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Summary
Background In order to address the low compliance and dissatisfied specificity of low-dose computed tomography
(LDCT), efficient and non-invasive approaches are needed to complement its limitations for lung cancer screening
and management. The ASCEND-LUNG study is a prospective two-stage case–control study designed to evaluate
the performance of a liquid biopsy-based comprehensive lung cancer screening and post-screening pulmonary
nodules management system.

Methods We aimed to develop a comprehensive lung cancer system called Peking University Lung Cancer Screening
and Management System (PKU-LCSMS) which comprises a lung cancer screening model to identify specific pop-
ulations requiring LDCT and an artificial intelligence-aided (AI-aided) pulmonary nodules diagnostic model to classify
pulmonary nodules following LDCT. A dataset of 465 participants (216 cancer, 47 benign, 202 non-cancer control)
were used for the two models’ development phase. For the lung cancer screening model development, cancer
participants were randomly split at a ratio of 1:1 into the train and validation cohorts, and then non-cancer
controls were age-matched to the cancer cases in a 1:1 ratio. Similarly, for the AI-aided pulmonary nodules model,
cancer and benign participants were also randomly divided at a ratio of 2:1 into the train and validation cohorts.
Subsequently, during the model validation phase, sensitivity and specificity were validated using an independent
validation cohort consisting of 291 participants (140 cancer, 25 benign, 126 non-cancer control). Prospectively
collected blood samples were analyzed for multi-omics including cell-free DNA (cfDNA) methylation, mutation,
and serum protein. Computerized tomography (CT) images data was also obtained. Paired tissue samples were
additionally analyzed for DNA methylation, DNA mutation, and messenger RNA (mRNA) expression to further
explore the potential biological mechanisms. This study is registered with ClinicalTrials.gov, NCT04817046.

Findings Baseline blood samples were evaluated for the whole screening and diagnostic process. The cfDNA
methylation-based lung cancer screening model exhibited the highest area under the curve (AUC) of 0.910 (95% CI,
0.869–0.950), followed by the protein model (0.891 [95% CI, 0.845–0.938]) and lastly the mutation model (0.577 [95%
CI, 0.482–0.672]). Further, the final screening model, which incorporated cfDNA methylation and protein features,
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achieved an AUC of 0.963 (95% CI, 0.942–0.984). In the independent validation cohort, the multi-omics screening
model showed a sensitivity of 99.2% (95% CI, 0.957–1.000) at a specificity of 56.3% (95% CI, 0.472–0.652). For
the AI-aided pulmonary nodules diagnostic model, which incorporated cfDNA methylation and CT images
features, it yielded a sensitivity of 81.1% (95% CI, 0.732–0.875), a specificity of 76.0% (95% CI, 0.549–0.906) in
the independent validation cohort. Furthermore, four differentially methylated regions (DMRs) were shared in the
lung cancer screening model and the AI-aided pulmonary nodules diagnostic model.

Interpretation We developed and validated a liquid biopsy-based comprehensive lung cancer screening and
management system called PKU-LCSMS which combined a blood multi-omics based lung cancer screening
model incorporating cfDNA methylation and protein features and an AI-aided pulmonary nodules diagnostic
model integrating CT images and cfDNA methylation features in sequence to streamline the entire process of
lung cancer screening and post-screening pulmonary nodules management. It might provide a promising
applicable solution for lung cancer screening and management.

Funding This work was supported by Science, Science, Technology & Innovation Project of Xiongan New Area,
Beijing Natural Science Foundation, CAMS Innovation Fund for Medical Sciences (CIFMS), Clinical Medicine Plus
X-Young Scholars Project of Peking University, the Fundamental Research Funds for the Central Universities,
Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of
Medical Sciences, National Natural Science Foundation of China, Peking University People’s Hospital Research and
Development Funds, National Key Research and Development Program of China, and the fundamental research
funds for the central universities.

Copyright © 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
Low-dose computed tomography (LDCT) screening has
shown significant association with a reduction in lung cancer
mortality in randomized clinical trials, but its widespread use
faces challenges such as low compliance. Additionally,
accurately classifying pulmonary nodules is also crucial after
LDCT screening. For the first time, we have designed this
case–control study to investigate the use of liquid biopsy in
integrating two distinct clinical scenarios: LDCT screening and
post-LDCT pulmonary nodule management. We searched
PubMed up to December 31, 2023, using the terms (“lung
cancer”) AND (“screening” OR “pulmonary nodules”) AND
(“liquid biopsy” OR “cfDNA” OR “ctDNA”) with no language
restrictions. Previous studies have solely focused on specific
populations within only one scenario.

Added value of this study
The ASCEND-LUNG (AssesSment of early-deteCtion basEd oN
liquiD biopsy, NCT04817046) study is a prospective case–
control study aimed at establishing and validating a multi-
omics screening and management system including lung
cancer screening and pulmonary nodules diagnostic functions.

We have developed and validated a novel integrated liquid
biopsy-based comprehensive system called Peking University
Lung Cancer Screening and Management system (PKU-
LCSMS). This system integrates a lung cancer screening model
based on blood multi-omics assays used prior LDCT, along
with an AI-aided pulmonary nodules diagnostic model that
utilizes cfDNA methylation and chest CT images to accurately
differentiate pulmonary nodules. Specifically, the baseline
blood test used for screening can also serve for subsequent
post-screening management of pulmonary nodules, ensuring
a convenient and efficient process throughout.

Implications of all the available evidence
With the baseline blood sample as a central element, the PKU-
LCSMS offers a promising solution for streamlining the entire
process of lung cancer screening and post-screening
pulmonary nodules management. Considering the substantial
burden of lung cancer and pulmonary nodules in China and
worldwide, the PKU-LCSMS has the potential to accurately
identify populations requiring clinical intervention and
significantly optimize the detection, diagnosis, and treatment
of lung cancer.
Introduction
Low-dose computed tomography (LDCT) screening has
shown significant association with a reduction in lung
cancer mortality in randomized clinical trials, and it has
been recommended for high-risk populations by the
American Cancer Society.1,2 However, the widespread
implementation of LDCT in the clinical practice has
challenges. Because of the low compliance and
www.thelancet.com Vol 75 September, 2024
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accessibility to LDCT, it is reported that only 3.3%–3.9%
of high risk populations have received LDCT for lung
cancer screening between 2010 and 2015, according to
the National Health Interview Study.3 In addition, the
suboptimal specificity of LDCT may lead to overdiagnosis
and anxiety in populations identified with benign pul-
monary nodules.2 Not to mention that LDCT exposes
individuals to radiation, which may increase the risk of
cancers. Thus, there is an urgent need to develop a novel
and efficient lung cancer screening and post-screening
management system, which needs to meet the
following requirements: (i) simple and convenient to
ensure a high compliance; (ii) relatively high sensitivity;
(iii) efficiently reducing the number of individuals un-
dergoing LDCT screenings; (iv) effectively distinguishing
between benign and malignant lung nodules to mini-
mize unnecessary invasive diagnostic biopsies or
surgeries.

