a
special kind of RNN which also consists of 3 layers, that is,
an input layer, a single recurrent hidden layer, and an output
layer [31]. The main innovation of LSTM is that its hidden
layer consists of one or more memory blocks. Each block
includes one or morememory cells. In the standard form, the
inputs are connected to all of the cells and gates, whereas the
cells are connected to the outputs. The gates are connected to
other gates and cells in the hidden layer. The single standard
LSTM is a hidden layer with input, memory cell, and output
gates [32, 33].

3.8. Dataset. To validate the proposed approach, we utilized
DrugBank and MedLine open dataset, which have also been
used by previous researchers. Additionally, we used drug
label documents from various drug producers and regulator
Internet sites located in Indonesia:

(1) http://www.kalbemed.com/

(2) http://www.dechacare.com/

(3) http://infoobatindonesia.com/obat/, and

(4) http://www.pom.go.id/webreg/index.php/home/
produk/01.

The drug labels are written in Bahasa Indonesia, and their
common contents are drug name, drug components, indica-
tion, contraindication, dosage, and warning.

3.9. Evaluation. To evaluate the performance of the pro-
posed method, we use common measured parameters in
data mining, that is, precision, recall, and F-score. The
computation formula of these parameters is as follows. Let𝐶 = {𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑛} be a set of the extracted drug name
of this method, and 𝐾 = {𝐾1, 𝐾2, 𝐾3, . . . , 𝐾𝑙} is set of actual
drug names in the document set 𝐷. Adopted from [18], the
parameter computations formula is

Precision (𝐾𝑖, 𝐶𝑗) = (TruePositive)(TruePositive + FalsePositive)
= (𝐾𝑖 ∩ 𝐶𝑗)(𝐶𝑗) ,

Recall (𝐾𝑖, 𝐶𝑗) = (TruePositive)(TruePositive + FalseNegative)
= (𝐾𝑖 ∩ 𝐶𝑗)(𝐾𝑖) ,

(5)

where ‖𝐾𝑖‖, ‖𝐶𝑗‖, and ‖𝐾𝑖 ∩ 𝐶𝑗‖ denote the number of drug
names in 𝐾, in 𝐶, and in both 𝐾 and 𝐶, respectively. The F-
score value is computed by the following formula:

𝐹-score (𝐾𝑖, 𝐶𝑗)
= (2 ∗ Precision (𝐾𝑖, 𝐶𝑗) ∗ Recall (𝐾𝑖, 𝐶𝑗))(TruePositive + FalsePositive) . (6)

4. Results and Discussion

4.1. MLP Learning Performance. The following experiments
are the part of the first experiment. These experiments are
performed to evaluate the contribution of the three regular-
ization settings as described in Section 3.7.1. By arranging the
sentence in training dataset as 5-gram of words, the quantity
of generated sample is presented in Table 10. We do training
and testing of the MLP-NN learning model for all those test
data compositions.The result ofmodel performances on both
datasets, that is, MedLine and DrugBank, in learning phase is
shown in Figures 6 and 7. The NN learning parameters that
are used for all experiments are 500 input nodes, two hidden
layerswhere each layer has 100 nodeswith sigmoid activation,
and 6 output nodes with softmax function; the learning rate
= 1, momentum = 0.5, and epochs = 100. We used minibatch
scenario in the training with the batch size being 100. The
presented errors in Figures 6 and 7 are the errors for full batch,
that is, the mean errors of all minibatches.

http://www.kalbemed.com/
http://www.dechacare.com/
http://infoobatindonesia.com/obat/
http://www.pom.go.id/webreg/index.php/home/produk/01
http://www.pom.go.id/webreg/index.php/home/produk/01
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Table 10: Dataset composition.

Dataset Train Test
All 2/3 part Cluster

MedLine 26,500 10,360 6,673 5,783
DrugBank 100,100 2,000 1,326 1,933
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Figure 6: Full batch training error of MedLine dataset.

