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Robust classification of natural hand grasp type based on electromyography (EMG)

still has some shortcomings in the practical prosthetic hand control, owing to the

influence of dynamic arm position changing during hand actions. This study provided

a framework for robust hand grasp type classification during dynamic arm position

changes, improving both the “hardware” and “algorithm” components. In the hardware

aspect, co-located synchronous EMG and force myography (FMG) signals are adopted

as the multi-modal strategy. In the algorithm aspect, a sequential decision algorithm is

proposed by combining the RNN-based deep learning model with a knowledge-based

post-processing model. Experimental results showed that the classification accuracy

of multi-modal EMG-FMG signals was increased by more than 10% compared with

the EMG-only signal. Moreover, the classification accuracy of the proposed sequential

decision algorithm improved the accuracy by more than 4% compared with other

baseline models when using both EMG and FMG signals.

Keywords: gesture recognition, arm movement, EMG-FMG control, post-processing, robustness

1. INTRODUCTION

Currently, the most widely used method for the control of an external powered prosthetic hand is
the EMG pattern recognition (PR) based control method (Iqbal and Subramaniam, 2018; Parajuli
et al., 2019; Yao et al., 2021). Although the performance of the EMG-PR-based control method
has been reported to achieve extremely high accuracy academically, the practical application in
prosthetic hands is still insufficient. This academical-practical gap comes from several reasons:

The first reason is the accurate classification of taxonomically close motion classes (TCMC)
with EMG signals. Many existing academical studies used the taxonomically distant motion classes
(TDMC) (Shahzad et al., 2020) to evaluate the performance of PR system, such as hand close/open,
wrist flexion/extension. This TDMC partly contributed to the high accuracy of the PR system
in academic research, whereas the TDMC is counter-intuitive and unnatural for prosthetic hand
control. Compared with the TDMC, the TCMC (such as the grasp types in human grasp taxonomy;
Feix et al., 2015) is much more intuitive, but the classification of TCMC is more challenging for
EMG-PR-based control.

For this aspect of the academical-practical gap, one of the most influential studies is
the open Ninapro databases for naturally-controlled robotic hand prostheses provided by
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Atzori et al. (2014). Among these databases, the second database
(DB2) of Ninapro is the closest to daily life application, which
consists of 50 gestures, including the grasping and functional
movements of daily-life objects, finger movements, and wrist
movements collected from 40 healthy subjects with 12 wireless
electrodes. This open database greatly facilitates the decoding of
hand movement from EMG since many researchers developed
and tested their algorithms on this open database. Among these
algorithms, deep learning (DL) is the most commonly used
method (Rim et al., 2020; Buongiorno et al., 2021; Rajapriya
et al., 2021; Xiong et al., 2021). Atzori et al. (2016) proposed a
simple convolutional neural network (CNN) consisting of four
convolutional layers. The average accuracy tested on DB2 is
only 60.27%. Considering the sequential nature of the EMG
signal, Hu et al. proposed an attention-based hybrid CNN
and recurrent neural networks (RNN). The accuracy tested on
Ninapro DB2 is up to 82.2%. Ding et al. proposed a parallel
multiple-scale convolution architecture, which consisted of two
parallel blocks for feature extraction. The average accuracy tested
on NinaPro DB2 was 78.86%. Wei et al. proposed a multi-view
CNN framework, which combined the classical EMG feature
sets with a CNN classifier. The average accuracy tested on DB2
is up to 83.7%. Rahimian et al. (2021) proposed a “Few-Shot
Learning” framework based on meta-learning. The algorithm
achieved an accuracy of 85.94% on new repetitions when tested
on Ninapro DB2.

Although these works achieved promising performance
on new repetitions (the tested data is a never-seen-before
repetition), the training strategy was still different from real-
time prosthetic control. The training sessions should always
precede the testing ones in temporal coherence in a real-
world PR-based control system of hand prosthesis. However,
the mentioned works above all failed to (usually the repetitions
1, 3, 4, and 6 in Ninapro DB2 are used for training,
and the other two repetitions were used for testing) meet
this requirement.