Liquid biopsy, widely acknowledged for its minimal
invasiveness and convenience,4–7 has a natural advantage
in effectively addressing the issues present in the cur-
rent lung cancer screening and management system
based on LDCT.8–10

Firstly, the convenience of liquid biopsy may help
to solve the poor adherence of LDCT. A liquid biopsy-
based assay with relatively high sensitivity and
acceptable specificity can be used prior to LDCT to
reduce unnecessary LDCT usage. Recently, cell-free
DNA (cfDNA) based biomarkers for screening have
shown promise in improving the accuracy of cancer
detection by capturing the comprehensive molecular
and (epi) genetic characteristics of tumors, over-
coming intra-tumor heterogeneity. However, sensi-
tivity in early-stage adenocarcinoma may be
constrained by low levels of cfDNA.11,12 For instance,
technologies such as CAPP-seq-based Lung Clip8 and
genome-wide cfDNA fragmentation-based DELFI9

have demonstrated impressive performance in lung
cancer. Nonetheless, the sensitivity for detecting stage
I cancers has been restricted to around 40–60%.
Other biomarkers, such as proteins,13,14 autoanti-
bodies,15 and RNA,16–18 have also demonstrated po-
tential for lung cancer detection, but some may face
challenges related to suboptimal performance or the
need for stable sample handling. Given the differ-
ences in the sources, generation, and release mecha-
nisms of various biomarkers, there may be a degree of
complementarity among them. Therefore, integrating
multi-omics data from liquid biopsy has the potential
to address single-source limitations and improve the
performance of cancer detection.

Secondly, accurately classifying pulmonary nodules
is crucial after lung cancer screening. Approximately
22.9% of high-risk individuals have positive LDCT
screening results, with about 59.6% of them having
pulmonary nodules measuring 5 mm or larger.19 Several
studies have focused on investigating the potential of
www.thelancet.com Vol 75 September, 2024
cfDNA as a biomarker for differentiating pulmonary
nodules, with cfDNA methylation being the mainstream
technique. These studies have reported sensitivities
ranging from 56.9% to 91% and specificities from 61%
to 91%.10 Furthermore, radiomics analysis has also
emerged as a powerful tool for extracting high-
throughput quantitative features from non-invasive
medical images with artificial intelligence (AI)
algorithms. This method uncovers hidden micro-
information and correlates well with pathology re-
sults.20 The development of the LDCT image-based deep
learning algorithm, known as Sybil, has shown prom-
ising specificity in reducing false-positive rate among
patients with pulmonary nodules.21 To further enhance
the performance, the integration of liquid biopsies,
specifically cfDNA methylation, along with radiomics,
has the potentially to improve the diagnostic
capabilities.22–25

Herein, in order to optimize the LDCT screening
pathway and enhance the accuracy of distinguishing
between benign and malignant pulmonary nodules
found during LDCT screening, we have developed and
validated a novel integrated liquid biopsy-based
comprehensive system called Peking University Lung
Cancer Screening and Management System (PKU-
LCSMS). This system integrates a lung cancer
screening model based on blood multi-omics assays,
along with an AI-aided pulmonary nodules diagnostic
model that utilizes cfDNA methylation and Chest CT
images to accurately differentiate pulmonary nodules.
This innovative system is designed to streamline the
entire process of lung cancer screening and post-
screening pulmonary nodules management. It has
the potential to optimize lung cancer screening and
management by providing a practical and effective
solution.
Methods
Study design and participants
The ASCEND-LUNG (AssesSment of early-deteCtion
basEd oN liquiD biopsy, NCT04817046) study is a pro-
spective case–control study aimed at establishing and
validating a multi-omics screening and management
system including lung cancer screening and pulmonary
nodules diagnostic functions (Fig. 1A). Participants with
pathologically diagnosed lung cancer or benign pulmo-
nary nodules were enrolled in the present study and pre-
treatment or pre-diagnosis blood samples were obtained
from each participant. A total of 280 participants (228
cancer, 52 benign) enrolled from the department of
Thoracic Surgery of Peking University People’s Hospital
(PKUPH cohort) between February 2021 and March
2022 were used for model development (Fig. 1B).
Another 187 participants (155 cancer, 32 benign)
enrolled from the department of Thoracic Oncology
Institute & Research Unit of Intelligence Diagnosis and
3
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Development and validation of lung cancer screening model and diagnostic model
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Fig. 1: The workflow diagram of PKU-LCSMS. (A) The workflow diagram illustrated the process of the Peking University Lung Cancer
Screening and Management System (PKU-LCSMS). This system comprised a lung cancer screening model utilized prior to low-dose computed
tomography (LDCT), and an artificial intelligence-aided (AI-aided) pulmonary nodules diagnostic model to classify pulmonary nodules post LDCT
screening. The construction of the lung cancer screening model was based on the multi-omics blood test, combining cell-free DNA (cfDNA)
methylation and serum proteins. The construction of the AI-aided pulmonary nodules diagnostic model was based on radiomics and cfDNA
methylation data. Firstly, the screening populations undergoes a blood test for lung cancer screening, and individuals with a positive results of
the blood test will proceed to further LDCT examination. Those without positive findings of LDCT can opt for a blood test next year for the
potential identification at that time. Secondly, the population identified with pulmonary nodules through LDCT screening further undergoes the
AI-aided pulmonary nodules diagnostic model to assess their risk, assisting in guiding subsequent decisions. (B) Flowchart of participant se-
lection in three cohorts. A total of 1288 participants were included in the study including 280 participants from the PKUPH cohort, 187
participants from the TOI cohort, and 821 control participants from another non-cancer control cohort. The PKUPH cohort was used for model
development and the TOI cohort was used as an independent validation cohort. More details were provided in Supplementary Fig. S1. PKUPH:
the department of Thoracic Surgery of Peking University People’s Hospital; TOI: the department of Thoracic Oncology Institute of Peking
University People’s Hospital.
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Treatment in Early Non-small Cell Lung Cancer of
Peking University People’s Hospital (TOI cohort) be-
tween March 2022 and August 2022 were used as an
independent validation cohort (Fig. 1B). More details
were provided in Supplementary Fig. S1 and
Supplementary Materials.

