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Guanidinoacetic acid is the direct precursor of creatine and its phosphorylated derivative

phosphocreatine in the body. It is a safe nutritional supplement that can be used

to promote muscle growth and development. Improving the growth performance of

livestock and poultry and meat quality is the eternal goal of the animal husbandry, and

it is also the common demand of today’s society and consumers. A large number

of experimental studies have shown that guanidinoacetic acid could improve the

growth performance of animals, promote muscle development and improve the health

of animals. However, the mechanism of how it affects muscle development needs

to be further elucidated. This article discusses the physical and chemical properties

of guanidinoacetic acid and its synthesis pathway, explores its mechanism of how

it promotes muscle development and growth, and also classifies and summarizes

the impact of its application in animal husbandry, providing a scientific basis for this

application. In addition, this article also proposes future directions for the development

of this substance.
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INTRODUCTION

The body composition of mammals includes skin, muscle, fat and bones, among which the
proportion of skeletal muscle is more than 40%, making it the largest organ in the body. In addition
to maintaining exercise capacity, body balance and respiratory function, skeletal muscle also acts
as an endocrine organ to secrete a variety of cytokines to mediate the interaction between cells and
perform diverse biological functions (1, 2).

The basic functional unit of skeletal muscle is myofiber, and its development is closely related
to the identification and differentiation of myoblasts (3). The amount of protein consisted in
myofibers is about 50–75% of the total amount of protein in the animal body. Under normal
physiological conditions, the protein synthesis and degradation rates of myofibers are in a
relatively balanced state. When the state is out of balance, the efficiency of protein synthesis
is higher than degradation, an overall outcome of increased muscle mass will be shown. No
matter humans or animals, there are many factors that may disturb the equilibrium of the state,
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including nutrition regulation, exogenous nutrient intervention,
and regular exercise. The method of exogenous nutrient
intervention has gradually grabbed increasingly attention in this
field (4).

It is well-known that guanidinoacetic acid (GAA) could be
used as a nutritional supplement to promotemuscle development
and increase the body’s energy reserves. Human dietary
supplementation with GAA helps to increase muscle strength
and endurance, and enhance athletic performance and release
fatigue (5). Currently, creatine (Cr) and its precursor GAA have
also been used in medical research for the treatment of muscle
atrophy and neurodegenerative diseases (6). Furthermore, with
the continuous improvement of people’s living standards, the
dietary structure has undergone significant changes, and the
demand for meat product shifted from being quantity-satisfying
to quality-ensuring. Therefore, improving the quality of meat
products is an important task of today’s animal husbandry (7, 8).
The addition of GAA in animal diets helps to delay the rate of
glycolysis on the basis of increasing muscle production so that
the meat quality could be improved (9, 10). However, at present,
the mechanism of GAA in promoting myofiber development and
growth has not been fully elucidated. This article reviews the
physical and chemical properties, mode of action, application
effects and prospective development of GAA. It is expected to
provide a theoretical basis for the application of GAA in human
health and animal husbandry production.

PROPERTIES OF GUANIDINOACETIC ACID

GAA is an immediate precursor substance of Cr and its
phosphorylated derivative (phosphocreatine, Cr-P) synthesized
in the body of animals (11). It was first isolated from the urine
of humans and dogs. Cr accepts pyrophosphate from adenosine
triphosphate (ATP) and reversibly form Cr-P. Cr and Cr-P form
a creatine pool together, which plays a key role in the process
of energy storage and utilization. As an energy transporter, Cr
has higher mobility than ATP (12, 13). About 70 years ago,
medical scientists managed to use GAA to treat humanmetabolic
disorders and improve the working ability of manual workers,
which directly proved that GAA has the effect in assisting the
treatment of certain diseases (14).

With the progress of research, the physico-chemical properties
of GAA have been analyzed in detail. Industrial GAA usually
appears as white or off-white crystalline powder without pungent
odor. The chemical formula is C3H7N3O2 (relative molecular
mass = 117.11 g/mol), and the structural formula is shown
in Figure 1. When the sample temperature reaches 190◦C, the
chemical structure of GAA undergoes thermal decomposition,
and the crystal melts as the temperature rises above 284◦C.
GAA has a high degree of stability in water, and the shelf life
can be as long as 2 years, which also makes GAA more widely
used than Cr (15).