The second reason is the change of surface EMG signal in
a real-world environment in contrast to the well-controlled
laboratory conditions. This reason is much more challenging
than the first aspect. There are many disturbing factors in
the real world, such as the electrodes shift, arm position
change, electrode-skin impedance, and muscle fatigue (Kyranou
et al., 2018; Jung et al., 2021). Among these disturbing
factors, dynamically changed arm position is one of the
inevitable factors that will degrade the performance of
EMG-PR algorithms severely (Radmand et al., 2014; Shin
et al., 2016; Teh and Hargrove, 2020). For the real-world
application of myoelectric prosthesis, the arm’s position will
inevitably change when the amputee performs activities of
daily living. Hence, it is challenging to train a motion classifier
to maintain high performance while moving the arm to
different positions, such as the hand grasp gesture classification
during a commonly used reach-grasp-moving-release-retract
(RGMRR) task.

Several methods have been put forward to minimize the
influence of arm position changes in past studies, such as the
multi-position classifier (Geng et al., 2012), cascade classifier

(Geng et al., 2017), dynamic training (Shahzad et al., 2019),
position-invariant features (Asogbon et al., 2020), and other
classification algorithms. Multi-modal signals are usually needed
for many methods, such as the accelerometry (ACC) signal,
the near-infrared spectroscopy (NIRS) (Guo et al., 2015, 2017),
electroencephalography (EEG) (Leeb et al., 2011), FMG (Ferigo
et al., 2017; Prakash et al., 2020a,b; Huang et al., 2021), and
some industry sensors used for human-centered robotic systems
(Huang et al., 2020; Yan et al., 2021). Among these signals, the
ACC is the most commonly used signal for the complementary
of EMG (Geng et al., 2012; Huang et al., 2015; Shahzad et al.,
2019), since the tri-axis ACC signal could provide information
about arm position. Moreover, the ACC and EMG signal can
easily be collected together by a commercial product (such as the
Delsys TrignoWireless System). However, the ACC signal is very
sensitive to unwanted motions. Thus both of the multi-position
classifier and cascade classifier are suitable for several stationary
arm positions.

Similar to EMG, the FMG signal is another good choice
that can be used for real-time control (Belyea et al., 2019; Choi
et al., 2021), which measures the shape and stiffness change of
the muscle during muscle contraction via the force sensor. The
FMG signal has also been studied for mitigating the influence
of limb position. In Ferigo et al. (2017), the author studied the
influence of limb position on FMG-PR based natural control of
a prosthetic hand, the results showed the classification accuracy
was more than 99% in a stationary position. When the arm
position was dynamically changed, the classification accuracy
degraded significantly. However, the robustness of FMG is still
higher than the EMG, whereas the dynamic non-ideal effects of
FMG are worse than the EMG due to the working principles of
FMG. It is easy to think that combining the EMG signal with
the FMG signal may be a good choice to mitigate the influence
of dynamic arm position change on PR-based prosthetic hand
control. Although there were some studies on gesture recognition
based on combined EMG-FMG signals (Connan et al., 2016;
Jiang et al., 2020; Ke et al., 2020; Choi et al., 2021), the ability of
EMG-FMG sensor for hand grasp types when the arm position
is dynamically changing has not been investigated, especially
the synergy effects of co-located EMG and FMG signal on the
classification of natural hand grasp types in ADLs.

In this study, we aimed to put forward a framework to address
the problem of intuitively and naturally control of prosthetic
hands during dynamic arm position changes. The framework
consists of two parts: the hardware and algorithm, as illustrated in
Figure 1. On the hardware aspect, the combination of co-located
FMG and EMG signals are adopted as the multi-modal strategy,
in which the EMG and FMG signal are measured at the same
place. On the algorithm side, a sequential decision algorithm that
can be used for real-time classification is proposed by combining
the RNN-based deep learning model with a knowledge-based
post-processing model. The proposed framework was tested on
an experiment of the RGMRR task, in which six most commonly
used grasp types selected from human grasp taxonomy were used
for the training and testing motion classes.

Generally speaking, the main contributions of this study can
be summarized as follows:
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FIGURE 1 | A summary of the approach for robust hand gesture recognition during dynamic arm movement in this study.

1. First, we proposed a framework to improve the robustness
of intuitively and naturally control of myoelectric prosthetic
hands during arm position changing, which considering both
the multi-mode signal input solution and the signal fusion
algorithm

2. Second, a sequential decision algorithm that can be used for
real-time classification is proposed by combining the RNN-
based deep learning model with a knowledge-based post-
processing model.

2. MATERIALS AND METHODS

2.1. Subjects
In this research, eight healthy right-handed volunteers were
recruited for our experiment (five males, three females). All
subjects were informed about the protocol and risks before
the experiment and signed an informed consent form. The
experiment was approved by the Ethics Commission of the
Yangxin People’s Hospital, and it was conducted according to the
principles expressed in the Declaration of Helsinki.

