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Advances in imaging have changed prostate radiotherapy through improved biochemical
control from focal boost and improved detection of recurrence. These advances are
reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the
ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and
feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and 18F-
PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT. To
date, response to prostate SBRT is most commonly evaluated using the Phoenix Criteria
for biochemical failure. The drawbacks of this approach include lack of lesion
identification, a high false-positive rate, and delay in identifying treatment failure.
Patients in ARGOS/CLIMBER will receive dynamic 18F-PSMA-1007 PET and mpMRI
prior to SBRT for treatment planning and at 6 and 24 months after SBRT to assess
response. Imaging findings will be correlated with prostate-specific antigen (PSA) and
biopsy results, with the goal of early, non-invasive, and accurate identification of
treatment failure.

Keywords: SBRT, prostate cancer, PSMA PET, MRI, stereotactic, ultrahypofractionated
INTRODUCTION AND BACKGROUND

External beam radiation therapy (EBRT) is a primary treatment modality for men with intermediate
and high-risk prostate cancer. Conventional treatments are typically with fractions of 1.8–2.0 Gray
(Gy)/day over a treatment duration of up to 8 weeks (70–80 Gy in 35–40 fractions). Biochemical
failure (BF), as defined by the Phoenix Criteria (prostate-specific antigen [PSA] rise by 2 ng/ml or
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more above nadir PSA) (1), occurs in up to 35% of treated
patients treated with standard EBRT by 10 years (2). Recent
advances in image guidance and dose delivery have enabled new
forms of EBRT, including stereotactic body radiation therapy
(SBRT) (3) and focal intra-prostatic boost (4–6).

After radiation therapy, local recurrence occurs primarily at
the sites of macroscopic dominant intraprostatic lesions (DILs)
(7, 8). Comprehensive planning studies suggest that focal EBRT
boost to DILs is dosimetrically feasible for a wide range of dose
fractionations without exceeding normal tissue tolerances (9, 10).
Most studies have used multiparametric MRI (mpMRI) to
identify DILs in focal prostate radiation therapy (Table 1). The
randomized controlled clinical trial FLAME showed that focal
boost to DILs using standard fractionations improves the 5-year
biochemical progression-free survival (bPFS) with acceptable
toxicity (5, 12). DELINEATE, a single-center prospective phase
II multicohort study, also confirmed the feasibility of DIL boost
with standard and moderate fractionations with rectal and
genitourinary (GU) toxicity comparable to contemporary series
without intraprostatic boost (11). The safety and feasibility of
DIL boost in extreme hypofractionation (five fractions) were
validated in the Phase II 5STAR and Hypo-Flame trials (4, 6).
These trials showed that toxicity for DIL boost with extreme
hypofractionation compares to toxicity without boost and was
lower than toxicity in the FLAME trial. Even with focal boost,
however, intra-prostatic failure may be seen as a site of failure
(13). Early detection of local recurrence after radiotherapy
enables deployment of potentially curative salvage therapies
(14, 15).

Multiple studies have evaluated the boost of DILs using
mpMRI for target delineation. However, mpMRI can miss
some intraprostatic lesions or significantly underestimate
lesion size (16). Prostate-specific membrane antigen (PSMA)-
targeted positron emission tomography (PET) complements
Frontiers in Oncology | www.frontiersin.org 2
mpMRI and improves the detection and characterization of
intraprostatic cancer and nodal disease in the primary setting
(17–20). As such, it may improve oncologic outcomes through
more accurate delineation of focal boost volumes (17, 18, 21).
Additionally, PSMA PET provides better distant staging and can
identify extra-prostatic extension, especially among men with
higher risk disease (22). 68Ga-PSMA-11 is the most widely
studied and 18F-DCFPyL is the next most commonly studied
PSMA radioligand (23, 24). The advantages of fluorinated
compounds like 18F-DCFPyL compared to gallium-based
compounds like 68Ga-PSMA-11 include improved spatial
resolution and a longer half-life, which allows for centralized
production and transportation to remote facilities (25). 18F-
PSMA-1007 is a third PSMA radioligand with a growing body
of evidence. The primary advantage of 18F-PSMA-1007
compared to 68Ga-PSMA-11 and 18F-DCFPyL is its reduced
urinary clearance, which allows for improved assessment of the
pelvic region, making it especially suitable for the evaluation of
DILs in the base of the prostate (26). A potential disadvantage of
18F-PSMA-1007 is a higher number of false-positive bone
marrow lesions noted in some series (26).