The safety of GAA and Cr have been verified, and they have
entered the public eyes as health care products and are favored by
bodybuilders (16). Short or long-term intake of Cr will not harm
kidney function or increase the risk of getting kidney disease, but

FIGURE 1 | The structure formula of guanidinoacetic acid (GAA).

exogenous intake of Cr supplementation is not recommended to
somebody who has already been diagnosed with kidney disease
(17). Other studies have also shown that Cr supplementation can
weaken the excitatory of parasympathetic nerve of the heart, and
the autonomic dysfunction may arise in even severe cases (18).
However, in the process of livestock and poultry breeding, these
substances are used to improve animal-growth performance and
facilitate their muscle development and accumulation.

SYNTHESIS AND METABOLISM OF
GUANIDINOACETIC ACID

GAA is a precursor of Cr, an important compound in high-
energy phosphate bioenergetics. Its synthesis in the body
mainly occurs in the kidneys, it is also synthesized in
other tissues such as the pancreas, liver, and muscle (19).
The latest research hypothesized that the bacterial flora in
the healthy gut can accelerate the synthesis of GAA by
secreting enzyme guanidinoacetase (synthesis and hydrolysis
occur simultaneously, synthesis > hydrolysis). If this hypothesis
is verified, then there’s a valid connection between the synthesis
of GAA and microorganisms biological functions (20).

Generally speaking, the synthesis of GAA requires the
presence of glycine and L-arginine. Under the catalysis of L-
arginine:glycine amidinotransferase (AGAT), the two undergo
amidino transfer to produce L-ornithine and GAA. GAA travels
to the liver by the blood circulation through the portal vein,
which sets the basis for the further formation of Cr. The
source of GAA in the body comes from endogenous synthesis
and food supplementation (negligible, 10 mg/kg of meat),
while the consumption of GAA is caused by the synthesis
of Cr and excretion by urine. The aim is to keep the GAA
content stable at 2.6 ± 0.8 umol/L, which also constituted
a theoretical model of GAA homeostasis (21). In the next
step, GAA and S-adenosyl-methionine (SAM) catalyzed by
guanidinoacetate N-methyltransferase (GAMT), in which GAA
combined with a methyl group to generate Cr, and released S-
adenosyl-homocysteine (SAH) at meantime. This process mainly
occurred in the liver, but also in the skeletal muscle, spleen, brain
and genital organs (22). Finally, Cr is released into the blood
circulation and entered the cell through a specific transporter
SLC6A8 (a Na+/Cl− creatine co-transporter) located on the cell
membrane (23). Since Cr can regulate the expression of AGAT
through a counter-regulatory mechanism but cannot counter-
regulate the expression of GAMT, the synthesis order of GAA
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FIGURE 2 | Guanidinoacetic acid synthesis and metabolism. GAA, guanidinoacetic acid; Cr, creatine; Cr-P, phosphocreatine; SAM, S-adenosyl-methionine; SAH,

S-adenosyl-homocysteine; AGAT, L-arginine:glycine amidinotransferase; GAMT, guanidinoacetate N-methyltransferase; CK, creatine kinase; ATP, adenosine

triphosphate; ADP, adenosine diphosphate.

and Cr cannot be reversed (24). In cells, Cr and ATP undergo
a reversible reaction with the catalysis of creatine kinase (CK)
to generate Cr-P and adenosine diphosphate (ADP) for energy
storage (25). The body continues to metabolize Cr and Cr-p,
and about 1.7% of them are metabolized into the final product—
creatinine, which is transported from the blood to the kidneys
and is completely filtered by the glomerulus, and is excreted
in the urine. It is an important indicator of kidney function
testing and is also commonly used to diagnosis of certain
kidney diseases (26). The SAH produced during Cr production
can be reversibly hydrolyzed to homocysteine and adenosine.
Homocysteine is further decomposed into cysteine, which
undergo the methylation reaction with its own methyl donors
such as vitamin B. The methionine was formed by methylation,
and then participates in the synthesis of Cr again (19).

Figure 2 describes the synthesis and metabolism of GAA
in detail.