2.2. Experimental Protocol
Six natural grasp types selected from the human grasp taxonomy
(Feix et al., 2015) were used for the RGMRR task; they were: large
diameter cylindrical grasp (LDC), small diameter cylindrical
grasp (SDC), power sphere grasp (POS), tip pinch (PIN), tripod
grasp (TRI), and lateral grasp (LAT). Six daily-life used objects
were selected to execute the corresponding grasps: a plastic bottle
containing water, an electric metal drill, an ethylene-vinyl acetate
massage ball, a plastic lighter, a roll of electrical tape, and an
Alec plate. The size and weight about these objects is shown in
Figure 2. A thin-film force-sensing resistor (FSR) was attached
to the surface of each object in a feasible position where the

fingertip of the thumb contacts the object during grasp (as shown
in Figure 2). All subjects were carefully instructed to grasp the
objects with their thumb, or index finger pressed on the FSR.
With thismethod, the exact time of grasp can be determined from
the output signal of the FSR.

The layout of the experimental setup and the action of the
arm is shown in Figure 3A. The experiment procedure was a
repetitive reaching, grasping, moving, releasing, and retracting
cycle. In short, the task is to pick up an object from one place and
put it in another place (without walking). During the first cycle,
the subject was seated comfortably with their hands resting on
the knee or naturally hanging down, and this arm position was
called relax the arm (AR). Then the subject was asked to raise
their arm to reach the object, and this reaching phase is called
preparation of grasp (GP). Once the subject grasped the object
(GO) firmly, he/she should keep the grasping and then move the
object (MO) to the front table. Finally, the subject released the
object (RO) and retracted the arm (AR). The subject moved the
object from the front table to the right table for the next cycle. The
subject was informed about repeating these actions in 30 cycles.
The decomposition of each action is illustrated in Figure 3A.

2.3. Data Acquisition System
The sensor used for detecting the EMG and FMG signal was
developed by the author, and it was reported in the previous
study (Ke et al., 2020). The co-located EMG-FMG sensor can
measure the EMG signal and FMG signal at the same place
simultaneously. In this study, five sensor modules were used for
data acquisition. Therefore, 10 channels of signals (five channels
EMG and five channels FMG) were collected. The five sensors
were attached to an elastic cord with hook and loop fasteners
and then wrapped surround the forearm (about 5 cm below the
elbow joint). The sensors were not placed onto specific muscles
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FIGURE 2 | The six grasp types and the corresponding objects used for RGLRR task, they were: (A) large diameter cylindrical grasp; (B) small diameter cylindrical

grasp; (C) power sphere grasp; (D) tip pinch; (E) tripod grasp; (F) lateral grasp.

FIGURE 3 | Illustration of the experimental protocol (A) and data acquisition method (B).

precisely but were rather evenly distributed around the forearm.
For the convenience of data processing, a National Instruments
DAQ (NI-USB 6218) was used for data acquisition. The FSR
channel attached to objects was also connected to the NI card.
All of the channels were sampled at a frequency of 1,000 Hz. The
structure of data acquisition is shown in Figure 3B.

2.4. Performance Verification of the
Hardware Aspect
2.4.1. Input Signal Source
Several classical pattern recognition models were used to
compare the classification accuracy among three signal sources:
EMG only, FMG only, and the combination of EMG and FMG.

2.4.2. Feature Extraction
The raw EMG and FMG data were first filtered by a six-order
bandpass Butterworth filter (the cutoff frequency is 20 and 450
Hz) to remove the movement artifact. Then the filtered signal
of each channel was segmented separately by a sliding window

for feature extraction. According to existing studies, the window
length and step size significantly affect the accuracy and real-
time latency. For real-time control, the latency time should be
<300 ms (Zhang et al., 2019). To access the accuracy under
different latency levels, we selected four latency times (the step
size of the sliding window) for feature extraction: 50, 100, 150,
and 200 ms. The length of the data window for feature extraction
was twice the length of the step size, which means the sliding
window had an overlap of 50%. For feature extraction of the
EMG signal, many previous works indicated that the time-
domain feature is powerful enough for classification. In this
work, the feature set used for classification in this study includes
four types of components, including the mean absolute values
(MAV), root mean square (RMS), wave length (WL), and zero-
crossing (ZC), the definition of each feature is referred to the
description in Micera et al. (2010). Thus, for each window and
each channel, four feature values were extracted. Therefore, the
dimension of the feature vector of each signal mode (EMG or
FMG, both have five channels) in a time window for classification
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is R1×20. Both the EMG and FMG signals were processed in the
same way.

