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Magnetic resonance imaging (MRI) is an essential clinical imaging modality for diagnosis

and medical research, while various artifacts occur during the acquisition of MRI

image, resulting in severe degradation of the perceptual quality and diagnostic efficacy.

To tackle such challenges, this study deals with one of the most frequent artifact

sources, namely the wrap-around artifact. In particular, given that the MRI data are

limited and difficult to access, we first propose a method to simulate the wrap-around

artifact on the artifact-free MRI image to increase the quantity of MRI data. Then,

an image restoration technique, based on the deep neural networks, is proposed for

wrap-around artifact reduction and overall perceptual quality improvement. This study

presents a comprehensive analysis regarding both the occurrence of and reduction in

the wrap-around artifact, with the aim of facilitating the detection and mitigation of MRI

artifacts in clinical situations.

Keywords: magnetic resonance imaging (MRI), wrap-around artifact, deep learning, image quality (IQ), image
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1. INTRODUCTION

Magnetic resonance imaging (MRI) has become one of the most essential means in disease
diagnostics and management. It deepens our understanding of the pathology involved in the
development and progression of the disease. An MRI image is generally constructed using the
Fourier transform (FT) method. The MRI signal is obtained by the interaction between the
hydrogen atoms and the external electromagnetic fields. This signal is then encoded into the phase
information and frequency information that are subsequently utilized to construct the spatial
frequency map, also known as the K-space. The inverse Fourier transform (iFT) can be used to
reconstruct the K-space data into the human-interpretable image (Gallagher et al., 2008). Although
the MRI technique possesses numerous merits in clinical trials, such as radiation-free and high-
contrast imaging, artifacts occur throughout the entire image acquisition process, from the MRI
signal generation to the image display, which can significantly deteriorate the perceptual quality
of the MRI image and subsequently affect the reliability of diagnosis (Bellon et al., 1986; Liu
et al., 2018, 2019, 2020b; Zhai et al., 2020). Thus, it is crucial to effectively detect and eliminate
artifacts of MRI image. This study hereby deals with one of the most common artifacts of MRI,
namely the wrap-around artifact (also known as the aliasing artifact). We propose a novel artifact
reduction framework to reduce the wrap-around artifact of the MRI image while improving the
image perceptual quality.

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.746549
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.746549&domain=pdf&date_stamp=2021-10-21
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liuyutao2008@gmail.com
https://doi.org/10.3389/fncom.2021.746549
https://www.frontiersin.org/articles/10.3389/fncom.2021.746549/full


Hu et al. MRI Restoration

Wrap-around artifact occurs when the scanned area of the
human body exceeds the predefined field of view (FOV). These
areas outside the FOV cannot be properly encoded relative to
their actual position and are wrapped back into the opposite side
of the image, resulting in the wrapped information reappearing
on the other side of the image and subsequently cannot be
distinguished from the objects inside the FOV. The wrap-around
artifact can be further classified into frequency-related and phase-
related. During the imaging process, there are a number of
classical ways to mitigate the wrap-around artifact (Chen et al.,
2013). The frequency-related artifact can be mitigated by the
oversampling scheme that increases the density of the K-space
frequency data and thus increases the FOV. As for the wrap-
around in the phase-encode direction, we can swap phase and
frequency directions such that the phase direction is oriented
in the smallest direction. This method is straightforward while
maintains the same spatial resolution. However, it may induce
other artifacts to the MRI image, i.e., chemical shift artifact.
Another method for reducing the phase-related artifact is to
double the FOV in the phase direction, yet it may lower the
spatial resolution. These remedies are only operational during
the process of MR imaging. However, radiologists generally face
post-operated (reconstructed) MRI image without knowing the
occurrence of the artifact in the imaging processing. Eliminating
the wrap-around artifact from the post-operated MRI image has
remained a major deterrent to clinical adoption.