The learningmodel performance shows different patterns
betweenMedLine and DrugBank datasets. For both datasets,
L1 regularization tends to stabilize in the lower iteration
and its training error performance is always less than L0
or L2. The L0 and L2 training error performance pattern,
however, shows a slight different behavior between MedLine
and DrugBank. For the MedLine dataset, L0 and L2 produce
different results for some of the iterations. Nevertheless,
the training error performance of L0 and L2 for DrugBank
is almost the same in every iteration. Different pattern
results are probably due to the variation in the quantity
of training data. As illustrated in Table 10, the volume of
DrugBank training data is almost four times the volume of
the MedLine dataset. It can be concluded that, for larger
dataset, the contribution of L2 regularization setting is not
too significant in achieving better performance. For smaller
dataset (MedLine), however, the performance is better even
after only few iterations.

4.2. Open Dataset Performance. In Tables 11, 12, 13, and 14,
numbering (1), numbering (2), and numbering (3) in the
most left column indicate the candidate selection technique
with

(i) (1): all data tests being selected;

(ii) (2): 2/3 part of data test being selected;

(iii) (3): 2/3 part of 3 clusters for MedLine or 3/4 part of 4
clusters for DrugBank.

4.2.1. MLP-NN Performance. In this first experiment, for two
data representation techniques and three candidate selection
scenarios, we have six experiment scenarios. The result
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Figure 7: Full batch training error of DrugBank dataset.

of the experiment which applies the first data representa-
tion technique and three candidate selection scenarios is
presented in Table 11. In computing the F-score, we only
select the predicted target which is provided by the lowest
error (the minimum one). For MedLine dataset, the best
performance is shown by L2 regularization setting where the
error is 0.041818, in third candidate selection scenario with F-
score 0.439516, whereas the DrugBank is achieved together
by L0 and L1 regularization setting, with an error test of
0.0802; in second candidate selection scenario, the F-score
was 0.641745. Overall, it can be concluded that DrugBank
experiments give the best F-score performance. The candi-
date selection scenarios also contributed to improving the
performance, as we found that, for both of MedLine and
DrugBank, the best achievement is provided by the second
and third scenarios, respectively.

The next experimental scenario in the first experiment is
performed to evaluate the impact of the data representation
technique and the addition of Wiki source in word2vec
training. The results are presented in Tables 12 and 13.
According to the obtained results presented in Table 11, the
L0 regularization gives the best F-score. Hence, accordingly
we only used the L0 regularization for the next experimental
scenario. Table 12 presents the impact of the data representa-
tion technique. Looking at the F-score, the second technique
gives better results for both datasets, that is, the MedLine and
DrugBank.

Table 13 shows the result of adding the Wiki source
into word2vec training in providing the vector of word
representation. These results confirm that the addition of
training datawill improve the performance. Itmight be due to
the fact thatmost of the targeted tokens such as drug name are
uncommon words, whereas the words that are used in Wiki’s
sentence are commonly used words. Hence, the addition of
commonly used words will make the difference between drug
token and the nondrug token (the commonly used token)
become greater. For the MLP-NN experimental results, the
4th scenario, that is, the second data representation with 2/3
partition data selection in DrugBank dataset, provides the
best performance with 0.684646757 in F-score.
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Table 11: The F-score performances of three of scenarios experiments.

MedLine Prec Rec F-score Lx Error test
(1) 0.3564 0.5450 0.4310 L0 0.0305
(2) 0.3806 0.5023 0.4331 L1, L2 0.0432
(3) 0.3773 0.5266 0.4395 L2 0.0418
DrugBank Prec Rec F-score Lx Error test
(1) 0.6312 0.5372 0.5805 L0 0.07900
(2) 0.6438 0.6398 0.6417 L0, L2 0.0802
(3) 0.6305 0.5380 0.5806 L0 0.0776

Table 12: The F-score performance as an impact of data representation technique.