To minimize the potential bias from age-related
factors on the lung cancer screening model,26 age-
matched non-cancer controls from a community-
based cohort (NCT04972201) were employed using a
1:1 randomization stratified matching approach27

(Supplementary Fig. S1). All non-cancer controls
received LDCT examinations to confirm the absence of
lung cancer or nodules with a diameter greater than or
equal to 6 mm. Additional examinations, including
visceral ultrasound, mammography for females, blood
www.thelancet.com Vol 75 September, 2024
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tests, and urine tests, were also conducted for the non-
cancer controls to rule out cancer in other organs. Non-
cancer controls were followed up for at least one year
and any cancer occurred during follow-up would be
excluded. An analyst was responsible for conducting
the random split of the dataset. When the model
was locked for the independent validation, another
analyst blind to the clinical data of the independent
validation cohort was assigned for data generation and
processing.

Ethics statement
The study was approved by the Ethics Committee of
Peking University People’s Hospital (2021PHB029-001).
The study was performed in accordance with the
Declaration of Helsinki and Good Clinical Practice. All
participants provided written informed consent before
participation. The trial is registered with ClinicalTrials.
gov (No. NCT04817046).

Sample collection, storage and process
In this study, pre-treatment or pre-diagnosis blood
samples were collected from each participant. For each
individual’s blood sample collection, 8–10 mL blood was
collected using a Cell-Free DNA BCT tube (Streck) for
the purposes of plasma cfDNA extraction. Plasma
cfDNA extraction was performed using the QIAamp
Circulating Nucleic Acid Kit (Qiagen). Additionally,
8–10 mL blood was collected using serum tube for the
detection of 16 tumor protein markers. More details
were provided in Supplementary Materials. Further-
more, subsets of cancer tissue samples and adjacent
tissues were obtained.

The multi-omics blood test
A methylation panel of 498,713 CpG sites sequenced
was performed on cfDNA samples with an average
sequencing depth of 1000X. The target libraries were
quantified by real-time PCR and sequenced on Illumina
NovaSeq 6000. To enhance the accuracy of differentially
methylated regions (DMR) detection, we employed a
method called methylation block score (MBS) that de-
fines CpG sites based on both the close genomic dis-
tance and highly correlated methylation levels of CpG
sites.28 The definition of MBS is provided in
Supplementary Materials. About 10 ng of plasma cfDNA
samples were subjected to the targeted methylation
panel. For samples that had remaining cfDNA beyond
10 ng, the OncoCompass Target panel, consisting of
unique molecular identifier (UMI)-tagged 168 cancer-
related genes,29 was applied at a depth of 35,000X.
To exclude the clonal hematopoiesis and germline mu-
tations, the 168 gene panel was also applied to white
blood cells (WBC) with a depth of 10,000X. Further-
more, to minimize false positive results, additional fil-
ters were implemented to eliminate technical artifacts
and errors arising from biological background.
www.thelancet.com Vol 75 September, 2024
Specifically, readings with low comparison quality, un-
clear mapping, or improper pairing were removed from
the original file (.bam). Non-reference alleles with low
sequencing scores (Phred quality filtering score <30) or
located within error-prone genomic regions, such as
collateral/repetitive sequences, were excluded from
further analysis.30 Sixteen tumor protein markers
were tested on the serum samples using Electro-
chemiluminescence method of Roche platform and fully
automated chemiluminescence immunoassay system
C2000 of Hotgen.

The multi-omics tissue sequence
All formalin-fixed paraffin-embedded (FFPE) tissues
underwent a second research histopathology review
conducted by an independent expert pathologist. Tumor
tissues that contained less than 30% cancer cells or
failed to meet the DNA or RNA quality control (QC)
criterion were excluded from the subsequent
sequencing. DNA and RNA from FFPE samples was
extracted using the AllPrep DNA/RNA Mini Kit (Qia-
gen), according to the manufacturer’s protocol. DNA
and RNA quality and quantity were assessed using
Qubit 4.0 (Thermo Scientific) and LabChip GXII touch
24 (PerkinElmer), respectively. Deep targeted bisulfite
sequencing was performed on tissue DNA covering
498,713 CpG sites with an average sequencing depth of
500X to discover lung cancer specific CpG sites for
model development. Furthermore, the 520 cancer-
related genes (OncoScreen Plus, Burning Rock
Biotech, Guangzhou, China) were captured and
sequenced on the Illumina Nextseq 600 sequencer with
an average depth of 1000X. Library preparation of
mRNA were using VAHTSTM Stranded mRNA-seq
Library Prep Kit for Illumina and VAHTSTM Total
RNA-seq (H/M/R) Library Prep Kit for Illumina,
respectively. Then RNA libraries were sequenced using
the Illumina Novaseq 6000 S4.

Lung cancer screening model development and
validation
Lung cancer participants and non-cancer controls were
included in the development and validation of the lung
cancer screening model. The construction of the model
involved feature selection and model training. During
the feature selection stage, the lung cancer specific
DMRs were identified by comparing the cancer and
adjacent tissues. The P values were generated using the
Mann–Whitney U test and then adjusted for multiple
tests using the Benjamini-Hochberg method. DMRs
were defied as a mean difference greater than 0.2 and an
adjusted P value less than 0.05. The protein data was
transformed using the Box–Cox transformation to
ensure a normal distribution. As for ctDNA, the pres-
ence or absence of mutations was directly utilized as a
feature for the model.
5
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In the model training stage, the methylation and
protein models were constructed separately using 10-
fold cross-validation and support vector machines
(SVM) with a linear kernel. In the mutation model, any
gene mutation detected was defined as a positive result.
The performance of all three single-omics models
including the methylation-based model, the protein-
based model, and the mutation-based model, was eval-
uated by comparing their area under the curve (AUC)
values. Subsequently, the multi-omics combined model
was developed by integrating the output scores from
single-omic models using the SVM method. All the
analyses were performed using the scikit-learn library in
Python version 3.9.7.

In the validation cohort and the independent vali-
dation cohort, we further evaluated the performance of
the constructed multi-omics model by assessing AUC
values, sensitivity, and specificity.

AI-aided pulmonary nodules diagnostic model
development and validation
Participants with lung cancer and benign pulmonary
nodules were included for the development and vali-
dation of the AI-aided pulmonary nodules diagnostic
model. In summary, to comprehensively capture intra-
tumor heterogeneity and the tumor microenviron-
ment, we integrated pre-defined radiomics analysis and
deep learning analysis into an AI-aided diagnostic
model called Expert Plus. For the radiomics analysis,
we extracted 876 features from each nodule and refined
them using the mRMR and LASSO methods, which
resulted in a Radiomics Signature (RS) comprising
selected features weighted by coefficients derived from
the LASSO method. Simultaneously, a deep learning
model inspired by the multi-view knowledge-based
collaborative deep learning network named MV-KBC
model was developed.31 Hyper images, generated
from the cropped cube of the nodule, were processed
using a residual Convolutional Neural Network
(SResNet). By utilizing trainable weights, we calculated
the weighted sum of SResNet outputs for each view to
generate the Deep Learning Score (DLS), a predicted
malignant probability score. The DLS and RS were
used as covariates in a logistic regression model to
obtain the CT-derived diagnostic risk score (DRS)
(Fig. 1B).