In recent years, the clinical use of 18F-labeled PSMA-targeted
compounds has significantly increased. 18F-DCFPyL and 18F-
PSMA-1007 are the most clinically established 18F-labeled
radiotracers for PSMA-targeted PET imaging (25). For
instance, 18F-DCFPyL demonstrated high sensitivity for the
detection of clinically significant intraprostatic tumors and
biochemically recurrent prostate cancer, in addition to a high
potential to measure total tumor burden for treatment planning
(27, 28). We have demonstrated through a prospective trial of the
preoperative imaging that 18F-DCFPyL-PET/MRI could identify
DILs as verified by whole-mount pathology images (29). The
performance of delineation of DILs for focal treatment could be
optimized by using a 67% threshold of the maximum intra-
TABLE 1 | Selected prospective evidence for focal intra-prostatic boost.

Trial Trial type Groups Number
of

patients
in

analysis

Dose/
fractionation
to prostate

Dose/
fractionation
to pelvic
nodes

Boost volume
definition

Dose/
fractionation

to boost
volume

Primary endpoint result

FLAME (5) Multicenter
RCT

Prostate RT ± GTV
boost

571 total 77 Gy/35 n/a GTV on mpMRI Up to 95 Gy/
35

Improved 5-year
biochemical DFS in boost
arm (92% vs. 85%)

DELINEATE
(11)

Prospective
single-center
multi-cohort
trial

Cohorts A (standard
fractionation) and B
(moderately
hypofractionated)

105 total Cohort A: 74
Gy/37
Cohort B: 60
Gy/20

n/a GTV on mpMRI plus
2-mm expansion,
excluding the
urethra

Cohort A: up
to 82 Gy/37
Cohort B: up
to 67 Gy/20

Grade 2+ late rectal toxicity
at 1 year was 4% for
Cohort A and 8% for
Cohort B

Hypo-
FLAME (4)

Prospective
multicenter
single-arm
trial

Single cohort 100 35 Gy/5
delivered
weekly over
29 days

n/a GTV on mpMRI Up to 50 Gy/
5

Acute grade 2+ GI toxicity
5%, acute grade 2+ GU
toxicity 34%

5STAR (6) Prospective
single-center
single arm trial

Single cohort 30 35 Gy/5
delivered
weekly over
29 days

25 Gy/5 GTV on mpMRI Up to 50 Gy/
5

Acute grade 2+ GI toxicity
5%, acute grade 2+ GU
toxicity 20%
April 2022 |
RCT, randomized controlled trial; GTV, gross tumor volume; mpMRI, multiparametric MRI; DFS, disease-free survival; GU, genitourinary; n/a, not applicable.
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prostatic standard uptake value (SUV) with an 8-mm margin to
maximize coverage of histologically defined lesions (30).

The alternate PSMA-targeting agent, 18F-PSMA-1007, offers
additional advantages related to the delineation of intraprostatic
lesions. While 18F-DCFPyL is excreted by renal clearance into
the urinary bladder, 18F-PSMA-1007 is excreted by the
hepatobiliary system and therefore causes no or minimal
bladder activity. A comparison of 18F-PSMA-1007 PET/CT
with radical prostatectomy histology and mpMRI (n = 10)
showed a slightly better performance than mpMRI with fewer
false negatives and fewer false positives (31). A clinical
comparison of [18F]DCFPyL and 18F-PSMA-1007 (n = 12)
found excellent image quality and identical clinical findings.
Both radiotracers were equivalent for imaging of local and
metastatic prostate cancer. However, the non-urinary excretion
of 18F-PSMA-1007 offers advantages regarding the delineation of
local recurrences and lymph node metastases (32). Prive et al.
evaluated 18F-PSMA-1007 and mpMRI and compared their
histopathology for the primary staging of prostate cancer in 53
patients diagnosed with intermediate and high-risk prostate
cancer. PSMA improved the detection of seminal vesicle
invasion, while MRI offered a better resolution in evaluating
extracapsular extension (33). The study suggested that dual
imaging may improve the staging of prostate cancer. A 20%
SUVmax threshold using 18F-PSMA-1007 was recently
demonstrated to offer the best combination of sensitivity and
specificity in delineating DILs, and volumes so defined accounted
for approximately 21% of the total prostate volume on
average (18).