Dataset (1) One seq. of all sentences (2) One seq. of each sentence
MedLine Prec Rec F-score Prec Rec F-score
(1) 0.3564 0.5450 0.4310 0.6515 0.6220 0.6364
(2) 0.3806 0.5023 0.4331 0.6119 0.7377 0.6689
(3) 0.3772 0.5266 0.4395 0.6143 0.656873 0.6348
DrugBank Prec Rec F-score Prec Rec F-score
(1) 0.6438 0.5337 0.5836 0.7143 0.4962 0.5856
(2) 0.6438 0.6398 0.6418 0.7182 0.5804 0.6420
(3) 0.6306 0.5380 0.5807 0.5974 0.5476 0.5714

4.2.2. DBN and SAE Performance. In the second experiment,
which involves DBN and SAE learning model, we only use
the experiment scenario that gives the best results in the first
experiment. The best experiment scenario uses the second
data representation technique withWiki text as an additional
source in the word2vec training step.

In the DBN experiment, we use two stacked RBMs with
500 nodes of visible unit and 100 nodes of the hidden layer
for the first and also the second RBMs. The used learning
parameters are as follows: momentum = 0 and alpha = 1. We
usedminibatch scenario in the training, with the batch size of
100. As for RBM constraints, the range of input data value is
restricted to [0 ⋅ ⋅ ⋅ 1] as the original RBM, which is developed
for binary data type, whereas the range of vector ofword value
is [−1 ⋅ ⋅ ⋅ 1]. Sowe normalize the data value into [0 ⋅ ⋅ ⋅ 1] range
before performing the RBM training. In the last layer of DBN,
we use one layer of MLP with 100 hidden nodes and 6 output
nodes with softmax output function as classifier.

The used SAE architecture is two stacked AEs with the
following nodes configuration. The first AE has 500 units
of visible unit, 100 hidden layers, and 500 output layers.
The second AE has 100 nodes of visible unit, 100 nodes of
hidden unit, and 100 nodes of output unit. The used learning
parameters for first SAE and the second SAE, respectively, are
as follows: activation function = sigmoid and tanh; learning
rate = 1 and 2; momentum = 0.5 and 0.5; sparsity target =
0.05 and 0.05. The batch size of 100 is set for both of AEs.
In the SAE experiment, we use the same discriminative layer
as DBN, that is, one layer MLP with 100 hidden nodes and 6
output nodes with softmax activation function.

The experiments results are presented in Table 14. There
is a difference in performances when using the MedLine and
the DrugBank datasets when feeding them into MLP, DBN,
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Figure 8: The global LSTM network.

and SAE models. The best results for the MedLine dataset
are obtained when using the SAE. For the DrugBank, the
MLP gives the best results. The DBN gives lower average
performance for both datasets. The lower performance is
probably due to the normalization on theword vector value to[0 ⋅ ⋅ ⋅ 1], whereas their original value range is in fact between[−1 ⋅ ⋅ ⋅ 1]. The best performance for all experiments 1 and 2 is
given by SAE, with the second scenario of candidate selection
as described in Section 3.6. Its F-score is 0.686192469.

4.2.3. LSTM Performance. The global LSTM network used
is presented in Figure 8. Each single LSTM block consists
of two stacked hidden layers and one input node with each
input dimension being 200 as described in Section 3.4.3. All
hidden layers are fully connected. We used sigmoid as an
output activation function, which is the most suitable for
binary classification. We implemented a peepholes connec-
tion LSTM variant where its gate layers look at the cell state
[34]. In addition to implementing the peepholes connection,
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Table 13: The F-score performances as an impact of the Wiki addition of word2vec training data.

Dataset (1) One seq. of all sentences (2) One seq. of each sentence
MedLine Prec Rec F-score Prec Rec F-score
(1) 0.5661 0.4582 0.5065 0.614 0.6495 0.6336
(2) 0.5661 0.4946 0.5279 0.5972 0.7454 0.6631
(3) 0.5714 0.4462 0.5011 0.6193 0.6927 0.6540
DrugBank Prec Rec F-score Prec Rec F-score
(1) 0.6778 0.5460 0.6047 0.6973 0.6107 0.6511
(2) 0.6776 0.6124 0.6433 0.6961 0.6736 0.6846
(3) 0.7173 0.5574 0.6273 0.6976 0.6193 0.6561

Table 14: Experimental results of three NN models.