Moreover, the hierarchical fusion method was pro-
posed. To achieve high sensitivity and high specificity,
we established two cutoff values for the CT-derived DRS
in the train cohort. These cutoffs were referred to as the
low threshold (Lth) and high threshold (Hth). In-
dividuals scoring above the Hth were categorized as
malignant, those scoring below the Lth were categorized
as benign, and patients between the Hth and Lth
thresholds were classified as intermediate risk. For
those deemed at intermediate risk, additional assess-
ment was conducted, incorporating cfDNA methylation
markers through a multivariable logistic regression
approach. The grid search method was employed to find
the highest average AUC of the final fusion model
during 5-fold cross-validation with the train cohort, and
then the relative thresholds of sensitivity and specificity
were determined. Comparisons between the AI-aided
pulmonary nodules diagnostic model and classical
mathematical models including the Mayo model32 and
Veterans Affairs (VA) model,33 as well as clinical experts’
judgement in the independent validation cohort were
also conducted. More details are provided in
Supplementary Materials.

Statistical analysis
All statistical analyses were performed using R version
3.6.0 and Python version 3.9.7. Categorical variables
were presented as whole numbers, while continuous
variables were presented as medians and interquartile
ranges. Chi-square test was used for categorical vari-
ables. The Mann–Whitney U test was used to compare
the differences in methylation block values between
two groups, as well as mRNA expression levels.
DeLong’s test was conducted for the statistical com-
parison of AUCs. The continuous variables were
described using the median and interquartile range,
while the categorical variables were described with the
count and percentage of occurrences. Visualizations
such as volcano plot, heatmap, and Upset plot were
generated using R pacakage ‘ggplot2’, ‘Complex-
Heatmap’ and ‘UpSetR’, respectively. Ten-fold cross-
validation SVM was carried out using Scikit-learn in
Python. The AUC and 95% confidence interval (CI)
were generated to assess the model performance, along
with sensitivity, specificity, and accuracy. During the
model development phase, AUC was employed to
compare the performance of different models in order
to select the optimal one. Following the identification
of the optimal model, the performance of the inde-
pendent validation cohort was assessed based on
sensitivity and specificity. The 95% CIs for sensitivity
and specificity were calculated with the Clopper-
Pearson method. A two-sided P value less than 0.05
was considered statistically significant.

Role of the funding source
This study received funding from Science, Technology
& Innovation Project of Xiongan New Area, Beijing
Natural Science Foundation, CAMS Innovation Fund
for Medical Sciences (CIFMS), Clinical Medicine Plus
X-Young Scholars Project of Peking University, the
Fundamental Research Funds for the Central Univer-
sities, Research Unit of Intelligence Diagnosis and
Treatment in Early Non-small Cell Lung Cancer, Chi-
nese Academy of Medical Sciences, National Natural
Science Foundation of China, Peking University Peo-
ple’s Hospital Research and Development Funds, Na-
tional Key Research and Development Program of
www.thelancet.com Vol 75 September, 2024

http://www.thelancet.com


Articles
China, and the fundamental research funds for the
central universities. The funding was utilized for oper-
ation of platform-based trials, such as constructing
Electronic Data Capture (EDC) systems for clinical tri-
als, patient enrollment, and covering administrative
costs. The funder had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
Patient characteristics
In this study, data from 328 cancer and 328 non-cancer
control participants were used across the two phases for
the lung cancer screening model development (train
cohort and validation cohort) and model validation (in-
dependent validation cohort). In addition, chest CT
images from 314 cancer and 72 CT-malignant-like
benign pulmonary nodules were used for the AI-aided
pulmonary nodules diagnostic model development
(train cohort and validation cohort) and validation (in-
dependent validation cohort) (Fig. 1A). A total of 286
cancer cases overlapped between the lung cancer
screening model (286/328, 87.2%) and the AI-aided
pulmonary nodules diagnostic model (286/314,
91.1%), with 173 overlapped cancer cases in the model
development phase and 113 cancer cases in the model
validation phase. More details can be found in
Supplementary Fig. S1 and Supplementary Materials.
Fig. 2: Tissue differentially methylation markers selection. (A) UMAP
adjacent (n = 33) tissues from the participants in the train cohort. (B) V
tissues. (C) Heatmap of DMRs in cancer and adjacent tissue. (D) Classifica
top 10 up-regulated terms (E), and top 10 down-regulated terms (F) wer
DMRs, differentially methylated regions; GO, gene ontology.

www.thelancet.com Vol 75 September, 2024
The demographics and clinical characteristics of
participants in the screening model and diagnostic
model are summarized in Supplementary Tables S1 and
S2, respectively. For marker selection, the methylation
profiles of tissue samples were obtained from 35 lung
cancers tissues and 33 adjacent tissues in the train
cohort to identify lung cancer-specific methylation
markers.

Methylation markers selection
In this study, we performed targeted methylation
sequencing in lung cancer tissues (n = 35) and adja-
cent tissues (n = 33) from the train cohort. Distinct
DNA methylation patterns between the samples were
visualized in Fig. 2A. Totally, 1583 lung cancer-
specific DMRs were identified (Fig. 2B). Of these
DMRs, 654 (41.3%) were hypermethylated regions
and 929 (58.7%) were hypomethylated regions in
cancer. The methylation levels for the 1583 DMRs are
depicted in the heatmap (Fig. 2C), exhibiting different
methylation patterns between lung cancer and adja-
cent tissues.

As shown in the Sankey plot (Fig. 2D), the lung
cancer-specific DMRs exhibited a higher proportion of
hypermethylation in intergenic CpG islands (52.9%)
and a higher proportion of hypomethylated DMRs
in intergenic CpG islands (89.2%), and most of the
DMRs were related with protein-coding (68.0% for
hypermethylation and 63.9% for hypomethylation).
visualization of methylated regions between cancer (n = 35) and
olcano plot of DMRs between cancer (n = 35) and adjacent (n = 33)
tion of DMRs in functional locations. In the GO enrichment analysis,
e presented. UMAP, uniform manifold approximation and projection;

7

http://www.thelancet.com


Articles

8

Gene ontology (GO) enrichment analysis showed that
the hypermethylated genes were enriched in the path-
ways involved in embryonic organ development and
skeletal system morphogenesis (Fig. 2E), and the rest
with hypomethylation levels in tumor tissues, enriched
in the pathways related to epithelium migration, cell
junction organization and tight junction assembly
(Fig. 2F).