THE REGULATION OF GUANIDINOACETIC
ACID ON SKELETAL MUSCLE
DEVELOPMENT

Skeletal Muscle Classification and
Structure
Taking the difference in biological function and structural
composition as the classification basis, muscle tissue can be
divided into two types: striated muscle and smooth muscle
(27). Smooth muscle is mainly distributed in blood vessel walls,
respiratory tract, digestive tract and other internal organs. It is
an uncontrollable type of muscle regulated by autonomic nerves
(28). The striated muscle is composed of skeletal muscle and
myocardium. It is named because of the light and dark stripes
that can be observed under the microscope, and the striated
muscle are dually innervated by consciousness and the nervous
system (29).

Skeletal muscles are also divided into fast muscles and slow
muscles, and this classification is not limited to vertebrates. These

two types of skeletal muscles are also found in invertebrates
such as octopuses and crabs (30). Myofibers are cell units
that make up muscle tissues and gather into hundles, while
multiple muscle bundles gather to form muscles. In addition,
the composition of myofibrils includes thin actin filaments
and thick myosin filaments which are composed of specific
proteins (responsible for muscle contraction) and arranged
regularly in the sarcoplasm (3). Based on the metabolic
capacity and contractility of myofibers, it can be summarized as
aerobic metabolism myofibers (type I myofibers) and glycolytic
metabolism myofibers (type II myofibers, including IIa, IIb, IIx).
Type Imyofibers are rich inmyoglobin and cytochromes showing
a brighter red color but have a slow contraction speed, while
type II myofibers contract fast and appear white, among all types
of type II myofibers, the type IIb has the fastest contraction
speed (31).

Skeletal Muscle Development
A large number of studies have shown that the development
of skeletal muscle includes the following four processes: the
differentiation of amniotic mesoderm stem cells (32) to generate
myoblasts, the differentiation and fusion of myoblasts to generate
myotubes, the formation of myofibers, and the maturation of
myofibers (33). The number of myofibers in humans and animals
has been determined before birth, but the expansion of their
volume and the transformation of the types of myofiber depends
on acquired comprehensive factors (34). In the process of skeletal
muscle formation, the primary and secondary myotubes occur
at different developmental stages (35). Primary myotubes are
formed during the embryonic period and the number is closely
related to genetic factors. The secondary myotubes begin to
develop in the fetal period, and the nutritional regulation during
maternal pregnancy can significantly affect the development of
muscle fibers (36–38). In addition, since the secondary myotube
grows around the primary myotube, the larger the diameter of
the primary myotube, the more secondary myotubes can grow
around it (39). Some research have shown that the development
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of primary myotubes eventually generated slow-twitch fibers, but
the secondary myotubes generated fast-twitch fibers (40).

After the fetus is born, the myofibers gradually mature. At
this time, muscle growth only depends on the changes in the
volume of muscle fiber and the transformation between different
types of muscle fiber (41). The reason for the increase in muscle
fiber volume is related to the proliferation and differentiation of
muscle satellite cells, which are muscle-derived stem cells that
are normally in a resting state but have differentiation potential
(42). The reason for the increase in muscle fiber volume is related
to the proliferation and differentiation of muscle satellite cells,
which are muscle-derived stem cells that are normally in a resting
state but have differentiation potential (42). The muscle satellite
cells exist widely between the muscle cell membrane and the
matrix membrane, and have the biological function of promoting
myomuscle regeneration after being activated (43, 44). Moreover,
myofiber are a type of multinucleated cells (nuclei can reach
several hundred), and each nucleus only controls certain part
of the cytoplasm, referred to as myonucleus area (each cell
nucleus and controlled cytoplasm are called a DNAunit). Satellite
cells also have the ability to increase the number of myofiber
nuclei to maintain the balance of the ratio between nucleus and
cytoplasm (45).

Guanidinoacetic Acid Regulates Genes
Involved in Skeletal Muscle Development
In eukaryotes, differences in gene expression are the root cause
of differences between individuals, gene expression is controlled
at different stages of individual development and is affected
by many factors (46). There are many genes that regulate the
development of skeletal muscle, among which the myogenic
regulatory factors (MRFs) plays an important role in the growth
of skeletal muscle. It mainly includes four specific transcription
factors, myogenic determining factor (MyoD), myogenic factor-
5 (Myf5), myogenin (Myog), and muscle regulatory factor-4
(MRF4 or Myf6). The expression of MyoD andMyf5 contributed
to the directed differentiation of myogenic cells, while Myog and
MRF4 performed their functions in the differentiation process
of myoblasts. It shows that different genes are expressed in the
sequence of time during muscle development (47, 48). There are
few molecular studies of GAA on muscle growth. We can explain
the effect of GAA on muscle growth from its metabolite Cr.