Dataset MLP DBN SAE
MedLine Prec Rec F-score Prec Rec F-score Prec Rec F-score
(1) 0.6515 0.6220 0.6364 0.5464 0.6866 0.6085 0.6728 0.6214 0.6461
(2) 0.5972 0.7454 0.6631 0.6119 0.7377 0.6689 0.6504 0.7261 0.6862
(3) 0.6193 0.6927 0.6540 0.6139 0.6575 0.6350 0.6738 0.6518 0.6626
Average 0.6227 0.6867 0.6512 0.5907 0.6939 0.6375 0.6657 0.6665 0.6650
DrugBank Prec Rec F-score Prec Rec F-score Prec Rec F-score
(1) 0.6973 0.6107 0.6512 0.6952 0.5847 0.6352 0.6081 0.6036 0.6059
(2) 0.6961 0.6736 0.6847 0.6937 0.6479 0.6700 0.6836 0.6768 0.6802
(3) 0.6976 0.6193 0.6561 0.6968 0.5929 0.6406 0.6033 0.6050 0.6042
Average 0.6970 0.6345 0.664 0.6952 0.6085 0.6486 0.6317 0.6285 0.6301

we also use a couple of forget and input gates. The detailed
single LSTM architecture and each gate formula computation
can be referred to in [33].

The LSTM experiments were implemented with several
different parameter settings. Their results presented in this
section are the best among all our experiments. Each piece
of input data consists of two components, its word vector
value and its Euclidian distance to the previous input data.
In treating both input data components, we adapt the Adding
Problem Experiment as presented in [35].We use the Jannlab
tools [36] with some modifications in the part of entry to
conform with our data settings.

The best achieved performance is obtained with LSTM
block architecture of one node input layer, two nodes' hidden
layer, and one node output layer. The used parameters are
learning rate = 0.001, momentum = 0.9, epoch = 30, and
input dimension = 200, with the time sequence frame set to
2. The complete treatment of drug sentence as a sequence
both in representation and in recognition, to extract the drug
name entities, is the best technique, as shown by F-score
performance in Table 15.

As described in previous work section, there are many
approaches related to drug extraction that have been pro-
posed. Most of them utilize certain external knowledge to
achieve the extraction objective. Table 16 summarizes their
F-score performance. Among the state-of-the-art techniques,
our third data representation technique applied to the LSTM
model is outperforming. Also, our proposedmethod does not
require any external knowledge.

Table 15: The F-score performance of third data representation
technique with RNN-LSTM.

Prec Rec F-score
MedLine 1 0.6474 0.7859
DrugBank 1 0.8921 0.9430
Average 0.8645

4.3. Drug Label Dataset Performance. As additional exper-
iment, we also use Indonesian language drug label cor-
pus to evaluate the method’s performance. Regarding the
Indonesian drug label, we could not find any certain external
knowledge that can be used to assist the extraction of the
drug name contained in the drug label. In the presence
of this hindrance, we found our proposed method is more
suitable than any other previous approaches. As the drug label
texts are collected from various sites of drug distributors,
producers, and government regulators, they do does not
clearly contain training data and testing data as inDrugBanks
or MedLine datasets. The other characteristics of these texts
are the more structured sentences contained in the data.
Although the texts are coming from various sources, all
of them are similar kind of document (the drug label that
might be generated by machine). After the data cleaning
step (HTML tag removal, etc.), we annotated the dataset
manually. The total quantity of dataset after performing
the data representation step, as described in Section 3.4, is
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Table 16:The F-score performance compared to the state of the art.

Approach F-score Remark
The Best of SemEval 2013 [15] 0.7150 —

[11] 0.5700
With external
knowledge,
ChEBI

[16] + Wiki 0.7200
With external
knowledge,
DINTO

[14] 0.7200 Additional
feature, BIO

[12] 0.6000 Single token only
MLP-SentenceSequence + Wiki
(average)/Ours 0.6580 Without external

knowledge
DBN-SentenceSequence + Wiki
(average)/Ours 0.6430 Without external

knowledge
SAE-SentenceSequence + Wiki
(average)/Ours 0.6480 Without external

knowledge
LSTM-AllSentenceSequence + Wiki +
EuclidianDistance (average)/Ours 0.8645 Without external

knowledge

Table 17: The best performance of 10 executions on drug label
corpus.