Another application for advanced imaging in SBRT prostate
treatment is in response assessment. To date, evaluation of
success following SBRT is most commonly by biochemical
means, and successful SBRT is associated with low PSA nadirs
comparable to those noted with brachytherapy (34). Biochemical
control is a suboptimal method to assess recurrence in patients
due to a lack of spatial information, potential false positives, and
delayed identification of failure based on rising PSA. First, the
lack of lesion identification using PSA-based criteria alone
prevents successful local or metastasis-directed salvage without
the use of imaging. Given the potential toxicity of local salvage,
identification of isolated local recurrence is critical (14).
Secondly, the Phoenix Criteria has a false-positive rate in
patients who receive SBRT. In a multi-institutional pooled
analysis of over 2,000 patients who received prostate SBRT, the
Phoenix Criteria was associated with a false-positive rate of 30%
(35). Finally, the Phoenix Criteria occurs late. Patients who have
local failure may not reach the Phoenix Criteria for years and
may lose the opportunity for successful local salvage. A
retrospective study showed that up to 38% of patients who
received SBRT to doses of 32.5 Gy or higher in 5 fractions had
a positive prostate biopsy 2 years after SBRT (36). However, just
12.5% of these patients had reached the Phoenix Criteria at the
time of biopsy. Even in patients with a PSA of less than 1 ng/ml
prior to biopsy, up to 25% of patients had a positive biopsy (36).
Most patients with a positive 2-year biopsy would reach BF at 5
years (57% vs. 7% as compared to those with a negative biopsy),
Frontiers in Oncology | www.frontiersin.org 3
even after 35% of patients with a positive 2-year biopsy received
salvage therapies. In another retrospective study, 63 patients,
mostly with high-risk prostate cancer (40/63, 64%), received
PSMA-targeted PET/CT for rising PSA that did not meet the
Phoenix Criteria after primary conventional or moderately
hypofractionated EBRT (37). Median rise above nadir PSA
prior to PET was 1.2 ng/ml, and median PSA was 1.3 ng/ml.
Recurrence was detected in 84% of patients (53/63). While 21/63
patients (33%) had local recurrence only, 14/63 (22%) had nodal
recurrence without distant metastases, and 18/63 (18%) had
distant metastases. Given the efficacy and toxicity of curative-
intent local salvage treatments, improved and early identification
of isolated local recurrence is needed (14, 15).

Identification of local recurrence after EBRT has been
explored with timed biopsy or mpMRI after radiotherapy (38).
Prostate biopsy at 2 years posttreatment has been associated with
clinical endpoints such as subsequent BF and distant metastases
(36, 39). However, drawbacks of biopsy include unreliable results
at earlier timepoints and potential morbidity (39). “Metabolic
clearance” as defined by serial MRI with spectroscopy has been
associated with durable biochemical control in retrospective
series of men treated with conventional external beam
radiotherapy (40–43). Recently, standardized mpMRI reporting
for the locally recurrent disease has been proposed but has not
yet been validated in larger prospective series (44). Additionally,
there is a lack of prospective studies validating posttreatment
mpMRI as a predictive biomarker in larger populations and men
treated with SBRT.

PSMA-targeted PET/CT in addition to mpMRI improves
detection of local recurrence after EBRT (45). However, while
criteria for the response have been broadly defined (46), the
significance of PSMA response and correlation with clinical
endpoints are not known (47). As such, longitudinal
monitoring of PSMA PET/CT changes post-radiotherapy,
including changes in SUVmax and other PSMA PET based
metrics, should be investigated as potential non-invasive
biomarkers of treatment response after SBRT to the prostate.
Integration of earlier PET-based response assessment, compared
to triggered restaging at the time of BF, may provide an
opportunity for earlier targeted salvage, but a lack of
prospective longitudinal series of men so monitored is a gap in
the current evidence base (23). Indeed, reports of false-positive
PET scans in previously treated patients underscore the
importance of systematically characterizing the normal
patterns of PSMA PET/CT changes after SBRT and their
correlation with clinical endpoints (48, 49).