CR supplementation can improve the expression of MRFs,
especially in young individuals, but this effect gradually decreases
with the increase of age (49). After treating C2C12 myoblasts
with Cr, it was found that although the degree of influences on
the expression of MyoD, Myf5, Myog, and MRF4 genes were
different, they were all positive (50). Moreover, some studies
have shown that Myf5, MyoD, or MRF4 inactivation can produce
viable mice, but the absence of Myog causes the mice to die after
birth (51).

Pax gene family is involved in all stages of muscle cell growth
and differentiation, mainly including Pax3 and Pax7 (52). Pax
gene family is involved in various stages of muscle cell growth
and differentiation, including Pax3 and Pax7. Themain functions

of Pax include regulating the behavior of myogenic progenitor
cells and the formation of skeletal muscle. Pax3 plays a dominant
role in the above processes. The lack of Pax3 has caused the early
embryonic development to be restricted, and impaired muscle
regeneration in the later period (53, 54). And Pax3 can directly
regulate the expression of MyoD and Myf5, and indirectly act in
the differentiation process of myogenic cells (55, 56). In contrast,
Pax7-missing led to slower muscle development, reduction of the
amount of muscle tissue, whereas there is no pathological change
in the structure (57).

Myostatin (MSTN) is an important member of transforming
growth factor superfamily, also known as growth differentiation
factor-8 (GDF-8), which is mainly manifested in the negative
regulation of muscle growth and strength increase (58). MSTN
can activate receptor function by binding to ALK4/5 and
ActR2A/B type receptors on the surface of muscle cells, and lead
to the function of promoting protein degradation and inhibiting
protein synthesis in muscle (59). Specifically, the mature MSTN
fragment first binds to type II receptor (mainly ActRIIB) and
starts the signal cascade in muscle cells, which makes ActRIIB
autophosphorylate and bind to type I receptor (ALK4 and ALK5)
with low affinity to enhance the transcription process of target
gene (60). In addition, MSTN can also inhibit the expression
of protein kinase B (AKT) and the transcriptional activity of
MyoD, and may lead to muscle atrophy and other diseases
(61). However, the missing of MSTN or gene homozygous
mutation result in abnormal accumulation of muscle mass and
proliferation of myofibers (62). In the research field of skeletal
muscle growth and development, MSTN is recognized as a
negative regulator with important physiological functions (63).
GAA and its metabolite Cr have the effect of down-regulating
the expression of MSTN and eliminating its inhibitory effect on
muscle growth (64).

Myocyte enhancer factor 2 (MEF2) gene family is another
gene family in the body that can directly regulate skeletal
muscle development in addition to the MRFs gene family. It
is composed of four genes (65), MEF2a, MEF2b, MEF2c, and
MEF2d, and is highly expressed in myoblasts. It functions mainly
by recognizing a conserved A/T-rich elements in genes (66).
MEF2c and Myog co-stimulate MyoD expression to activate
the differentiation process of myoblasts (67, 68). Exogenous
Cr supplementation helps the expression of MEF2 to improve
muscle growth (69).

In addition, some scholars have found that peroxisome
proliferator-activated receptor gamma coactivator 1α
(PGC-1α) can increase the accumulation of skeletal muscle
during exercise and regulate the transcription of some
target genes (70).

MicroRNA (miRNA) is a very conservative non-protein
coding RNA that can directly degrade target gene mRNA or
inhibit its translation. It plays a key role as a post-transcriptional
regulator in myogenesis (71). GAA induced the activation of
AKT/mTOR/S6K signaling pathway through miR-133a-3p and
miR-1a-3p to promote myoblast differentiation (72).

Figure 3 describes the pathways regulated by GAA/Cr during
their skeletal muscle development and growth.
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FIGURE 3 | Mechanisms of GAA/Cr promoting skeletal muscle development and growth. GAA, guanidinoacetic acid; Cr, creatine; MEF2, myocyte enhancer factor 2

(includes MEF2a, MEF2b, MEF2c and MEF2d); MRFs, myogenic regulatory factors (includes MyoD, Myog, Myf5, MRF4); MSTN, Myostatin; PAX, Pax gene family

(includes Pax3 and Pax7); miRNA, MicroRNA (includes miR-133a-3p and miR-1a-3p); AKT, protein kinase B; mTOR, mammalian target of rapamycin; S6K, S6 kinase.