Construction and validation of the multi-omics
based lung cancer screening model
We aimed to develop a lung cancer screening model
with high sensitivity to be used before LDCT (Fig. 1A).
Utilizing various omics data including cfDNA methyl-
ation, protein, and mutation, 202 cancers were
randomly allocated in a 1:1 ratio to the train and vali-
dation cohorts, and then 202 non-cancer controls were
age-matched to the cancer cases in a 1:1 ratio (Fig. 1B).
The lung cancer-specific DMRs of cfDNA exhibited
different methylation patterns between cancers and
non-cancer controls in the train and validation cohorts
(Fig. 3A). The mutation and tumor proteins landscapes
in train and validation cohorts were also depicted in
Fig. 3A. The cfDNA methylation lung cancer screening
model performed best with AUC 0.910 (95% CI,
0.869–0.950) to discriminate lung cancers from non-
cancer controls in the train cohort, while the protein
and mutation yielded an AUC with 0.891 (95% CI,
0.845–0.938) and 0.577 (95% CI, 0.482–0.672), respec-
tively (Fig. 3B). The sensitivities and specificities of
different single-omic based lung cancer screening
models in the train and validation cohorts are shown in
Supplementary Table S3. To enhance the performance
of the screening model, multi-omics combined model
were evaluated. The performance of cfDNA methylation
and protein integrated model outperformed the single
cfDNA methylation model (AUC 0.963 vs. 0.910;
DeLong’s test, P = 0.0026). Moreover, there was
no significant difference in AUCs between the three-
omics detection model (cfDNA methylation +
protein + ctDNA mutation) and the two-omics (cfDNA
methylation + protein) detection model (AUC 0.969 vs.
0.963, P = 0.27). Since the ctDNA mutation contributed
less to the performance of the screening model, it was
not included in subsequently model development. The
final multi-omics detection model (including cfDNA
methylation and protein) yielded an AUC of 0.963 (95%
CI, 0.942–0.984), 0.953 (95% CI, 0.927–0.979), and
0.966 (95% CI, 0.946–0.986) in the train, validation, and
independent validation cohorts, respectively (Fig. 3C).

In the independent validation, with a specificity of
56.3% (95% CI, 47.2%–65.2%), the sensitivity of the
multi-omics lung cancer screening model was 100%
(95% CI, 95.1%–100%) for stage I, 100% (95% CI,
73.5%–100%) for stage II, and 100% (95% CI, 86.3%–

100%) for stage III (Fig. 3D). The accuracy was 77.8%
(95% CI, 82.5%–72.2%). The detailed sensitivities and
specificities regarding different cohorts are shown in
Supplementary Table S4. Moreover, there were also no
significant differences of the AUCs in different subtypes
in the independent validation cohorts (Fig. 3E–H).

Construction and validation of the AI-aided
pulmonary nodules diagnostic model
We aimed to develop a pulmonary nodule diagnostic
model based on Chest CT images data and cfDNA
methylation to discriminate malignant nodules from
benign nodules identified by LDCT (Fig. 1A).

The diagnostic model yielded AUCs of 0.875 (95%
CI, 0.815–0.935), 0.834 (95% CI, 0.723–0.946) and 0.798
(95% CI, 0.694–0.902) in the train, validation, and in-
dependent validation cohorts to distinguish the malig-
nant nodules from the benign nodules, respectively
(Fig. 4A). The accuracy for the train, validation, and
independent validation cohorts was 77.6% (95% CI,
83.4%–70.4%), 75.6% (95% CI, 83.8%–65.1%) and
80.3% (95% CI, 85.8%–73.2%) respectively. Differenti-
ation between benign and malignant pulmonary nod-
ules was achieved by a double scoring system (Fig. 4B).
Firstly, the low-risk (predicted score ≤ −0.082), inter-
mediate risk (−0.082 < predicted score < 2.571) and
high-risk (predicted score ≥ 2.571) for CT-malignant-
like nodules were defined according to the predicted
scores from the DRS model. Participants categorized
into low-risk and high-risk output the current results as
the final conclusions, while the others with
intermediate-risk were further classified using cfDNA
methylation. The intermediate-risk populations in DRS
model were further defined into low-risk (predicted
score ≤ 0.297), intermediate-risk (0.297 < predicted
score <0.774) and high-risk (predicted score ≥ 0.774) by
the DRS-M model, based on images data and five
cfDNA DMRs. The detailed information of the five
DMRs were shown in Supplementary Table S5 and four
of the five DMRs were also used in the lung cancer
screening model. High-risk populations accounted for
the majority of cancers (76.8%, 77.4%, and 81.1% in the
train, validation, and independent validation cohorts,
respectively) compared with benign patients (19.4%,
31.3%, and 24.0% in the train, validation, and inde-
pendent validation cohorts, respectively) (Chi-square
test, P < 0.001) (Fig. 4C). The risk remained high when
stratified by different clinical covariates, even in the tu-
mor with size less than 3 cm (77.4%), and in the stage I
(76.9%) and stage II (92.9%) (Fig. 4D). The AI-aided
pulmonary nodules diagnostic model had a higher
fraction of cancers with timely diagnosis (81.1% [95%
CI, 73.2%–87.5%]), compared with the Mayo model
(48.0% [95% CI, 39.1%–57.1%]), the VA model (63.8%
[95% CI, 54.8%–72.1%]), and three clinical experts’
judgement (52.8%–76.4%) (Fig. 4E). Moreover, the
diagnostic model showed a lower fraction of missed
cancers diagnosis (0.8% [95% CI, 0%–4.3%]) compared
to the Mayo model (13.4% [95% CI, 8.0%–20.6%]), the
www.thelancet.com Vol 75 September, 2024

http://www.thelancet.com


F G

E

A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 - Specificity

Se
ns

iti
vi

t y

AUC = 0.978
95% CI (0.955–1.000)

Age ≥ 65yrs

Age < 65yrs

AUC = 0.948
95% CI (0.912–0.983)

P = 0.16

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 - Specificity

Se
ns

iti
vi

ty

Male

Female

AUC = 0.987
95% CI (0.973–1.000)

AUC = 0.951
95% CI (0.916–0.986)

P = 0.064

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 - Specificity

Se
ns

iti
vi

t y

BMI normal

BMI abnormal

AUC = 0.957
95% CI (0.927–0.987)

AUC = 0.970
95% CI (0.940–1.000)

P = 0.55

H

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 - Specificity

Se
ns

iti
vi

t y
AUC = 0.963
95% CI (0.942–0.984)
AUC = 0.953
95% CI (0.927–0.979)
AUC = 0.966
95% CI (0.946–0.986)

Train

Validation

Independent
validation

B

C

D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 - Specificity

Se
ns

iti
vi

ty

AUC = 0.969
95% CI (0.949–0.990)