Iteration Prec Recall F-score
1 0.9170 0.9667 0.9412
2 0.8849 0.9157 0.9000
3 0.9134 0.9619 0.9370
4 0.9298 0.9500 0.9398
5 0.9640 0.9570 0.9605
6 0.8857 0.9514 0.9178
7 0.9489 0.9689 0.9588
8 0.9622 0.9654 0.9638
9 0.9507 0.9601 0.9554
10 0.9516 0.9625 0.9570
Average 0.93081 0.9560 0.9431
Min 0.8849 0.9157 0.9000
Max 0.9640 0.9689 0.9638

1.046.200. In this experiment, we perform 10 times cross-
validation scenario by randomly selecting 80% data for the
training data and 20% data for testing.

The experimental result for drug label dataset shows that
all of the candidate selection scenarios provide excellent
F-score (above 0.9). The excellent F-score performance is
probably due to the more structured sentences in those texts.
The best results of those ten experiments are presented in
Table 17.

4.4. Choosing the Best Scenario. In the first and second
experiments, we studied various experiment scenarios,
which involve three investigated parameters: additional Wiki
source, data representation techniques, and drug target can-
didate selection. In general, the Wiki addition contributes to
improving the F-score performance. The additional source

in word2vec training enhances the quality of the resulting
word2vec. Through the addition of common words, from
Wiki, the difference between the common words and the
uncommon words, that is, drug name, becomes greater
(better distinguishing power).

One problem in mining drug name entity from medical
text is the imbalanced quantity between drug token and other
tokens [15]. Also, the targeted drug entities are only a small
part of the total tokens. Thus, majority of tokens are noise.
In dealing with this problem, the second and third candidate
selection scenarios show their contribution to reduce the
quantity of noise. Since the possibility of extracting the noises
is reduced then the recall value and F-score value increase as
well, as shown in the first and second experiments results.

The third experiment which uses LSTM model does not
apply the candidate selection scenario because the input
dataset is treated as sentence sequence. So the input dataset
can not be randomly divided (selected) as the tuple treatment
in the first and second experiments.

5. Conclusion and Future Works

This study proposes a new approach in the data representa-
tion and classification to extract drug name entities contained
in the sentences of medical text documents. The suggested
approach solves the problem of multiple tokens for a single
entity that remained unsolved in previous studies. This study
also introduces some techniques to tackle the absence of
specific external knowledge. Naturally, the words contained
in the sentence follow a certain sequence pattern; that is,
the current word is conditioned by other previous words.
Based on the sequence notion, the treatment of medical text
sentences which apply the sequence NN model gives better
results. In this study, we presented three data representation
techniques.The first and second techniques treat the sentence
as a nonsequence pattern which is evaluated with the non-
sequential NN classifier (MLP, DBN, and SAE), whereas the
third technique treats the sentences as a sequence to provide
data that is used as the input of the sequential NN classifier,
that is, LSTM. The performance of the application of LSTM
models for the sequence data representation, with the average
F-score being 0.8645, rendered the best result compared to
the state of the art.

Some opportunities to improve the performance of the
proposed technique are still widely opened. The first step
improvement can be the incorporation of additional hand-
crafted features, such as the words position, the use of capital
case at the beginning of the word, and the type of character,
as also used in the previous studies [16, 37]. As presented in
the MLP experiments for drug label document, the proposed
methods achieved excellent performance when applied to the
more structured text. Thus, the effort to make the sentence
of the dataset, that is, DrugBank and MedLine, to be more
structured can also be elaborated. Regarding the LSTM
model and the sequence data representation for the sentences
of medical text, our future study will tackle the multiple
entity extractions such as drug group, drug brand, and drug
compounds. Another task that is potential to be solved with
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the LSTMmodel is the drug-drug interaction extraction. Our
experiments also utilize the Euclidean distance measure in
addition to the word2vec features. Such addition gives a good
F-score performance. The significance of embedding the
Euclidean distance features, however, needs to be explored
further.
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