Numerous efforts for MRI artifacts reduction have been made
in the last decades. Yang et al. (2001) proposed a maximum
likelihood-based method to remove the ringing artifact, in
which the prior knowledge of MRI, i.e., the sampled low-
frequency data points, was adopted to deduce the high-frequency
data in the K-space. This method aims to increase the high-
frequency information and thus alleviate the artifact. Lee (1998)
designed a Bayesian framework with the regularization scheme to
reduce the MRI artifacts. This framework deduces the posterior
probability of the output image by the likelihood of sampled
spatial information and the local spatial structure of the input
image. Yatchenko et al. (2013) mitigated the ringing artifact
by computing the average edge-normal and edge tangential
derivatives in the edge area of the image. In Guo and Huang
(2009), a k-means-based method was proposed to remove the
MRI artifact. The maximum likelihood method was at first
employed to detect the artifact of the image. Then, the detected
structures were fitted to a k-means model to map the neighboring
pixel values and the estimation region. Sebastiani and Barone
(1995) proposed to use the Markov random field to model
the errors arisen in the truncation and characteristics of the
Fourier series. The modeled errors can be utilized to implement
artifact removal.

In addition to these model-based approaches, recent years
have seen the prosperity of the deep learning-based techniques
for the MRI artifact reduction. Lee et al. (2017) proposed a multi-
scale deep neural network to remove the wrap-around artifact.
This neural network estimates the area of a wrap-around artifact
based on the distorted magnitude and the phase information
of the input image. The removal of wrap-around artifact can
be achieved by subtracting the estimated artifact area from the

input image. Yang et al. (2017) proposed a de-aliasing strategy
based on the conditional generative adversarial networks. The
adversarial loss of thismodel incorporates three typical losses, i.e.,
the pixel-wise loss, frequency information loss, and perceptual
loss, in order to better learn the texture and edge information,
thereby improving the quality of the MRI image reconstructed
from undersampled k-space data. The work in Hyun et al. (2018)
presented a deep learning-based sample strategy to reconstruct
the MR image from the undersampled k-space data while
enhancing the image quality. This strategy adopts the uniform
sampling method to obtain phase information of the image so
that the details of the corrupted area of the image are preserved
after Fourier transform. Consequently, the deep learning model
can effectively learn the features of the wrap-around artifact.

Although the abovementioned model and learning-based
methods have shown great potential in reducing the MRI
artifacts, their capability for clinical practice is restricted. The
reason is fourfold. First, many methods, i.e., Yang et al. (2001)
and Guo andHuang (2009), directly manipulate the k-space data,
which could inadvertently remove the non-artifact information,
such as the anatomical or pathological details. Second, some
deep learning methods, i.e., Yang et al. (2017), are based on the
generative adversarial network (GAN), where the MRI image
is synthesized from the given samples. This strategy is not
very reliable since the synthesized MRI data may contain fake
information, which can complicate the pathologic diagnosis.
Third, in the context of Bayesian framework, such as Lee (1998)
and Sebastiani and Barone (1995), reconstructing the MRI image
from the undersampled k-space data is practically an ill-posed
problem, and the rate of convergence of these methods remains
questionable. Finally, one of the main limitations of the learning-
based method is the scarcity of MRI data. Nevertheless, given
the sensitivity and confidentiality of clinical data, it is rather
difficult to obtain adequate MRI data, which severely restricts the
development of learning-based methods.

We herein propose a novel wrap-around artifact reduction
framework to address the aforementioned issues. The proposed
framework comprises two stages, namely, artifact simulation and
image enhancement. For the artifact simulation, we design an
artifact occurrence mechanism to simulate the characteristics
of the wrap-around artifact. Two parameters are designed to
describe the characteristics of the wrap-around artifact. The first
parameter determines the size of the wrapped area indicating
how much area of the MRI image is corrupted by the artifact.
The second parameter describes the intensity of the wrapped
area, which is closely related to the distortion level of the
MRI image. A large intensity may completely contaminate the
wrapped area, of the MRI image, resulting in the difficulty of
artifact removal. These two parameters work jointly to simulate
the wrap-around artifact.

