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Abstract: Although the cerebellum has long been believed to be involved uniquely in sensorimotor
processes, recent research works pointed to its participation in a wide range of cognitive predictive
functions. Here, we review the available evidence supporting a generalized role of the cerebellum
in predictive computation. We then discuss the anatomo-physiological properties that make the
cerebellum the ideal hub of the predictive brain. We further argue that cerebellar involvement in
cognition may follow a continuous gradient, with higher cerebellar activity occurring for tasks relying
more on predictive processes, and outline the empirical scenarios to probe this hypothesis.
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1. Introduction

Predicting what is going to happen in the future in order to optimize neurocognitive
resources for upcoming tasks is perhaps one of the most important functions that the
human brain has to deal with in order to successfully adapt to the surrounding environ-
ment [1,2]. Accordingly, the interest in predictive processing dates back to the 19th century,
with William James’ definition of sensory anticipation as preperception and his postulation
that certain brain areas could be pre-activated in order to optimize resources, thus reducing
the subsequent processing load [3]. Prediction can be defined as a process that incorporates
information about the past or the present, and that generates the relevant information for
coping with future (environmental, bodily or mental) states [4]. Consistent with this, exper-
imental evidence is available for predictive involvement in almost every human function
(e.g., for motor control: [5]; for attention: [6]; for language: [7]; for executive functions: [8];
for memory: [9]), demonstrating the pervasiveness of prediction in human cognition.

Notably, despite different areas of the human brain having been shown to participate
in predictive mechanisms, the cerebellar circuit likely represents the primary candidate
for coordinating such predictive computations (for a review: [10]). Indeed, despite almost
the entire brain being to various degrees involved in predictive processing (i.e., with brain
areas spanning from the frontal to prefrontal, temporal and parietal regions, together with
other cerebral structures such as the hippocampus, the cerebellum, the basal ganglia, the
insula and the amygdala; see [4]), here we propose that the cerebellum may be considered
as the principal hub of the predictive brain [11].

While the cerebellum has indeed been traditionally associated with motor aspects of
prediction, in the last decade, important evidence has emerged extending its predictive
role to higher-order cognitive processes ([10,12]; and for a meta-analysis see [13]). This
evidence corroborates previous theoretical accounts, according to which the cerebellum
is able to “regulate the speed, capacity, consistency, and appropriateness of mental or
cognitive processes” ([14], p. 1183). Accordingly, the cerebellum is thought to perform the
same basic processes across the various motor and non-motor functions ([12]; but for a
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divergent view, see [15]), a key feature making this region as the ideal orchestra director of
the predictive brain.

In the following sections, we will thus first briefly review the available evidence
supporting a generalized role of the cerebellum in prediction. We will then discuss how
cerebellar anatomo-physiological as well as functional properties can account for its in-
volvement in predictive computations for both motor and nonmotor domains. Next, we
will move on by maintaining that cerebellar involvement in cognition follows a continuous
gradient, with higher cerebellar activity occurring for those cognitive tasks relying more
on predictive computation. We will ground this proposal in recent evidence indicating
that cerebellar activation increases with enhanced task demands relying on predictive
mechanisms. Finally, we will also discuss how our proposal makes testable predictions for
subsequent empirical research.

2. Cerebellar Prediction across Motor and Non-Motor Domains

Currently, our knowledge about the predictive computations performed by the hu-
man cerebellum is still mainly based on motor functions. Several studies have shown that
patients with lesions over the anterior parts of the cerebellum exhibit disturbances in motor
accuracy and coordination, such as disorders of saccades control, speech production (e.g.,
anarthria), limb movements, posture and gait (for a review see: [16]). For example, cerebel-
lar patients typically exhibit hypermetria or hypometria, impaired timing of movements,
overall slowness, and increased curvature of trajectories [17]. These findings have led to the
hypothesis that the cerebellum contributes to timing processing, sensory acquisition and
motor coordination across motor functions. In particular, the cerebellum is thought to be
involved in the internal representation of the consequences of an action, that is, comparing
what was predicted and what actually occurred (i.e., with the generation of potential signal
errors in case of a mismatch between the two). The cerebellum would thus make motor
coordination possible, in that it would use the efferent copy (i.e., an internal copy of the
motor command) to simulate the sensory consequences of the movement and would then
compare this copy with the actual feedback generated [18]. For instance, in grasping tasks,
patients with cerebellar lesions show impaired performance in controlling the amount of
force used when grasping an object [19,20], likely reflecting impaired anticipation of the
consequences of actions and synchronization of the musculoskeletal system during volun-
tary movements [21]. Recently, Tanaka and colleagues ([22]; for evidence on deterioration
of predictive motor control in ataxic patients, see [23]), provided direct evidence for the
contribution of the cerebro-cerebellum to predictive processes. In particular, this study
demonstrates that the current firing rates of dentate cells from the cerebellum can predict
the future firing rates of mossy fibers, hence supporting the forward-model hypothesis [10].