Methylation

Protein

Mutation

Combined:
methy+pro

Combined:
methy+pro+mut

AUC = 0.910
95% CI (0.869–0.950)

AUC = 0.963
95% CI (0.942–0.984)

AUC = 0.891
95% CI (0.845–0.938)
AUC = 0.577
95% CI (0.482–0.672)

Non-cancer Cancer I II III IV
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
ci

ty
an

d
Se

ns
iti

vi
ty

Train

Validation

Independent
validation

61.4%
54.5%
56.3%

99.0%
98.0%
99.2%

98.0%
98.0%
100.0%

100.0%
100.0%
100.0%

100.0%
96.3%
100.0%

100.0%
100.0%
93.3%

62/101
55/101
71/126

100/101
99/101
125/126

50/51
49/50
74/74

17/17
17/17
12/12

27/27
26/27
25/25

6/6
7/7

14/15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 - Specificity

Se
ns

iti
vi

t y

AUC = 0.934
95% CI (0.878–0.989)

Non-smoker

AUC = 0.982
95% CI (0.967–0.997)

Smoker

P = 0.10

Fig. 3: Performance of the lung cancer screening model. (A) Heatmap of selected cfDNA methylation markers, mutations, protein features in
cancer and non-cancer control blood samples of train (n = 202; cancer = 101; non-cancer control = 101) and validation (n = 202; cancer = 101; non-
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multi-omics combined model in the train cohort (n = 202; cancer = 101; non-cancer control = 101). (C) The receiver operating characteristic curves
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VA model (29.9% [95% CI, 22.1%–38.7%]), and three
clinical experts’ judgement (0.7%–10.4%). Furthermore,
the AI-aided pulmonary nodules diagnostic model
showed a lower fraction of benign diseases that would
potentially receive invasive biopsy or surgery (24.0%
[95% CI, 9.4%–45.1%]) compared to the Mayo model
(28.0% [95% CI, 12.1%–49.4%]), the VA model (48.0%
[95% CI, 27.8%–68.7%]), and three clinical experts’
judgement (20.1%–36.1%). For user access, the diag-
nostic model will be made available online. A screenshot
was provided in Supplementary Fig. S2. Doctors can
estimate the risk level for pulmonary nodules by
uploading CT and cfDNA methylation data. Pulmonary
nodules with high-risk will be recommended for timely
surgery or biopsy, while those with intermediate-risk or
low-risk will be recommended for follow-up.

Exploratory association analysis of multi-omics in
tissues
In the overall cancer patients with plasma ctDNA mu-
tation data, ctDNA mutations were detected in 28.7%
(54/188) patients (Supplementary Fig. S3A). The ctDNA
mutation status were significantly associated with 1213
lung cancer specific DMRs as depicted in the heatmap
(Supplementary Fig. S3B), exhibiting different methyl-
ation patterns between tumor-shed and tumor non-shed
cancers. GO enrichment analysis showed hyper-
methylated (Supplementary Fig. S3C) and hypomethy-
lated (Supplementary Fig. S3D) genes were enriched in
different pathways. Moreover, out of the total cancer
patients, 118 had tissue mutation data (Supplementary
Fig. S3E), and among them, 92 also had paired plasma
ctDNA mutation data. Notably, only 13 ctDNA muta-
tions were detectable out of the 92 cancers with both
paired tissue and plasma DNA sequencing data
(Supplementary Fig. S3F), indicating that most of can-
cers were ctDNA mutation non-shedders.

In the analysis of mRNA sequencing data from 75
cancer tissue samples and 34 adjacent tissue samples
(Supplementary Fig. S4A), it was observed that
1300 genes exhibited significant upregulation
(Supplementary Fig. S4B) which were mainly enriched
in organelle fission and nuclear division pathways
of the lung cancer screening model in the train (n = 202; cancer = 101; no
control = 101) and independent validation (n = 252; cancer = 126; non-ca
with 95% confidence intervals of the lung cancer screening model in the
specificity was 61.4% (95% CI, 51.2%–70.9%), 54.5% (95% CI, 44.2%–64.
independent validation cohorts, respectively. The sensitivity was 99.0% (95
CI, 95.7%–100%) in the train, validation, and independent validation coho
stage I, 100% (95% CI, 80.5%–100%) in stage II, 100% (95% CI, 87.2%–100%
cohort. The sensitivity was 98.0% (95% CI, 89.4%–99.9%) in stage I, 100%
stage III, and 100.0% (95% CI, 59.0%–100%) in stage IV in the validation coh
(95% CI, 73.5%–100%) in stage II, 100% (95% CI, 86.3%–100%) in stage
validation cohort. The bars (E–H) ROC curve of the age subgroup (E), sex su
area under the curve. The P values for the statistical comparison of AUCs
(Supplementary Fig. S4C), while 697 genes displayed
significant downregulation (Supplementary Fig. S4B)
which were mainly enriched in ameboidal-type cell
migration and regulation of vasculature development
pathways (Supplementary Fig. S4D). The mRNA
immune-cluster analysis revealed distinct immune
subgroups as showed in Supplementary Fig. S4E.

Further analysis was conducted on the four DMRs
commonly used in the lung cancer screening model and
the AI-aided pulmonary nodules diagnostic model
(Supplementary Table S5). The methylation level of the
four DMRs between cancer and adjacent tissues was
presented in Supplementary Fig. S5A, while mRNA
expression of the four corresponding genes were
showed in Supplementary Fig. S5B. In the association
analysis of mRNA sequencing data and DNA methyl-
ation data from 75 cancer tissue samples and 34 adja-
cent tissue samples, it was discovered that the four
DMRs showed a significantly negative association with
the mRNA expression of the respective genes
(Supplementary Fig. S5C). Meanwhile, the mRNA
expression of four genes were primarily associated with
the upregulation of notch signaling, hedgehog
signaling, and wnt-beta-catenin signaling pathways,
while the PI3K/AKT/mTOR signaling pathway was
downregulated (Supplementary Fig. S5D). Moreover,
notable correlations were observed between the mRNA
expression of these four genes and immune cell
enrichment, indicating an immune activation signature
(Supplementary Fig. S5E).
Discussion
In this study, to address the issues of low compliance,
high false-positive rates, and the potential radiation
exposure associated with LDCT for lung cancer
screening and post-screening pulmonary nodules man-
agement, we have developed a liquid biopsy-based
comprehensive system called PKU-LCSMS. This sys-
tem integrates two separate scenarios: a lung cancer
screening model and an AI-aided pulmonary nodules
diagnostic model, with blood cfDNA methylation as the
central component. Utilizing the lung cancer screening
n-cancer control = 101), validation (n = 202; cancer = 101; non-cancer
ncer control = 126) cohorts, respectively. (D) Specificity and sensitivity
train, validation and independent validation cohorts, respectively. The
4%), and 56.3% (95% CI, 47.2%–65.2%) in the train, validation, and
% CI, 94.6%–100%), 98.0% (95% CI, 93.0%–99.8%), and 99.2% (95%
rts, respectively. The sensitivity was 98.0% (95% CI, 89.6%–100%) in
) in stage III, and 100.0% (95% CI, 54.1%–100%) in stage IV in the train
(95% CI, 80.5%–100%) in stage II, 96.3% (95% CI, 81.0%–99.9%) in