For the image enhancement, we propose a deep neural
network (DNN) to remove the wrap-around artifact while
improving the overall perceptual quality of the MRI image (Min
et al., 2020a,b). The proposed DNN is based on the U-net
network owing to its powerful performance in medical image
processing. The DNN composes of two phases, i.e., artifact
estimation and deep elimination. In the artifact estimation,
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a U-net-based network is trained by pairing artifacted MRI
images with the corresponding artifact patterns. This enables the
network to accurately estimate the wrapped area of the artifacted
MRI image, which can be subsequently utilized to assist the
network training at the second phase of deep elimination. As
for the deep elimination, an end-to-end U-net based network
is built, in which the inputs are the artifacted MRI images and
the outputs are the artifact-free MRI images. In this phase, the
loss function is dedicatedly designed based on the binary cross
entropy (BCE) loss and the mean squared error (MSE) loss
in order to maximize the performance of artifact elimination.
These two phases work cooperatively to remove the wrap-
around artifact while improving the image quality. Experiments,
in terms of quantitative metrics and qualitative visualizations,
demonstrate the high potential of the proposed method in the
reduction of the wrap-around artifact.

The rest of this study is organized as follows. Section 2 details
the proposed framework. Section 3 presents the experiments and
detailed analysis regarding the wrap-around artifact removal.
Finally, we conclude the work of this study in section 4.

2. METHODOLOGY

In section 2, we first propose a technique to simulate the wrap-
around artifact on the MRI image. Then, a dataset is formed
by pairing the artifact-free MRI image with the artifacted MRI
image obtained from the proposed simulation technique. At last,
the dataset is employed to train a deep learning network to
implement the removal of the wrap-around artifact.

2.1. Artifact Simulation
For the MRI image with the wrap-around artifact, two factors
affect the perceptual quality of the image, including the size and
intensity of the wrapped area. Therefore, we generate the wrap-
around artifact based on these two factors. Given an artifact-
free MRI image I ∈ R

M×N , we produce the artifact layer Î by
horizontally shifting the pixels in I as

Î(m̂, n̂) =

{

0, d + n̂ ≤ N
I(m̂, d + n̂− N) · r, otherwise

(1)

where Î(m̂, n̂) indicates the pixel of Î located at (m̂, n̂), d ∈ [1,N]
is the shift distance of Imeaning that I is shifted horizontally by d
columns, and r > 0 determines the intensity of the artifact layer.
This study only considers the horizontal shift, implying that the
wrap-around artifact only appears on either the right side or the
left side of the image. However, it is straightforward to apply the
proposed method to the situation of vertical shift.

After obtaining the artifact layer, the wrap-around artifact can
be produced by directly adding the image and the artifact layer
together. However, doing so will change the image contrast as the
pixel value of the wrapped area is increased after the summation.
Such a change will increase the difference between the light and
dark areas of the image leading to that light areas become lighter
and dark areas become darker. Consequently, the simulated
artifact is inconsistent with the clinical practice. Herein, we

propose a technique to circumvent these problems. Let F and F̂

be the binary patterns of I and Î, respectively, satisfying

F(m, n) =

{

1, I(m, n) > 0

0, otherwise
; F̂(m, n) =

{

1, Î(m, n) > 0

0, otherwise
.

We first overlay the image I with the artifact layer Î as

Ir = (I + Î)⊙ F, (2)

where ⊙ indicates the element-wise multiplication. The
summation of I and Î will lead to the artifact appearing on the
blank area of the image. This kind of artifact information does
not corrupt the image, and can be easily eliminated by applying
the binary pattern of I. Therefore, this study is only interested
in the artifacts that contaminate the image information of I. We
apply F in Equation (2) to remove the artifact on the blank area
of the image.

Then, the wrapped area of the image can be calculated by
V = (F + F̂) ⊙ F. The elements in V involves three different
values, such as 0, 1, and 2. The pixels in the wrapped area are
marked as 2. Therefore, we can obtain the location and size of
the wrapped area by counting the number of elements of 2 in
V . Following this, we calculate the brightness ratio between the
non-wrapped area and the wrapped area in the original artifact-
free image. When artifacts are generated, we maintain the same
ratio to avoid the problem of uneven brightness. Let I1 and I2
be the summation of the brightness in the unwrapped-area and
wrapped-area of the image, written by

I1 =
∑

I(m, n), for V(m, n) = 1

I2 =
∑

I(m, n), for V(m, n) = 2.
(3)

The final wrapped-around artifact is generated as

Is(m, n) =

{

Ir(m, n) · I2
I1
, V(m, n) = 2

Ir(m, n), otherwise.
(4)

The complete process of the wrap-around artifact simulation
is presented in Figure 1A. The proposed simulation technique
allows us to overcome the problem of data shortage. Hence,
we can produce adequate artifact resources to facilitate the
development of the artifact reduction technique. Toward this
end, a deep learning-based method for the reduction of the
wrap-around artifact is proposed.