Notably, several basic functions have been linked to cerebellar involvement also across
non-motor processes, including the generation of internal models, as well as the processing
of sequential and temporal information (for review and experimental evidence, see [24–28]).
In particular, the past few years have seen a rapid increase in the number of studies explor-
ing cerebellar involvement in predictive computation in non-motor, cognitive domains.
Strong evidence for cerebellar involvement in predictive cognitive processing comes from
studies focusing on the language domain. The ability to create and update internal mod-
els may indeed be crucial for error monitoring and fluency during speech production.
Accordingly, in a seminal study, Lesage and colleagues [29] combined eye-tracking and
transcranial magnetic stimulation (TMS) and showed that TMS over the right cerebellum
caused a reduction in the anticipatory advantage for predictive sentences as compared to
control stimulation. More specifically, cerebellar TMS impaired predictive performance for
predictable sentences (e.g., “the boy will eat the cake”) but not for unpredictable sentences
(e.g., “the boy will move the cake”). These results were recently replicated using transcra-
nial direct current stimulation (tDCS) [30]. Similarly, Moberget and colleagues [31] found
that cerebellar activation significantly increased following a violation of linguistic contex-
tual predictions (e.g., “two–plus–two–is—APPLE”) compared with contextually correct
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predictions (e.g., “two–plus–two–is—FOUR”). This increased activation can be interpreted
as the effort made in matching the expected event with the one actually occurring and,
hence, in the extent to which the task at hand was relying on predictive computations.
Finally, cerebellar beta-frequency TMS increases N400 correlates of semantic prediction,
thus suggesting enhanced discrimination of semantic context predictability [32].

Further evidence comes from studies investigating verbal working memory [33] or
attentive processing [34]. For instance, in a recent study by Sheu and colleagues [33],
participants were asked to memorize an array of six letters and then, after a short delay, to
report the letters in the correct position. The results show that cerebellar TMS impaired
participants’ performance, resulting in prediction errors in the phonological loop. In
another recent study, Mannarelli and colleagues [34] showed that after cathodal cerebellar
tDCS, the efficiency of the executive network is reduced and the ability to process complex
stimuli—in which conflict signals or errors are present—is impaired. Together, these
findings indicate that the cerebellum is involved in predictive error processing, as well as
in the coordination of the areas involved in the perception of conflicting signals.

Preliminary neuroimaging evidence suggests a possible role of the cerebellum in
predictive functions in social cognition, as the violation of social norms (i.e., a process that
requires to compute whether the action could be construed as a violation and, crucially,
whether the action was intended) has been shown to elicit fronto-temporo-cerebellar acti-
vations ([35]; see also [36,37]). In line with this preliminary evidence, cerebellar tDCS has
been demonstrated to modulate participants’ performance in predicting actions embedded
in highly informative contexts [38]. Future studies are nevertheless still needed to probe
cerebellar involvement in predictive processing across different aspects of social cognition,
as well as whether cerebellar involvement in cognitive functions is based on the very
same predictive computations operating for the motor domain (for preliminary evidence,
see [39]).

3. Anatomo-Physiological and Functional Features Make the Cerebellum the Ideal
Predictive Hub

Why would the cerebellum represent the ideal hub for the predictive brain? In this
section, we propose that specific cerebellar anatomo-physiological and functional features
make this part of the brain the ideal candidate for coordinating predictive computations
for the whole brain.

First, compared with the 21–26 billion neurons in the cerebral cortex, the impressive
cerebellar neural machine has around 100 billion neurons [40], thus making this relatively
small part of the brain an ideal hub for demanding tasks relying on predictive computation.
Second, the composition of cerebellar cortex is markedly different compared with the
cerebral cortex. The cerebellar cortex has a homogeneous and uniform microstructure [41]—
that is, contrary to the cerebral cortex, the various lobules composing the cerebellum do not
differ in terms of microstructure. Based on this, it has been proposed that the cerebellum
performs the very same computational processes across all the domains in which it is
involved ([12,14]; for a review, see also [10]). Such a view has been also supported by recent
lesion studies indicating that cognitive and affective symptoms that arise after cerebellar
dysfunctions follow a similar pattern of abnormality as for motor symptoms [39]. This is
compatible with the proposal that the cerebellum performs similar predictive computations
across different cognitive and motor domains.