2.4.3. Classification
Four commonly used classifiers were selected for comparison
in this work, including the support vector machine (SVM)
with linear kernel, the SVM with the second-order polynomial
kernel, the linear discriminant analysis (LDA), and the k-nearest
neighbors (kNN, the number of neighbors is set to be 50).
The algorithm was implemented in MATLAB R2020b, and the
classifiers we used here were directly called from the Matlab
software. The features were normalized before inputting to the
classifier, and the other parameters of these classifiers were kept
in the software’s default setting.

2.5. Performance Verification of the
Algorithm Aspect
2.5.1. Overview of the Algorithm
The algorithm consists of three stages: The first stage is an RNN-
basedmodel for fast inference (updates every 50ms) based on the
EMG and FMG signals. The output of this stage is the posterior
probability of each grasp type rather than the discrete types; the
second stage is a majority voting procedure (updates every 150
ms) based on the posterior probability of the first stage. This stage
plays the role of smoothing the classification results to remove
outliers; The third stage is an error correctionmodel based on the
state transition model summarized from the prior knowledge of
the practical application. The pipeline of the algorithm is shown
in Figure 4, details about each part are introduced below.

2.5.2. Data Preparation
First, the raw EMG and FMG signals are filtered by a six-order
bandpass Butterworth filter (the cutoff frequency is 20 and 450
Hz) to remove the artifact of movement. Then, the EMG and
FMG signals (10 channels in total) are segmented into a window
length of 100 ms. The data window has an overlap of 50 ms. Thus
the update time (step size) of inference is 50 ms (suppose the time
used for inferring is <50 ms). In this way, the dimension of the
input signal to the next step is 10× 100.

2.5.3. Gated Recurrent Unit (GRU) Network
A GRU network is adopted at the classification stage, which is
a type of RNN. The architecture of the proposed GRU network
is a simple combination of a sequential input layer, GRU layer,
dropout layer, activation layer, fully connected layer, and output
softmax layer, the architecture of the GRU network is shown
in Figure 5A. The input signal matrix is normalized by a zero-
scoremethod at the sequential input layer. The number of hidden
units in the GRU layer is a hyperparameter chosen from several
numbers (100, 150, 200, 250, and 300) according to the average
classification accuracy for all subjects. The activation layer we
used here is the rectified linear unit (ReLU), which performs a
threshold operation on each input value. Then the output from
the ReLU layer is connected to a fully connected (Fc.) layer.

Finally, a softmax layer is used for output. The output is set to
be the posterior probability of each class.

The proposed architecture of the GRU network was
implemented in MATLAB R2020b and trained using the adam
optimizer. The batch size for training was set to be 128, and
the number of training epochs was 30. The learning rate was
set to be 0.001, while the factor for dropping the learning rate
was 0.1. The other parameters were kept in the software’s default
setting. The hardware resource for the training process is amobile
workstation graphics card (Nvidia Quadro P620).

2.5.4. Posterior Probability Smoothing
The update time of the GRU network was 50 ms, this time delay
is too fast for prosthetic hand control, and it may cause many
outlier commands. To obtain more reliable recognition results,
we smoothed the posterior probability by averaging every three
adjacent outputs of the GRU network: Pt−1, Pt , and Pt+1. The
time latency may increase to 150 ms. However, this latency is still
under the constraint of real-time control.

The smoothed posterior probability for each step is given by:

Pt′ =
1

3

t+1
∑

k=t−1

Pk (1)

where Pt = [p(yt = c0|Xt), p(yt = c1|Xt), ..., p(yt = c6|Xt)]
T is

the output posterior probability of the softmax layer (c0 means
rest, and c1 to c6 means the grasp type in Figures 2A–F).Xt is the
input data matrix to GRU network. At this step, we calculate the
output every 150 ms.