APPLICATION OF GUANIDINOACETIC
ACID IN ANIMAL MODELS

Since researchers recognized the importance of Cr for muscle
development, many studies have been carried out to evaluate
the effects of different amino acids and other substances on
endogenous Cr metabolism. Researches added 1 g of GAA to
the diet of the young rats in 1930s, and they found that the
Cr level was increased by nearly 50% which reached the peak
after 17–24 h. This effect was even higher than adding the
equivalent amount of Cr (73). Vivo experiments proved that
when the mouse body lacks Cr, GAA can provide energy for
the body under the catalysis of CK. It also shows that CK
can use GAA and go through the phosphorylation pathway
to fight against energy damage (24, 74). And the main reason
why Cr contributes to the synthesis of muscle tissue protein,
improves muscle energy reserves and muscle strength is that
it’s synthesized with the precursor substance GAA. As a
supplement to the aforementioned regulation of genes related
to skeletal muscle development, GAA and Cr also functions by
promoting the secretion of insulin-like growth factor-1 (IGF-
1) and growth hormone (GH) in the body (both IGF-1 and
GH are anabolic hormones that can increase muscle growth)
(64). Vitro experiments have shown that GAA can promote the
expression of MyoD and MyoG mRNA and increase the fusion
rate of myotubes in C2C12 myoblasts. It can also affect the
level of total myosin heavy chain (MyHC) protein to increase
myotube thickness and gastrocnemius cross-section area (72).
Another in vitro experiment demonstrated that Cr can activate
the differentiation process of C2C12 myoblasts by activating the

P38 and Akt/PKB cell pathways, which is manifested by the
expression of myosin heavy chain type II, the increase in the
number of nuclei in the myotube, and promote the occurrence
of the cell fusion process (75).

Returning to the perspective of animal husbandry and
nutrition. With the development of the global economy and the
continuous improvement of consumption levels, human being
to pay more and more attention to the nutritional balance of
daily diet (76). Due to the demand for high-quality protein,
the demand for high-quality meat is also increasing. Therefore,
enhancing the amount and speed of muscle accumulation
in livestock and poultry is the most crucial section in the
development of animal husbandry (77).

In addition to affecting the growth of muscles, the content
of Cr in the animal body can also maintain the steady state of
ATP and buffer the accumulation of lactic acid in the muscles
(78), and improve meat quality. The methods for animals to
obtain Cr can be categorized as endogenous and exogenous. The
endogenous method mainly generates GAA through arginine
and glycine, and then synthesizes Cr with methionine in the liver,
but this does not meet the animals’ needs (79). Exogenous Cr
sources mainly include animal protein raw materials (meat and
bone meal) and fish protein raw materials (fish meal) (80), while
plant raw materials lack Cr or its precursor. Combined with the
analysis of animal feed composition and nutritional level, it can
be found that animals cannot get enough Cr. So they can only
synthesize Cr at the cost of consuming endogenous amino acids,
resulting in the loss of amino acids (81). Especially taking the
application of methionine in poultry production as an example,
methionine is the first limiting amino acid of poultry and is
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TABLE 1 | The results of using GAA or Cr in livestock production.

Experiment material Compound Observed effects References

Duroc × Landrace × Yorkshire pigs GAA ADG↑, ADFI↑, lean meat percentage↑, back fat thickness↓, MYH4↑,

MyoD↑, Myf5↑, MSTN↓.

(87)

Yucatan miniature pigs GAA or Cr Liver: both can cause the Cr concentration↑. Muscle tissue: GAA can cause

the Cr concentration↑.

(82)

Duroc × Landrace × Yorkshire pigs GAA Muscle tissue: Cr↑, ATP↑, carcass weight and lean meat percentage↑. (88)

Finishing pigs GAA or CMH Both can cause the Cr↑, Cr-p↑, creatine transporter mRNA↑, myofibrillar

protein solubility↑.

(89)

Duroc × Landrace × Large White

male pigs

GAA or GAA+betaine Meat quality↑, Cr↑, Cr-P↑, ATP↑, CK↑, creatine transporter mRNA↑. (90)

Finishing pigs CMH Drip loss↓, meat color L*↑. (91)

Male Ross 708 chicks GAA Serum Cr↑, muscle Cr-P↑, glycogen↑, growth performance↑, muscle

energy stores↑.