Beyond identifying local recurrence, determining the
presence and extent of extra-prostatic recurrence has
historically been challenging to determine due to the poor
sensitivity of CT and bone scans. PET-based imaging
potentially addresses this gap (23). A number of PET tracers
have been developed for the detection of recurrent prostate
cancer, including 18F-NaF, 18F-FACBC (fluciclovine), 18F-
choline, and 11C-choline (50). More recently, PSMA-targeted
PET has demonstrated improved detection rates as compared to
previous modalities and is recommended for restaging recurrent
April 2022 | Volume 12 | Article 863848
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disease (23, 24, 50, 51). Specifically, for patients with BF after
primary radiotherapy, a prospective trial showed that compared
to conventional imaging, PSMA-targeted PET/CT detected
extra-prostatic recurrence in twice as many patients (39% vs.
19%) (52, 53). Furthermore, in a network meta-analysis of intra-
individual imaging studies of different radiotracers, PSMA-based
tracers in general, and 18F-PSMA-1007 specifically, were found
to have superior detection rates at any site as compared to other
traces, including 18F-FACBC, 18F-choline, and 11C-choline (54).
However, the strength of these findings was tempered by the
relatively small number of 18F-1007 patients evaluated directly.
While PSMA-targeted PET/CT has increased detection rates in
recurrent prostate cancer, a drawback is the risk of false-positive
findings. In a prospective trial that evaluated the positive
predictive value of PSMA-targeted PET/CT in patients with
recurrent prostate cancer, the per-region false-positive rate
based on a clinical endpoint was 8% (55).

We plan to evaluate the safety of SBRT with PSMA PET/MRI-
guided focal boost in a prospective early phase trial, “PSMAMRI
Guided prOstate SBRT(ARGOS).” As noted, while the advanced
imaging techniques described show promise for the
characterization of primary or recurrent prostate cancer, no
study has prospectively and longitudinally evaluated them after
primary radiotherapy to characterize expected changes in
response to treatment and to non-invasively identify early
treatment failure. All patients in ARGOS will enter the
translational component of the study Comprehensive,
Longitudinal Evaluation of Imaging Biomarkers Post
Radiotherapy (CLIMBER). We will use advanced imaging
analysis techniques to evaluate longitudinal changes in a
comprehensive battery of anatomic and functional prostate
imaging panels using 18F-PSMA 1007 and mpMRI acquired
prior to and after SBRT. 18F-PSMA-1007 is chosen given
its favorable pharmacokinetics profile with primarily
gastrointestinal elimination, reducing tracer accumulation in
the bladder and allowing better visualization of prostate and
pelvic lymph nodes. The knowledge obtained from ARGOS/
CLIMBER will improve the understanding of imaging changes
post-prostate SBRT and will have increasing clinical importance
with increasing use of these techniques. The ARGOS/CLIMBER
protocol as outlined below is due to open in early 2022, with a
plan for accrual of 50 men over 3 years and with follow-up of up
to 5 years for clinical endpoints.
ARGOS/CLIMBER

Study Design
This study is (NCT05269550) a prospective single-arm trial
enrolling men with National Comprehensive Cancer Network
(NCCN) unfavorable intermediate-fiducial risk, high-risk, or
very-high-risk prostate cancer. The study schema is provided
in Figure 1. All men will have PSMA-targeted PET (using the
PSMA-targeting ligand 18F-PSMA-1007) and mpMRI including
T2-weighted (T2W), diffusion-weighted imaging (DWI)/
apparent diffusion coefficient (ADC), and dynamic contrast-
Frontiers in Oncology | www.frontiersin.org 4
enhanced (DCE) sequences. Delineation of intra-prostatic foci
of cancer (using 20% SUVmax and suspicious mpMRI
appearance) and any involved regional lymph nodes (based on
MI-ES score of 2 or greater or suspicious mpMRI appearance
suspicious for cancer) will be performed (16, 18). Tumor
delineation will be performed by fusing the PSMA PET and
mpMRI with planning CT simulation images. Fiducial marker
implantation for treatment guidance will be mandatory, but the
use of other organs at risk protection strategies (i.e., SpaceOAR
and GU-Lok) will be allowed but not mandatory. Patients will be
treated with image-guided SBRT using the fiducial markers for
inter- and intra-fraction motion management. The prostate will
receive 35 Gy/5 fractions, and the proximal or entire seminal
vesicle will receive 25 Gy/5 fractions (Table 2). Dose escalation to
imaging-defined targets will be accomplished through a
simultaneous boost technique (targeted maximum dose of 50
Gy/5 fractions to imaging-defined prostatic lesion and 35 Gy/5
fractions to imaging-defined involved nodes; see Figure 2).
Maintaining dose to organs at risk will take precedence over
boost dose targets (Table 3). Patients with high-risk disease or
calculated nodal involvement risk of more than 15% will receive
25 Gy/5 fractions delivered to the regional lymph nodes
synchronously with the prostate treatment.