2.5.5. State Transition Model for Decision
Considering the actual scenario, if the user keeps grasping an
object, the next possible state will be keeping the current grasp
type or releasing the object. It is impossible to change the grasp
type from one to another directly without first releasing the
current object in hand. Furthermore, from an empirical point
of view, maintaining the current state may be greater than the
probability of changing the state if safety and cost are considered.
In other words, for a real-world prosthetic hand control system,
the grasp type command of the last moment may affect the
grasp type command of the next moment. For the PR-based
control system, the grasp type command conversion conditions
should bemore strict on the posterior probability, rather than just
choosing the grasp type with the highest posterior probability.

Based on the above analysis (prior knowledge), we
summarized two simple decision-making rules based on
the smoothed posterior probability. The output decision
ot′ ∈ [c0, c1, ..., c6] at time t′ is determined by an iterative process.

Rule 1: the rule for transmitting from a grasp state ci, (i 6= 0)
to the other grasp state cj, (j 6= 0, j 6= i) is defined as:

if yt′−1 6= c0, yt′ 6= c0, yt′ 6= yt′−1 then

ot′ =







ot′−1
p(yt′ )
p(yt′−1)

< w1

ot′
p(yt′ )
p(yt′−1)

≥ w1

(2)
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FIGURE 4 | The pipeline flowchart of data processing, inference, and post decisions.

FIGURE 5 | (A) The architecture of the GRU network. (B) The illustration of state transition.

where w1 is the threshold of state changing between different
grasp types.

Rule 2: the rule for transmitting from a grasp state to the rest
state is defined as:

if yt′−1 6= c0, yt′ = c0 then

ot′ =







ot′−1
p(yt′ )
p(yt′−1)

< w2

ot′
p(yt′ )
p(yt′−1)

≥ w2

(3)

where w2 is the threshold of state changing from grasp to rest.
These two state transmission rules are described in Figure 5B.

The value of w1 and w2 in rules 1 and 2 should be determined
by the classifier’s performance. They act as hyperparameters to
adjust the strictness of state transition conditions. In this study,
the value of w1 and w2 is optimized by directly searching from 1

to 5 with a span of 0.5. The final optimized value of w1 and w1 are
both 2.5.

2.6. Training and Testing
To simulate the real-time training in a real-world application,
we used the incremental training method for training. For each
grasp type of each subject, the training data was the first 20
repetitions, and the remaining 10 were used for testing. This
training strategy is similar to the real-world application since
the training data should always precede the testing data in time
(Zanghieri et al., 2019). For each subject and classifier (all of the
evaluated classifiers in this work and different configurations of
classifiers of the same type were regarded as different classifiers),
the training and testing procedure was repeated 10 times to
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FIGURE 6 | The example data of two channels during five consecutive

reach-grasp-move task, the red dotted lines mean the true label of hand grasp

or hand open (the change point of red dotted lines means the starting or

ending of grasp) during five consecutive repetitions. (A) The trigger signal of

FSR on objects. (B) The FMG signals on fifth channel. (C) The EMG signal on

fifth channel. (D) The value of TKE operator of the EMG signals on fifth

channel, the blue dotted line in denotes the onset and offset of the EMG signal.

calculate the average accuracy. The average accuracy for all
subjects is the mean value of each subject’s average accuracy.

3. RESULTS

3.1. Characteristics of EMG and FMG
Signals
Figure 6 shows the EMG and force signals of channel 5 in
five consecutive grasp tasks (subject 1). The red dotted lines in
Figures 6A–D mean the true label of hand grasp or hand open
during five consecutive repetitions, the change point of red dotted
lines means the starting or ending of grasp. The onset and offset
of the grasping are determined by the force signal of the FSR
sensor attached to the objects. The change point of red dotted
lines was calculated by applying a hard threshold to the FSR signal
in Figure 6A, the threshold is the mean value + 5 × standard
deviation of the FSR signal in the first second (resting state). In
comparison, the blue dotted line in Figure 6D denotes the onset
and offset of the EMG signal in Figure 6C. The change point of
the blue dotted line is determined from the Teager-Kaiser Energy
(TKE) feature (Li et al., 2007) of the EMG signal by applying a
hard threshold to the TKE feature. The threshold is the mean
value + 5 × standard deviation of the TKE feature in the first
second of the resting state. The TKE feature of the EMG signal is
calculated by:

ψi = xi
2 − xi−1xi+1 (4)

where xi is the EMG signal at time point i.
As shown in Figures 6C,D, the onset of the EMG signal is

very sensitive to the arm movement. As long as the arm moves,
there is an obvious EMG signal. This characteristic of the EMG

TABLE 1 | The average accuracy in all subjects for different time windows and

classifiers.