(92)

Male Ross 308 chicks GAA Weight gain↑, FCR↑, Heart and breast muscle ATP/AMP ratio↑. (93)

Broiler GAA Live weight↑, breast meat percentage↑, meat quality↑. (94)

Arbor Acres broiler CrPyr Live weight↑, breast meat weigh↑t, Cr↑, Cr-P↑, CK↑. (95)

Balady chicks CMH or CMH+Znic Live weight, weekly bodyweight gain, feed efficiency, carcass weight.

CMH+Znic are better than CMH.

(96)

Mulard ducks GAA or GAA+Met Weight gain↑, IGF-1↑, GH↑, Myog↑, MSTN↓, GAA+Met better than GAA

only.

(97)

ADG, the average daily gain; ADFI, the average daily feed intake; FCR, feed conversion ratio; GAA, guanidinoacetic acid; Cr, creatine; Cr-P, phosphocreatine; CMH, creatine monohydrate;

CrPyr, creatine pyruvate; Met, methionine; ATP, adenosine triphosphate; CK, creatine kinase; IGF-1, insulin-like growth factor-1; GH, growth hormone; MYH4, myosin heavy chain gene;

MyoD, myogenic determining factor; Myog, myogenin; MSTN, Myostatin. ↑up-regulation, ↓down-regulation, L*, lightness.

very beneficial to the growth of muscles and feathers, and the
consumption of methionine in the process of Cr synthesis has
resulted in increased demand for methionine in poultry (82).
Moreover, for young animals, arginine is an essential amino
acid with growth promoting effect. Lack of arginine may easily
cause the slow growth of chicks, while adding GAA to arginine-
deficient diets can significantly improve the growth performance
of chicks. It is suggested that GAA can be a good substitute for
dietary arginine (83).

Using Cr as feed additive directly has problems of poor
stability, high cost and low animal bioavailability. The use of GAA
will solve these problems (84). In addition, animals have a very
high utilization efficiency of exogenous GAA. After experiments
with colon-fistulated broilers, it was found that the digestibility-
rate of GAA reached 99% (85). GAA and its metabolite Cr
not only improve animal growth performance and promote
muscle growth, but also affect meat quality (10). It shows that
the drip loss of meat is reduced, the yellowness is increased,
and the activity of the free radical metabolism related enzymes
and the antioxidant enzymes (reducing lipid peroxidation) are
improved (86).

Table 1 summarizes the results of using GAA or Cr in
livestock production.

Apart from synthesizing Cr to promote protein deposition
and muscle growth in the body, the apply of GAA also has the
effect of promoting insulin secretion to control blood glucose
(98). Insulin is the only hormone in the body that plays a role
in lowering blood glucose, and it is also the only hormone
that contributes to glycogen, protein and fat synthesis. It links
the regulatory effect of GAA intake on insulin with muscle

growth (99, 100). The safety of GAA as a dietary supplement
was evaluated in the initial human studies, and subsequent
clinical trials have also proved that GAA is a non-toxic and
highly tolerable substance. Dietary GAA supplementation in
humans leads to an increase in serum creatinine levels without
impairment of renal function (15). Some studies also shown
that a small number of samples that take GAA will have an
enhancement of serum homocysteine. This might be a potential
adverse effect, since hyperhomocysteinemia is considered as an
independent risk factor for cardiovascular and atherosclerotic
diseases (101). Exogenous intake of GAA mainly exhibits
antioxidant effects at low doses, while pro-oxidative effects and
even oxidative stress appear at high doses (102). GAA is a kind
of pro-oxidant (103), but its metabolites such as Cr and arginine
all express anti-oxidant effects, so GAA is also regarded as an
indirect antioxidant (104). However, the relationship between the
level of GAA intake and the pro-oxidant-antioxidant properties
needs to be further elucidated.

PERSPECTIVES

A large number of animal experiments and human clinical
applications have proved that GAA has good effects in
improving muscle development and growth. Especially in animal
husbandry, it has been widely used, and has the advantages
of low cost relative to Cr and arginine, and better growth
promoting effect. However, the research on GAA are not very
in-depth, directions such as its mechanism of promoting muscle
development, the determination of the effective dosage in animal
production, and whether GAA has toxic effects or not have
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not been fully studied. Therefore, more detailed research work
are needed.
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