2.2. Problem Formulation
In general, the observed image Y can be represented using a
discrete linear model, written by

WIs + ǫ = Y ≈ I, (5)

where Is and I are the artifacted and artifact-free images,
respectively. W is a linear operator representing various
operations against the image quality, i.e., the convolution
operation in the K-space for image deblurring or the non-local
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FIGURE 1 | The proposed wrap-around artifact reduction framework. (A) The process of the wrap-around artifact simulation. (B) The architecture of the DUARN

method.

means filtering for image denoising. ǫ is a bias term. Our purpose
is to solve W in Equation (2), which is an ill-posed inverse
problem that the solution of W is generally underdetermined.
The priori knowledge of Is, is therefore, required in order to
constrain the solution space of W. In other words, we hope to
findW such that

L =
1

2
||I − Y||22 + λR(Is) (6)

reaches minimum, where 1
2 ||I − Y||22 is known as data term.

The regularization term λR(Is) with the regularization parameter
λ is utilized to alleviate the problem of ill-posedness and R(Is)
generally involves lq-norms. Equation (6) can be solved by

learning-based method, such as the gradient descent method,
to iteratively minimize the difference between I and Y to the
local minimum.

2.3. Learning-Based Artifact Reduction
A deep learning-based method is herein proposed to solve
Equation (6). The proposed method is constructed by two U-
net networks; thus, we name it as Dual U-net Artifact Reduction
Network (DUARN). The two U-nets correspond to two phases
of DUARN, namely, artifact estimation and deep elimination.
In the first phase, we train a U-net by pairing the artifacted
MRI images with the binary artifact pattern aiming at accurately
predicting the artifact area from the input artifacted image. The
BCE loss is adopted in the network training owing to its powerful
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performance of binary image prediction. In the second phase, we
rewrite Equation (6) as

L = aLMSE ⊙ P1 + bLBCE (7)

where P1 is a binary pattern of the artifacted image obtained
from the first phase of DUARN. When the pixel of P1 is in
the area of artifact, it is equal to 1 otherwise equal to 0. We
use P1 to maximize the learning efficiency of the second deep
neural network. Since this study only deals with the wrap-
around artifact, we assume that there is no other artifact existing
outside the wrapped area of the image. Hence, when the network
learns from the loss function, we set a relatively small weight
for those losses outside the wrap-around artifact area, thereby
improving the efficiency and accuracy of the network. LMSE =

1

N

N
∑

i=1

(Ii−Y i)
2 indicates the pixel-wise image domain MSE loss,

where Ii and Y are the i−th pixel value of I and Y . LBCE =

−
1

N

N
∑

i=1

Y i log(p(Y i)) + (1 − Y i) ∗ log(1 − p(Y i)) refers to the

BCE loss that minimizes the average probability error between
the target and predicted images for each pixel. Herein, we adopt
the BCE loss to penalize the misalignment of boundaries. a and b
are small positive real numbers, satisfying a+b = 1. Empirically,
we set a = 0.75 and b = 0.25.

The architecture of DUARN is illustrated in Figure 1B. The
DUARN contains two U-nets, each of which involves four scales,
such as 64, 128, 256, and 512. In the input layer, 64 filters with
kernel size of 3×3 and ReLU as an activation function are applied.
Following the input layers, there are four convolution layers
(encoder) and four transposed convolution layers (decoder)
with each followed by batch normalization and ReLU layers.
The skip connection between the 2 × 2 strided convolution
(downscaling) and 2 × 2 transposed convolution (upscaling)
are employed in order to supplement the reconstruction details
with different level of features. Finally, a 1 × 1 convolution
layer is used to predict a single channel image as the output of
the network.