Classifier Input signals 50 ms 100 ms 150 ms 200 ms 250 ms

SVM (liner) EMG 0.7749 0.7877 0.7990 0.8053 0.8054

FMG 0.7724 0.8058 0.8181 0.8324 0.8350

EMG-FMG 0.8919 0.8984 0.8999 0.8974 0.8947

SVM

(second-order)

EMG 0.8170 0.8211 0.8139 0.8008 0.7964

FMG 0.7894 0.7962 0.7990 0.8010 0.8014

EMG-FMG 0.8805 0.8847 0.8893 0.8785 0.8734

LDA EMG 0.6579 0.6874 0.7031 0.7153 0.7218

FMG 0.6891 0.7245 0.7421 0.7560 0.7625

EMG-FMG 0.8135 0.8388 0.8511 0.8557 0.8531

KNN EMG 0.7498 0.7360 0.7211 0.7142 0.7038

FMG 0.7143 0.7255 0.7259 0.7233 0.7115

EMG-FMG 0.8064 0.7940 0.7802 0.7677 0.7531

Bold values show the best results of classification (the maximum of accuracy).

signal is one of the reasons that cause the misclassification of the
grasping gestures during dynamic arm movement. In contrast,
as shown in Figure 6B, the FMG signal at the same position is
not so sensitive to the arm movement. The onset of the FMG
signal slightly lags behind the start of a steady grasp, which may
be due to the mechanical low-frequency filtering effect of the
FMG sensor. Generally speaking, the onset of the EMG signal is
ahead of the onset of grasping, while the onset of the FMG signal
lags behind the onset of grasping. Based on these phenomena,
the combination of EMG and FMG might be a good choice for
gesture recognition during dynamic arm movement.

3.2. EMG-FMG Signal Fusion for
Classification
Table 1 shows the average accuracy in all subjects for different
time windows and classifiers. For each subject, the accuracy is
the mean value of 10 repeats, and then the accuracy of the
eight subjects was averaged. It can be seen from Table 1 that the
average accuracy of the EMG-FMG combination feature set is
higher than that of only using EMG or FMG. For the traditional
classifier, SVM still shows the best performance and robustness.
Another fact should be noted is the influence of window length
on accuracy. For linear SVM, a longer time window will get
better performance when using EMG-only or FMG-only feature
sets; However, the window length seems to have little influence
on the EMG-FMG combined feature sets. Even though the time
window is as short as 50 ms (which means an update frequency
of inference is 20 Hz), the performance is still very steady. These
facts also indicate that the combined EMG-FMG feature sets are
more robust than each feature set.

Among these classifiers, the SVM model with linear kernel
function gets the best performance. Figure 7 shows the
comparison of the accuracy of three kinds of feature sets for
each subject when using the linear SVM classifier with a stepped
window of 150 ms. The result shows that the accuracy of the
combination of EMG-FMG features is significantly higher than
the accuracy that only uses EMG or FMG (p < 0.05). However,
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FIGURE 7 | The accuracy of classification for three feature sets (classifier: linear SVM).

TABLE 2 | The comparison of average accuracy for different methods.

Atzori et al. (2016) Zia ur Rehman et al. (2018) Nasri et al. (2019) Tam et al. (2019) Linear SVM This study

Subject 1 0.8918 0.8575 0.7810 0.7568 0.9474 0.9543

Subject 2 0.8322 0.8181 0.7806 0.7034 0.8962 0.9365

Subject 3 0.9301 0.8797 0.8243 0.7654 0.9175 0.9540

Subject 4 0.8799 0.8360 0.7820 0.6997 0.8993 0.9389

Subject 5 0.8534 0.7970 0.7563 0.6772 0.9248 0.9410

Subject 6 0.8364 0.7894 0.7152 0.6525 0.8181 0.9155

Subject 7 0.9126 0.9071 0.8345 0.8244 0.9216 0.9402

Subject 8 0.8346 0.7860 0.6954 0.6625 0.8747 0.9363

Mean acc. 0.8714 0.8338 0.7712 0.7177 0.8999 0.9396

Bold values show the best results of classification (the maximum of accuracy).

the EMG and FMG features’ accuracy does not show a consistent
advantage for different subjects.