ort. The sensitivity was 100.0% (95% CI, 95.1%–100%) in stage I, 100%
III, and 93.3% (95% CI, 68.1%–100%) in stage IV in the independent
bgroup (F), BMI subgroup (G), and smoking status subgroup (H). AUC,
were obtained using the DeLong’s test.
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Fig. 4: Performance of the AI-aided pulmonary nodules diagnostic model. (A) The receiver operating characteristic curves display the classi-
fication performance of the AI-aided pulmonary nodules diagnostic model in the train, validation, and independent validation cohorts, respectively.
(B) The workflow diagram of the AI-aided pulmonary nodules diagnostic model using the hierarchical fusion method. (C) Three category clas-
sifications of the AI-aided pulmonary nodules diagnostic model in the train (n = 156; cancer = 125, benign = 31), validation (n = 78; cancer = 62,
benign = 16) and independent validation (n = 152; cancer = 127, benign = 25) cohorts. (D) Three category classifications of the AI-aided pulmonary
nodules diagnostic model according to histology subtypes, tumor size, cancer stages, and subtypes of benign diseases in the independent vali-
dation cohort (n = 152; cancer = 127, benign = 25). (E) The potential clinical effect of three category classifications by the AI-aided pulmonary
nodules diagnostic model, compared with Mayo model, VA model, and experts’ judgement (two surgeons and one radiologist) in the independent
validation cohort (n = 152; cancer = 127, benign = 25). The 95% confidence intervals were provided for the AI-aided pulmonary nodules diagnostic
model, Mayo model, and VA model. The ranges were showed based on experts’ judgement. All P values were obtained using the Fisher’s exact test.
AI, artificial intelligence; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; VA, Veterans Affairs.
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model as a pre-screening step before LDCT, 56.3% of
individuals may potentially avoid LDCT examination,
with only a 0.8% chance of missing cancer who would
receive a blood test next year for potential identification.
Additionally, utilizing the AI-aided pulmonary nodules
diagnostic model during the post-screening pulmonary
nodules management phase, 81.1% of cancer patients
would receive timely diagnoses and treatment. Only
0.8% of cancer patients would be classified as low-risk
who would receive annual follow-up, while 76.0% of
individuals with benign diseases could avoid invasive
interventions. Specifically, the baseline blood test used
for screening can also serve for subsequent post-
screening management of pulmonary nodules,
ensuring a convenient and efficient process throughout.

Following the National Comprehensive Cancer
Network (NCCN) guidelines, individuals aged over 55
years old with a history of smoking exceeding 20 pack-
years are classified as high risk population. They are
strongly recommended to undergo annual LDCT
screening for lung cancer and if suspicious lesions are
detected, a professional medical evaluation is necessary
to determine further diagnosis and treatment. This
process comprises two essential parts: lung cancer
screening and post-screening diagnostic assessment for
pulmonary nodules. However, previous studies only
targeted specific populations in one specific
scenarios,8,9,21,34 making it challenging to ascertain the
universal applicability of their methods across these two
distinct phases. This study represents a pioneering
effort in the application of liquid biopsy to the existed
two essential phases, which is primarily based on LDCT.
We proposed the comprehensive lung cancer screening
system called PKU-LCSMS, which integrated a multi-
omics model based on cfDNA methylation and protein
features for lung cancer screening, and an AI-aided
diagnostic model based on radiomics and cfDNA
methylation features for the discrimination between
benign and malignant nodules. Four shared blood
cfDNA methylation markers between screening and
diagnosis were verified in tumor tissue, which are
associated with an immune activation signature and the
upregulation of the notch signaling pathway. In the in-
dependent validation cohort, both the multi-omics
screening model and the AI-aided diagnostic model
demonstrated a promising performance. These findings
suggest that the potential benefits of implementing the
PKU-LCSMS in high-risk populations, as it can precisely
identify specific populations requiring clinical inter-
vention and greatly enhance the identification, diag-
nosis, and management of lung cancer in these
individuals.

Regarding the drawbacks of LDCT screening, such
as high false-positive rates, limited imaging facilities,
and low compliance rates, our noninvasive plasma
method shows high sensitivity, especially in early-stage
lung cancer, which can be complement to LDCT.
Blood collection can be conveniently done locally at a
clinic or through a home visit. Moreover, only in-
dividuals identified as high-risk based on the blood test
are recommended to undergo LDCT. The multi-omics
lung cancer screening model has undergone rigorous
marker selection based on tissue samples, model
development, and validation to ensure the robustness,
distinguishing it from previous cfDNA methylation
studies in lung cancer. Notably, across our three cohort,
68.0% of the participants diagnosed with early-stage
lung cancer (stage I or II), which are amenable to
curative surgical resection. A previously published
plasma cfDNA-fragment-detection model called DELFI
score, which was used before LDCT screening, achieved
a sensitivity of 50–60% in stage I at a specificity of 80%.9

Another ctDNA-based lung cancer detection model
known as Lung-CLiP employing CAPP-Seq, achieved a
sensitivity of 42% for stage I and 67% for stage II, with a
notably high specificity of 98%.8 While our priority in
developing the screening model was to ensure high
sensitivity to enrich the high-risk population for LDCT,
thus minimizing the risk of missing lung cancer pa-
tients and avoiding the number of unnecessary LDCT, a
certain degree of specificity was sacrificed. The
screening model demonstrated excellent performance
in detecting early-stage lung cancer (sensitivity: stage I,
100%; stage II, 100%) at the specificity of 56.3% in the
independent validation cohort. In this study, the multi-
omics screening model would be more generalizable
and applicable in clinical practice, especially with its
high sensitivity when used prior to LDCT. This is
particularly crucial in reducing missed diagnoses and
achieving favorable outcomes, especially in early-stage
lung cancers.