The primary endpoints of the trial will be 6-week and 6-
month gastrointestinal (GI) and GU toxicity using the Common
Terminology Criteria for Adverse Events version 5.0 (CTCAE
v5.0). While other prospective trials have confirmed the safety of
an mpMRI-defined intra-prostatic boost with external beam
radiotherapy (4, 6), the proposed boost volume in ARGOS/
CLIMBER will be based on mpMRI and PSMA PET-targeted
FIGURE 1 | Study schema.
April 2022 | Volume 12 | Article 863848

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Imaging Biomarkers in Prostate SBRT
PET (17), and thus there is a need to demonstrate the safety of
such a multi-modality defined boost volume. Secondary
endpoints include Quality of life measured by the Expanded
Prostate Cancer Index Composite (EPIC-26) questionnaires and
5-year disease-free survival (DFS) as a composite of BF, patient
death, or development of clinical metastases or institution of
salvage ADT.

All grade 3 or higher toxicity will be reported to the principal
investigator. An independent data and safety monitoring board
(IDSMB) will perform a formal interim analysis for safety and
toxicity when half of the patients have been accrued or after
Frontiers in Oncology | www.frontiersin.org 5
1 year, whichever comes first. The study will be discontinued if
the projected rate of grade 3 or higher urinary or bowel toxicity
exceeds 30%. IDSMB will meet at least annually to review
trial data.

Unique to the ARGOS/CLIMBER protocol is the integration
of longitudinal imaging with PSMA-directed PET and mpMRI
pretreatment and posttreatment. Serial PSMA PET/MR images
will be collected at baseline, 6 months, and 2 years to characterize
the imaging response of prostate cancer to treatment and
potential ly identi fy imaging biomarkers (including
pharmacokinetics, radiomics, and quantitative PET and
FIGURE 2 | Example of focal dose escalation.
TABLE 2 | Target structures nomenclature and descriptions.

Name* Description

High intermediate risk
CTV_35Gy Entire prostate including the GTVp_boost volumes
PTV_35Gy CTV_35Gy + 3–4 mm
GTVp_boost Intraprostatic GTV delineated as the union of mpMRI-defined PiRADS 4–5 intra-prostatic lesions with the PET-defined intra-prostatic lesions

using threshold of 20% SUVmax (see text above). Where the seminal vesicle(s) are involved by PET or MRI, the involved portion will be included
in the GTVp_boost volume(s)

PTVp_boost GTVp_boost + 3–4 mm
CTV_ProxSV_25Gy Proximal 1.0 cm of the seminal vesicles. The 1 cm of the seminal vesicles is measured superiorly from its origin at the prostate (not from the

superior aspect of the prostate)
PTV_ProxSV_25Gy CTV_ProxSV_25Gy + 4 mm
High or Very High Risk
CTV_35Gy Entire prostate including the GTVp_boost volumes
PTV_35Gy CTV_35Gy + 3–4 mm
GTVp_boost Intraprostatic GTV delineated as the union of mpMRI-defined PiRADS 4–5 intra-prostatic lesions with the PET-defined intra-prostatic lesions using

threshold of 20% SUVmax (see text above). Where the seminal vesicle(s) are involved by PET or MRI, the involved portion will be included in the
GTVp_boost volume(s)

PTVp_boost GTVp_boost + 3–4 mm
CTV_ SV_25Gy Entire seminal vesicle volume
PTV_SV_25Gy CTV_SV_25Gy + 6 mm
CTVn_25Gy Pelvic lymph nodes. To be contoured according to the NRG guidelines [51] to encompass a 0.7-cm radial expansion around the external iliac,

internal iliac vessels, and obturator and presacral spaces
PTVn_25Gy CTVn_25Gy + 6 mm
GTVn_boost Positive pelvic lymph nodes delineated on PET/MRI as MI-ES 2 or higher
PTVn_boost GTVn_boost + 6 mm
*GTV, gross tumor volume; CTV, clinical target volume; PTV, planning target volume; mpMRI, multiparametric MRI.
April 2022 | Volume 12 | Article 863848
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mpMRI metrics) that predict for 5-year DFS (Table 4).
Additionally, baseline collection of diagnostic tissue biopsy
samples and serial collection of blood and urine over multiple
time points (baseline, 6 months, 1 year, and 2 years post-SBRT)
will be performed for correlative biologic biomarker analyses
with imaging changes, DFS, and toxicity posttreatment. Analysis
of prostate biopsy at baseline and 2 years will allow for
correlation of histopathology with PSMA PET/MR images. We
will investigate whether a negative posttreatment PSMA PET/
MRI is correlated with a negative 2-year posttreatment biopsy
and long-term disease control (36, 39). We also plan to examine
novel clinical prognostic biomarkers (i.e., absolute percentage of
Gleason Pattern 4 on biopsy and 4-year PSA response rate) and
their correlation with imaging findings and 5-year DFS.