3.3. The Average Classification Accuracy
Table 2 shows the comparison of classification accuracy between
our proposed model (the number of hidden units in the GRU
layer is 150) and the other methods. Because no previous deep
learning models used both EMG and FMG signals for input, the
four deep learning models we mentioned here were all developed
for EMG-only input. Among these four models, the model
proposed by Nasri et al. (2019) was a GRU network, while the
other three models were CNN networks with different structures
(Atzori et al., 2016; Zia ur Rehman et al., 2018; Tam et al., 2019).
Here, the FMG signal was treated the same way as the EMG signal
for all models, which meant the input signals had 10 channels.
The window length of input signals for all models was 300 ms,
with an overlap of 150 ms. This way, the update time of decision
outputs for all models was 150 ms.

The results in Table 2 show that the performance of our
proposed method is the best among these models. The accuracy
of our proposed model is 3.5% higher than that of the SVM
model. It also should be noted that the performance of the
other four deep learning models is poorer than the classical
SVM model. This result may be because the original paper of

these models is all optimized for only EMG input. Moreover, the
number of channels for this original research differs from our
experiment. For example, the Atzori model is developed for the
Ninapro database, which contains 12 channels and the number of
EMG channels used in the work of Zia ur Rehman et al. (2018),
Nasri et al. (2019), and Tam et al. (2019) were 8, 8, and 32,
respectively. However, in this work, we used only five channels
of EMG. The increasing of EMG channels may help improve the
performance of the PR model.

3.4. The Role of Empirical Model
As we mentioned in Section 2.5.5, the empirical model in our
method is focused on reducing the false-negative error. The false-
negative error in this study is defined as a grasp type (c1 to c6) is
misclassified as the rest type (c0). This kind of error should be
more costly than a false-positive error.

Figure 8 shows the typical results of grasp gesture sequence
over time before and after majority voting. The direct inference
output of the GRU has many outliers, even though the general
accuracy is still high enough. After the majority-voting method,
the outliers are smoothed, but there is still somemisclassification.
However, this empirical model limits the variety of gestures,
which may cause a lag behind the gesture change in mind.
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FIGURE 8 | The continuous output of our proposed method at different stage.

FIGURE 9 | An example of the typical confusion matrix between (A) and after (B) error correction (subject 1).

Figure 9 is an example of the typical confusion matrix
between and after error correction. The error correction model’s
role is to reduce the false-negative error that misclassified a
grasp type into rest. Although the change in overall accuracy
was not significant, the percentage that misclassified grasp as rest
decreased, consistent with the purpose of the empirical model.

4. DISCUSSION

This study provided a framework with great potential to reduce
the interference of arm position change on PR-based prosthetic
hand control. However, the study also has limitations: First,

the data analysis is developed on a laptop rather than an
embedded processor. On the embedded processor, the real-
time performance (control latency) may be depressed due to
the limitation of computation performance; In addition, the
moving trajectory of the arm in the RGMRR task is relatively
fixed, whereas, in real life, the trajectory of the arm may
be random.

Whereas, the above is only reasonable speculation, the
performance in the practical application needs further clinical
online experimental research. In fact, in practical application, the
user can intuitively observe the actual output results (according
to the action and state of the prosthetic hand). Therefore, the
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user can adjust the intensity of grasping intention according to
the actual output results. From this perspective, the result of real-
time application may be better than off-line analysis because of
the visual feedback in practical use.

5. CONCLUSION

For a PR system based on an EMG-only signal used for
prosthesis control, the length of the signal window used
for classification significantly influences classification accuracy.
However, our study shows that the length of sliding window
size has little effect on the PR system when using the co-
located EMG and FMG signals as input signal sources. The
performance of the PR system based on EMG-FMG signals
input is better and more robust than EMG-only input or FMG-
only input. The experimental results also show that the onset
of the EMG signal is ahead of grasping, while the onset of the
FMG signal lags behind grasping; thus, they may compensate
for each other. These results indicate that the combination
of EMG and FMG signals is a good multi-modal choice
for classifying grasp types when arm position changes. Co-
located EMG-FMG signals showed high robustness when arm
position changes.

Compared with other direct classification methods, the
algorithm proposed in this paper has two advantages: First, the
average classification accuracy can be improved compared with
other traditional methods or DL methods; Second, the false-
negative error that misclassified a grasp type into rest can be
controlled by adjusting the state transmission model, which
provided a flexible way to balance the accuracy and action
switching time.

Generally speaking, the experimental results showed that
the proposed framework could improve the robustness of
natural grasp type classification during arm movement. Thus,
it may help narrow the academical-practical gap in PR-based
myoelectric hand.
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