Various technologies and entities of liquid biopsy
demonstrate distinct strengths and weaknesses. For the
lung cancer screening model in this study, the top
classifiers by AUC were cfDNA methylation (0.910),
serum protein (0.891), and ctDNA mutation (0.577).
Furthermore, the performance was significantly
improved when cfDNA methylation was combined with
protein, resulting in an enhanced AUC of 0.963. How-
ever, the further enhancement is limited when all three-
omics were combined (0.969). Although both cfDNA
methylation and ctDNA mutation were features derived
from cfDNA, cfDNA methylation demonstrated supe-
rior detection performance, consistent with comparison
results reported in another study.35 This can be attrib-
uted to the methylation’s relatively abundant signals and
lower limit of detection (LOD).35 On the other hand, to
rigorously eliminate the confounding factor of muta-
tions related to clonal hematopoiesis, ctDNA mutations
were sequenced using the UMI-tagged method at a
depth of 35,000X, which was matched to the 10,000X
depth sequencing with WBC in this study. However, in
cancer cases where both tissue and plasma DNA mu-
tation sequencing were conducted, only 14% (13 out of
www.thelancet.com Vol 75 September, 2024
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92) showed detectable ctDNA. This indicates the con-
strained release of mutation signals into the blood-
stream, potentially hindering its sensitivity.
Consequently, the ctDNA mutation features were not
included in the combination model. Intriguingly, with
the added contribution of protein, it is reasonable to
suggest that protein features originating from the serum
level, could potentially complement DNA features for
cancer detection. Nowadays, several lung cancer-specific
protein panels have shown promise in the context of
lung cancer screening.14,15 It is also worth further
investigating whether combining optimized protein
panels with methylation markers can further enhance
the overall performance.

In our study, the second primary aim was to effec-
tively differentiate malignant pulmonary nodules from
benign nodules, in order to minimize unnecessary
invasive diagnostic biopsies or surgeries following lung
cancer screening. To achieve this, we have developed an
AI-aided pulmonary nodules diagnostic model using a
sequential approach. This model combines radiomics
and cfDNA methylations features that are generated
during the initial screening phase, with no additional
examination indeed. In clinical practice, the determi-
nation of tumor nature as benign or malignant is often
reliant on the subjective judgment and experience of
doctors, which can introduce variability and impact the
accuracy of the results. Misdiagnosis leading to unnec-
essary surgical removal is a concern in clinical practice.
The diagnostic model, which is not influenced by hu-
man factors in contrast to LDCT, demonstrates a
sensitivity of 81.1% with a relatively high specificity
(72.0%). In the lung screening phase, we tend to pri-
oritize a strategy with higher sensitivity to minimize the
possibility of cancer misdiagnosis when used before
LDCT. However, in post-screening pulmonary nodules
management phase, we aim for relatively higher balance
of specificity and sensitivity to ensure accurate cancer
detection while reducing unnecessary interventions for
benign conditions. This differs from a previous study
that used a specificity of only 50%.34 The diagnostic
model can help facilitate definitive diagnosis based on
LDCT, minimizing the risk of unnecessary surgeries
while ensuring accurate identification of malignant
nodules. By reducing false positives and improving
specificity, the diagnostic model offers potential benefits
in optimizing patient management and decision-
making in cases of suspected lung cancer. The result
of diagnostic model have manifested more accurate
decision-making for individuals in our cohort compared
to traditional pulmonary nodule models, including
Mayo model and VA model, as well as judgement by
experienced doctors.

Overfitting is a common issue when utilizing ma-
chine learning methods for model construction in case–
control studies. Given the large number of features used
for model construction in this study, the current sample
www.thelancet.com Vol 75 September, 2024
size falls significantly below the traditional re-
quirements.36 To mitigate overfitting, we employed the
following methods: i) we first conducted feature selec-
tion based on tissue sequencing data; ii) we chose the
linear kernel function when modeling with SVM to
reduce model complexity; iii) we employed cross-
validation to optimize model performance; iv) we
introduced an independent validation cohort to evaluate
the model’s performance stability. The results indicated
a marginal improvement in the lung cancer screening
model’s performance within the independent validation
cohort, potentially influenced by a higher percentage of
stage IV cancer cases (12%) compared to the train (6%)
and validation (7%) cohorts. However, the performance
of the AI-aided pulmonary nodules diagnostic model
exhibited a slight decrease, possibly attributed to the
limited sample size of benign cases, which could have
led to potential overfitting. Further validation and
follow-up studies with larger sample sizes will be
imperative.

Several limitations should be acknowledged in this
study. Firstly, the sample size may be insufficient,
particularly when employing a multitude of features in
machine learning, especially for benign cases. Despite
relatively consistent performances being demonstrated
in the independent validation cohort, the 95% CIs for
sensitivity and specificity were wide, suggesting uncer-
tainty of the findings. Further validation with larger
sample sizes will be imperative. Secondly, smoking
status were not taken into account during the stratifi-
cation of the cancer and non-cancer control groups.
Nevertheless, the smoking rates were comparable across
the subgroups. Thirdly, the non-cancer controls were
sourced from a separate study, which renders the in-
dependent validation cohort not entirely rigorously in-
dependent. Moreover, these non-cancer controls were
not predominantly high-risk individuals for lung cancer
screening. Fourthly, the methylation data of these
overlapping cancer cases were used for the lung cancer
screening model, while both methylation and radiomics
data were used for the AI-aided pulmonary nodules
diagnostic model. This overlap may potentially pose
risks on affecting the reliability, generalizability, and
stability of the PKU-LCSMS since if there are potential
bias of these cancer cases, both models would be
affected. However, these overlapping cancer cases also
mimic the future clinical application scenario where the
same cancer patients would first be identified by the
lung cancer screening model and then be differentiated
from benign nodules by the AI-aided pulmonary nod-
ules diagnostic model. Finally, although we incorpo-
rated an independent validation cohort to assess the
robustness of our findings, further validation and real-
world implementation of the PKU-LCSMS remain
essential to comprehensively assess its performance and
influence on patient outcomes. While the baseline blood
test can be utilized for both the screening and
13
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subsequent post-screening management of pulmonary
nodules, the presence of this integrated system with two
models may increase the complexity of clinical trans-
lation. Specifically, the comparison of the model’s per-
formance against existing classical models should also
be cautiously evaluated. The optimal follow-up interval
for patients classified as low-risk or intermediate-risk
has yet to be determined. A long-term follow-up study
is also needed to refine the recommendations for clin-
ical use of the PKU-LCSMS system in the screening and
diagnostic scenarios.

Collectively, we have developed a comprehensive
lung cancer screening and post-screening pulmonary
nodules management system called PKU-LCSMS. This
innovative system achieves a thorough evaluation of the
entire process by integrating a multi-omics liquid biopsy
model for pre-LDCT screening with high sensitivity and
a diagnostic model based on chest CT images and
cfDNA methylation for classification of pulmonary
nodules after screening. With baseline blood sample as
a core component, the integration of the screening
phase and the post-screening management phase in the
PKU-LCSMS offers a promising solution for lung can-
cer screening and post-screening management in the
future.
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