Another key feature of the cerebellum, partially deriving from such a structural and
functional uniformity, is the segregation of the lobules composing the cerebellum through
their extensive connections with the cerebral cortex (i.e., cerebellar regions connected to
motor areas are involved in motor processes, while cerebellar regions connected to cognitive
areas are involved in cognitive processes; [12]). Several studies have indeed supported a
functional double dissociation between the anterior and posterior cerebellar lobes, with the
former connected to motor areas and the latter to non-motor areas (for a review, see: [42]).
In addition to this, it was also recently demonstrated that cerebro-cerebellar connections
are segregated [43–45], thus allowing specific cerebellar areas to participate in specific
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functions. Accordingly, verbal and semantic processing are generally right-lateralized in
the cerebellum ([46,47]; for evidence involving verbal and spatial working memory, see
also [48,49]), whereas, in the cerebral cortex, they are left-lateralized [50,51], reflecting
crossed cerebro-cerebellar connections [52,53]. Furthermore, while lesions in anterior
cerebellar areas result in clear motor impairments mostly linked to movement coordination,
lesions in posterior cerebellar areas typically result in a set of symptoms involving deficits
across executive functions, language, attention, social cognition and spatial processing
(this syndrome is generally referred to as cerebellar cognitive-affective syndrome (CCAS),
or Schmahmann’s syndrome [54]; e.g., for causal evidence of cerebellar involvement in
these processes, see [55–57]) that would not be simply explained by concurrent motor
impairments [58]. Together, this evidence indicates the specific cerebellar involvement in
different cognitive functions, likely because of the segregated connections with the various
brain areas supporting such functions. This is a potentially paramount feature for an hub
that coordinates predictive processes for different cognitive functions.

Finally, on the functional side, the cerebellum can be considered as a multimodal
structure. Several studies have shown that the cerebellum is involved in the integration of
proprioceptive, vestibular, visual and motor efference information in order to create a uni-
fied, multimodal representation of a target event [59]. More importantly, cerebellar involve-
ment has been reported in multisensory integration [60], sensory–motor integration [61],
as well as semantic integrative processes [62]. Such an extensive participation in integrative
processes may demonstrate the fact that the cerebellum acts as a central coordinator of
the entire predictive system, as this structure has been shown to be able to store and use
flexible representations of objects in ecological contexts [63].

Together, the evidence presented here supports the proposed view of the cerebellum as
a central hub of the predictive brain. In the next section, we will review recent experimental
evidence and make our proposal more specific by maintaining that cerebellar involvement
follows a continuous gradient depending on the specific predictive demands required by
the task at hand.

4. A Gradient of Cerebellar Involvement

Despite the growing number of studies that support cerebellar involvement in predic-
tive processes across motor and non-motor domains [12], the specific mechanisms of such
an involvement across the various domains, as well as its possible interplay with the rest
of the nervous system, are not yet clear. The role of the cerebellum in predictive processes
has indeed been largely supported by studies comparing experimental conditions clearly
relying on predictive computations with those in which predictive computations were not
required and, thus, on an all-or-nothing basis. In this section, we rather propose that that
cerebellar involvement in cognition follows a continuous gradient, with higher cerebellar
activity occurring for those cognitive functions or experimental tasks relying more on
predictive computations.