3. EXPERIMENTS AND ANALYSIS

In this section, we evaluate the proposed DUARN method with
respect to its quantitative and qualitative performance. First,
we enlist the help of radiologist to select 140 artifact-free and
high perceptual quality MRI images (T1-weighted). The invited
radiologist who has over 5 years of clinical experience in the
brain radiology. Following the MRI data acquisition, we simulate
the wrap-around artifact on the 140 artifact-free MRI images
using the method proposed in section 2.1. We generate five
different degrees of the wrap-around artifacts corresponding to
five distortion levels of the image, in which the distortion level of
1, 2, 3, 4, and 5 indicate minor artifact, mild artifact, moderate
artifact, severe artifact, and non-diagnostic as suggested by Liu
et al. (2017, 2020a) and Liu and Li (2020). The simulation
process of the artifact is carried out under the guidance of the
radiologist who visually assesses the quality of each simulated

image and recommends the parameter values of d and r in
Equation (1) to ensure the generated image matches the desired
distortion level. Examples of the simulated MRI images are
presented in Figure 2 with the distortion level ranging from
1 to 5. The ground truth image is also provided on the left
of Figure 2. It is observed that the wrap-around artifact on
the minor artifacted MRI image is insignificant in terms of
the area size and the intensity of the artifact. Images of such
a quality may still be useful if the diagnostic area of interest
is outside the artifact. Correspondingly, the MRI images with
severe and non-diagnostic artifact can hardly be useful under any
clinical situations.

We then produce the dataset of artifacted MRI images for
training the proposed DUARN method. Since we have 140
artifact-free images, the produced dataset yields to a total number
of 700 artifacted images. The dataset is split into two non-
overlapped parts, i.e., training data and testing data with the
standard ratio of 80/20%. We train the DUARN on the training
data and test it on the testing data. We at first train the first U-net
of DUARN, where the Adam optimizer is adopted with the initial
learning rate of 0.0001, batch size of 2, and momentum of 0.8.
When the training process is complete, we train the second U-net
using the artifacted MRI image and the output of the first U-net
as its inputs. The Adam optimizer is also applied to the second
U-net with the initial learning rate of 0.00001, batch size of 1, and
momentum of 0.9. The early stopping scheme is employed in the
training process of both U-nets for the prevention of overfitting.
In addition, the conventional data augmentation techniques,
such as image flipping, rotating, and brightness adjustment, are
adopted to boost the network performance.

In order to vividly demonstrate the performance of the
proposed method, we compare it quantitatively and qualitatively
with the state-of-the-art artifact reduction method in Tamada
et al. (2020). Tamada et al. (2020) proposed an artifact
reduction method, namely motion artifact reduction based on
convolutional neural network (MARC) method, to remove the
motion ghost from the MRI images. In the MARC method, a
convolutional neural network (CNN)-based network was trained
to extract the artifact components from the artifacted images.
The artifacts can be, therefore, removed by subtracting the
extracted artifact component from the input image. The targeted
artifact in Tamada et al. (2020) is similar to the wrap-around
artifact since both of them belong to the aliasing of the image.
We adapt the MARC method to implement the wrap-around
artifact reduction and present the results of the MARC method
and DUARN method in Figure 3. As can be observed, both
methods are capable of eliminating the wrap-around artifact to
a certain extent while the qualitative performance of the DUARN
method is notably better than the MARC method, especially
for those high distortion level image, i.e., 2nd and 5th images.
In addition, we noticed that although the MARC method can
alleviate the wrap-around artifacts, noise may be introduced
into the images, resulting in further degradation of image
quality. This is inconsistent with our purpose of obtaining high-
quality artifact-free MRI image. On the contrary, the DUARN
method can maintain the high perceptual quality after the
artifact removal.
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FIGURE 2 | MRI images with different degrees of wrap-around artifact. From the left to right is the ground truth image, minor artifact, mild artifact, moderate artifact,

severe artifact, and non-diagnostic.

FIGURE 3 | Qualitative visualizations. (A) Artifacted MRI images involving mild, moderate, severe, and non-diagnostic wrap-around artifacts. (B) Reconstructed MRI

images from the DUARN method. (C) Reconstructed MRI images from the MARC method. (D) Ground truth images.