PET Imaging Acquisition
Integrated PSMA PET/MRI is preferred with the goal of
achieving co-registered PSMA PET and MR images with high
spatial fidelity for planning and assessing response to treatment.
PSMA PET/CT plus mpMRI are also allowed within the protocol
if there is an unavailability of a PET/MRI scanner. We have
Frontiers in Oncology | www.frontiersin.org 6
previously demonstrated the value of early dynamic PET
imaging in the identification of intra-prostatic lesions and will
incorporate both dynamic and delayed PET imaging (56).

The evening before each PSMA PET examination, patients
will be asked to take 30 ml of milk of magnesia, an over-the-
counter laxative, which will be provided. Patients should be NPO
overnight prior to the exam (~12 h). The bladder should be
comfortably full and the rectum as empty as possible prior to
image acquisition.

For dynamic PET imaging, the participants will be injected
with 3–4 MBq/kg (up to a maximum 400 MBq) of 18F-PSMA-
1007. Dynamic PET acquisitions will start immediately prior to
18F-PSMA 1007 injection and will be acquired simultaneously
with the cross-sectional pelvic MR images (for PET/MRI) or CT
images (for PET/CT). Dynamic PET acquisition will cover the
whole prostate up to the iliac crest. An image-derived arterial
time–activity curve required for kinetic analysis of dynamic PET
data will be acquired from an internal iliac artery to generate
parametric maps. Starting at the injection of 18F-PSMA-1007 as a
bolus into an antecubital vein, the dynamic PET scan will be
acquired over 22 min with seven framing intervals: 10, 20, 40, 60,
TABLE 4 | Schedule of events.

Event Weeks (week 0 is start of RT) Q6mo
(30–

60mo)−3 −2 0 1
EOT

3 8
(6 weeks post-

RT)

6 months post-
RT

12 months
post-RT

18 months
post-RT

24 months
post-RT

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11–15
Start alpha antagonists,
simethicone

x

Fiducial marker insertion x
Simulation and planning x
Treatment (5 fractions q2d, 10–
12 days)

x x

CTCAE v5.0 x x x x x x x x x x
EPIC-26 questionnaires x x x x x x x x x
PSA and testosterone x x x x x x
PSMA PET/MRI x x x
Liquid biomarker collection x x x x x
Transperineal biopsy x x
April 2022 | Volume 12 | Artic
CTCAE v5.0, Common Terminology Criteria for Adverse Events version 5.0; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen.
TABLE 3 | Dose constraints.

Structures and dose constraints (acceptable deviations)

Rectum V20Gy ≤ 50% (optimal)
V28Gy ≤ 15% (20%)
V32Gy ≤ 10% (15%)
V35Gy ≤ 2 cc (4 cc)
V38Gy ≤ 1 cc
Dmax ≤ 40.6 Gy

Bladder V20Gy ≤ 50% (optimal)
V28Gy ≤ 15% (20%)
V32Gy ≤ 10% (15%)
V38Gy ≤ 6 cc
V39.5Gy ≤ 2 cc

Rectum_PRV Dmax ≤ 45 Gy Bladder_PRV Dmax ≤ 46 Gy (optimal)
Urethra_PRV Dmax ≤ 52 Gy

D10% ≤ 47.2 Gy
D50% ≤ 42 Gy (optimal)

Penile Bulb V20Gy ≤ 40% (90%)
V35Gy ≤ 4%

Bowel_Small V25Gy ≤ 20 cc (40cc)
V30Gy ≤ 2 cc
Dmax ≤ 3 5Gy

Bowel_Large V25Gy ≤ 20 cc (40 cc)
Dmax ≤ 38 Gy

Femur_R and Femur_L V28Gy ≤ 5%
le 863848
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and 180 s. Early time standardized uptake (SUVearly) in g/ml will
be measured as the average of the last four dynamic PET volumes
(10–22 min post-injection). The acquired dynamic volumes will
be analyzed to generate parametric maps of the whole prostate,
including influx rate constant (K1), efflux rate constant (k2),
binding rate constant (k3), dissociation rate constant (k4), net
uptake rate constant from plasma (Ki), and distribution volume
(DV) maps by deconvolving the arterial time–activity curve from
tissue time–activity curve using a flow-modified two-tissue
compartment (F2TC) model. After dynamic pelvic PET,
participants will be allowed to get up and take a break/empty
their bladder prior to the acquisition of late uptake PSMA-1007
PET images (60–120 min post-injection). For PET/CT, the PET
images will be acquired with corresponding axial CT images
obtained (for anatomic correlation and attenuation correction).

For PET/MRI, a whole-bodyMRI scout scan (to plan the study)
and B0 homogenization using gradient enhancement (HUGE)
acquisition (to correct for truncation of arms) will be acquired
first. In both acquisitions, the table moves continuously for
approximately 1 min as it scans the subject from head to thigh.
Whole-body PET/MRI is acquired in multiple bed positions. For
men of average height, 5 overlapping table positions will be used,
with taller subjects requiring an additional table position. At each
table position, a 5-min PET acquisition will be acquired along with
simultaneousMRI consisting ofMRI-based attenuation correction,
coronal T2-weighted fast spin-echo with Short-TI Inversion
Recovery (STIR) sequence during flat breathing, and axial Half-
Fourier Acquisition Single-shot Turbo spin-Echo (HASTE) single-
shot T2-weighted sequence. For thoracic and abdominal table
positions, the HASTE MRI will be captured over 4 breath-holds
of 14 s. If unable to do so, these can be donewith flat breathing only.

Pelvic Multiparametric MRI Acquisition
For men imaged with PET/MRI, the pelvic mpMRI will be
acquired after whole-body PET/MRI on the PET/MRI scanner.
For men imaged with PET/CT, mpMRI will be acquired as a
separate study on a 3T magnetic resonance scanner. The bladder
should be comfortably full and the rectum as empty as possible
prior to the mpMRI scanning. For mpMRI scout scans, sagittal 2D
T2-weighted, coronal 2D T2-weighted MRI, axial 3D T2-weighted,
and 2D axial diffusion-weighted EPI will be acquired. Prior to a 3D
DCE T1-weighted MRI, a radiologist or designate will administer
an intravenous injection of GADOVIST® 1.0 (Gadobutrol) with
the MEDRAD Injection System (0.1 mmol/kg). Following
DCE-MRI, whole-body late gadolinium-enhanced MRI will be
acquired with T1-weighted volumetric interpolated breath-hold
examination (VIBE) with fat saturation and breath-hold in
thoracic and abdominal table positions.

Primary Endpoint and Sample Size
This will be a single-phase pilot study of 50 patients with a
primary endpoint of GI and GU toxicity as measured by
CTCAE v5.0.

Unacceptable toxicity will be defined as acute (6 weeks) or
intermediate (6 months) grade >3 GI or GU toxicity. The
proposed treatment will be deemed too toxic if >30% of
patients have unacceptable toxicity. This study tests the
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hypothesis that acute toxicity is <30% (alpha = 0.05, power =
81%, one-sided, H0: p = .30, HA: p <.30), with an assumed true
proportion in this study of 15%. These calculations were done
based on a Z test (normal approximation). We will test this
assumption with the exact test approach if we do not meet our
target accrual of 50 men or the proportion of Grade 3 toxicity is
significantly less than 15% (conditions where normal
approximation is not met).

Given that the proPSMA study demonstrated that 16% of
men with high-risk prostate cancer had extra-prostatic disease
beyond regional nodal metastases at initial staging and the fact
our population will be a mix of high-intermediate and high-risk
men, we will plan to enroll a total of 55 men (22). Those men
with extra-prostatic spread beyond regional pelvic lymph nodes
on their pretreatment PSMA PET imaging will be treated off
protocol at the attending physician’s discretion.

Secondary Endpoints
Quality of Life
Descriptive statistics and diagrams will be used to characterize
changes in Quality of Life metrics as measured by the EPIC-26. A
linear mixed model with random intercept by an individual to
account for the correlation present within individuals will be
used to compare pretreatment vs. posttreatment quality of life
measures at multiple timepoints with the goal of tracking
minimally important differences in these parameters (57).

Disease-Free Survival
Five-year DFS will be determined as a composite of biochemical
control, patient death or development of clinical metastases, or
institution of salvage ADT. DFS will be estimated with a Kaplan–
Meier (KM) curve, with the 5-year estimate extracted from the
KM curve.