TABLE 1 | The SSIM and PSNR from DUARN and MARC methods.

Minor artifact Mild artifact Moderate artifact Severe artifact Non-diagnostic Overall

SSIM

MARC 0.9033 0.8949 0.9006 0.8766 0.8739 0.8899

DUARN1 0.9221 0.9292 0.9339 0.9384 0.9401 0.9327

DUARN2 0.8941 0.8901 0.8867 0.9012 0.8993 0.8943

DUARN 0.9536 0.95577 0.9594 0.9654 0.9684 0.9605

PSNR

MARC 22.2786 20.7544 21.0742 17.6049 15.9149 19.5254

DUARN1 23.4502 23.6031 23.0125 24.5327 26.0182 24.1233

DUARN2 20.1963 19.7167 19.5369 22.3562 22.6943 20.9001

DUARN 24.3683 24.1942 24.0889 25.7176 27.6271 25.1992

DUARN1 and DUARN2 indicate the DUARN method with the MSE loss and the BCE loss, respectively. Overall indicates the average values of SSIM and PSNR for all the 140 testing

images. The highest performance values on each evaluation index are highlighted with boldface.

Finally, we evaluate the quantitative performance of the
DUARN method by quantifying the quality of the reconstructed
MRI image. Numerous image quality metrics have been proposed

in the last decades each with their respective merits (Zhang
et al., 2011; Mittal et al., 2012; Min et al., 2017, 2019, 2020c).
In this study, we adopt two widely used metrics to measure
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the MRI image quality, including the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM)
(Wang et al., 2004). Table 1 tabulates the PSNR and SSIM from
the DUARN and MRAC methods. The testing data contain
140 images with 28 images for each artifact type. We calculate
the average PSNR and SSIM for each artifact type, and the
overall in Table 1 refers to the average PSNR and SSIM for
all the 140 testing images. As can be observed, the DUARN
model achieves superior performance in the evaluation of
all types of artifacts. More importantly, when the degree of
image distortion increases, the performance of MARC method
shows a clear downward trend. Comparatively, the DUARN
method can still maintain a robust performance and even has
a slight upward trend. This implies that the capability of the
DUARN method will not be affected by the distortion level
of the image. Such a feature is essential because clinical trials
often face artifacted MRI images with various distortion levels,
which may exceed the scope of the test samples. An artifact
removal technique with stable performance can exert promising
application value in practice. The DUARN method can be
also combined with other image enhancement techniques, such
as contrast stretching and histogram equalization, to further
improve the perceptual quality of the reconstructed MRI image.
This can be considered in the future work. In addition, since
the DUARN method combines two losses of the BCE loss and
the MSE loss in the network training, we are interested in the
individual contribution of each loss in the performance of the
proposed method. Toward this end, we introduce each loss
to the network training of the DUARN method and quantify
the performance of each loss by the PSNR and SSIM. The
experimental results are presented in Table 1, where DUARN1
and DUARN2 indicate the DUARN method with the MSE loss
and the BCE loss, respectively. As observed, the MSE loss brings
more contributions in the DUARNmethod, and the combination
of these two losses earns the best performance, which evidences
that the BCE loss and the MSE loss play complementary roles in
the DUARN method.

4. CONCLUSION

This study deals with the wrap-around artifact of the MRI
image, wherein two contributions are made. We first propose
a simulation technique to generate the wrap-around artifact
on the MRI image. The design of the proposed method is
based on the image quality assessment scheme and with the
assistance of an experienced radiologist, which allows the
simulated artifact resources to match clinical situations. Then,
we propose a novel artifact reduction technique, based on the
deep neural network, to implement the elimination of the wrap-
around artifact. This technique composes two U-net networks
corresponding to two phases, such as artifact estimation and
deep elimination. Dedicated losses are designed in order to
maximize the effectiveness of artifact removal while improving
the perceptual quality of the reconstructed MRI image. Extensive
experiments are carried out to evaluate the quantitative and
qualitative performance of the proposed method, with the results
demonstrating the superiority of the proposed method against
the state-of-the-art method.
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