Translational Imaging Endpoints
Changes in SUV metrics (SUVmax, SUVmean) within PSMA
PET regions of interest (ROI) will be compared between the pre-
RT PSMA PET and the 6-month post-RT PSMA PET. ROIs to be
examined will include the dominant intra-prostatic lesions
(DILs), the prostate as a whole, and, in the cases of men with
PET-detected nodal disease, involved node ROIs. Descriptive
statistics and diagrams (i.e., waterfall plots) will be used to
characterize changes in SUV metrics. A linear mixed model
with random intercept by an individual to account for the
correlation present within individuals will be used to compare
pretreatment vs. posttreatment SUV values at multiple
timepoints. Overall response rates will be calculated in
accordance with recent consensus guidelines (46).

Intra-prostatic mpMRI (T2W, DWI, and DCE-MRI) acquired
pre-RT and 6 and 24 months post-RT will be reported by expert
readers based on PI-RADS 2.1 and the complementary Prostate
Imaging for Recurrence Reporting (PI-RR) system to identify intra-
prostatic ROIs (44). Quantitative MRI metrics will be extracted,
including ADC and pharmacokinetics parameters derived from
dynamicPETandDCE-MRI. Radiomics approacheswill be used to
characterize the evolution of higher-level feature changes in PET
and mpMRI over the course of treatment.
April 2022 | Volume 12 | Article 863848

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Imaging Biomarkers in Prostate SBRT
We will correlate changes in PET and mpMRI metrics at 6 and
24months with 5-year DFS using linear regressionmodels.Wewill
also perform supervised machine learning to train support vector
machines and randomforest classifiers topredict response basedon
the pretreatment images. We will also perform a delta-radiomics
analysis to predict response based on the radiomics trajectory
computed from the first two time points. We will measure the
performance of the classifiers using a cross-validation design, with
metrics including the area under the receiver operating
characteristic (ROC) curve and the error rate, false-positive rate,
and false-negative rate computed at a point on the ROC curve that
best balance the false-positive and false-negative rates. We will
develop radiomics-based classifiers to predict 5-year DFS.

Baseline (pretreatment) and 24-month (posttreatment) tissue
samples will be acquired for histopathologic correlations with
PET/MR images. Specifically, baseline biopsy will provide
histologic correlation for the PSMA- and mpMRI-identified
dominant intra-prostatic lesions. Additionally, 24-month
biopsies have been shown to correlate with long-term failure-
free survival (36, 39), and rates of cancer clearance after
stereotactic techniques have been shown to increase with
increasing doses of radiation (58). Understanding histologic
correlations and clearance of cancer from the boosted and
non-boosted prostate areas will be of interest and will allow for
correlation with PET/MR images to validate PET+MRI as non-
invasive surrogates for identifying intra-prostatic cancer foci.
DISCUSSION/CONCLUSION

Advanced prostate imaging with mpMRI and novel PET agents
has the potential to improve prostate cancer management across
the disease spectrum (23). In the primary management of
prostate cancer, improved imaging guidance has allowed for
radiotherapy advances for prostate cancer, including prostate
SBRT and focal boost (3–6, 11). Ongoing trials are evaluating
SBRT with focal boost guided by mpMRI and PSMA-PET
(NCT04243941, NCT04402151, and NCT04599699) (21, 59).
The ARGOS/CLIMBER trial will explore the safety of SBRT with
focal boost guided by mpMRI and 18F-PSMA-1007 PET.

In addition, advanced imaging has improved the ability to
characterize patterns of disease recurrence and identify men with
isolated local recurrence who may be suitable for local salvage or
Frontiers in Oncology | www.frontiersin.org 8
oligometastatic recurrence who may be eligible for metastasis-
directed therapy (14, 45, 52, 60). To date, response to prostate
SBRT is mostly commonly evaluated using biochemical response
with the Phoenix Criteria for BF. The drawbacks of this approach
include lack of lesion identification, a high false-positive rate, and
delay in identifying treatment failure. An important knowledge
gap is the expected evolution of imaging changes post-SBRT and
whether patterns in these changes can serve as early biomarkers
of disease recurrence. Patients in ARGOS/CLIMBER will receive
dynamic 18F-PSMA-1007 PET and mpMRI prior to SBRT and at
6 and 24 months after SBRT. Imaging findings will be correlated
with PSA and biopsy results, with the goal of early, non-invasive,
and accurate identification of treatment failure.
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