In grounding this proposal, we first note that cerebellar activation increases with
increasing task demands. In a seminal functional magnetic resonance imaging (fMRI) study,
Xiang and colleagues [64], using three different discrimination tasks assessing semantic
discrimination with different levels of difficulty, reported stronger cerebellar activation
(i.e., in terms of both activation volume and signal intensity) in more difficult tasks. These
findings were recently extended in another fMRI work [65] by showing that cerebellar
activation increases with higher central executive demands in verbal and non-verbal
working memory tasks (e.g., n-back tasks). In addition, using the same paradigm adopted
by Moberget and colleagues [31], another recent study reported that tDCS modulates BOLD
activation patterns only during predictable sentences compared with non-predictable
ones [66]. That is, compared with control stimulation, anodal stimulation increased right
cerebellar activation during semantic prediction and supported a central role for the
cerebellum in predictive cognition, enhancing resting-state functional connectivity between
hubs of the language network.
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Other evidence comes from a recent study [67] employing TMS over the right cerebel-
lum during the recognition phase of the Deese–Roediger–McDermott paradigm (DRM [68]),
a typical false memory task in which participants are asked to memorize several lists of
words and then to perform a recognition task. The words that compose each list are as-
sociatively related to a non-shown word (called critical lures), which is generally falsely
recognized [69,70]. In two experiments, Gatti and colleagues [67] found that cerebellar TMS
selectively affected participants’ discriminability for critical lures (i.e., the false memory
items) without affecting participants’ discriminability for unrelated words. More critically,
the higher the semantic association between new and studied words (i.e., how accurately
new words could be predicted on the basis of the semantic content of studied words), the
stronger the effect of the cerebellar stimulation [67].

Notably, the concept of a gradient of involvement can take multiple forms, and has
been recently employed to account for the functional organization of the cerebellum.
For instance, recent evidence provided support for the existence of a gradual functional
organization of the cerebellum that spans from unimodal (e.g., motor) to trans-modal areas
in a sensorimotor-fugal manner [71]. Similarly, a functionally relevant gradient within the
posterolateral cerebellum has been documented, with motor-adjacent cerebellar regions
associated with the control of current actions and motor-distal cerebellar regions associated
with the preparation for future goals and actions [72]. Here, we predict that the cerebellum
is gradually involved in cognitive tasks depending on the extent to which these tasks rely
on predictive processing.

Taken together, these findings suggest that cerebellar involvement in predictive pro-
cesses may follow a continuous gradient, with tasks heavily relying on predictive process-
ing eliciting a higher cerebellar activation. This proposal may explain the relatively high
heterogeneity of motor and non-motor functions ascribed to cerebellar activity (i.e., if the
task relies on predictive processes, the cerebellum would presumably be involved), as well
as its degree (the stronger the predictive component, the higher the cerebellar involvement).

5. Future Directions and Challenges

To empirically test this proposal, future studies may develop ad hoc tasks that differ-
ently manipulate the predictive load required. This could be ideally investigated in two
cognitive domains that strongly rely on predictive operations and that have been recently
ascribed to cerebellar functioning, such as language and music domains [73,74]. Language
and music indeed share many commonalities, in that their repetitive architecture makes it
possible to easily detect predictive components. As a consequence, in these domains, one
may operationalize the predictiveness of relevant cues by computing indexes such as word-
frequency, typical word co-occurrence or pitch co-occurrence. These indexes can, in turn,
provide a continuous measure quantifying how much expected predictions are violated
or confirmed. For instance, the use of distributional semantic models from computational
linguistics may represent an ideal tool for quantifying the level of predictiveness in the
language domain [75]. The architecture of these models is indeed grounded in associative
learning mechanisms, which are in turn crucial for cerebellar internal models [73].

Within the language domain, it would be relatively easy to build different linguistic
stimuli relying on predictive components to various degrees and then investigate the
relative cerebellar involvement. For example, one may use fMRI to explore cerebellar
activation in sets of sentences with a different gradient of predictability ranging from low
(e.g., “the man was reading a hand”) to high (e.g., “the man was reading a book”) (see:
Figure 1 for a schematic representation). These future studies may also manipulate the
cognitive level of prediction (i.e., surprisal vs. semantic similarity vs. compositionality,
e.g., [76,77]), thus directly investigating the mechanisms underlying cerebellar activity.
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Figure 1. Schematic representation of the alleged gradient of cerebellar activation as a function of the
language-based predictability. In particular, for the language domain, we expect cerebellar activation
to be related to the predictability of the sentence, with higher activation for more predictable words.

Similarly to language, music is a complex stimulus that occurs over time and offers
a great opportunity to understand predictive processes [78–80]. While listening to mu-
sic, we constantly generate hypotheses about what could happen next in terms of both
temporal (e.g., rhythms) and melodic (e.g., notes or chords) events [81]. The cerebellum,
likely because of its ability to detect changes and deviations in sequential events [27,82],
has been shown to play a crucial role in rhythmic perceptual and motor entrainment (i.e.,
the interaction of the external rhythm of the music with an internal body rhythm of the
listener; see, e.g., [83], which is pivotal for the generation of musical expectancies [84–86]).
Interestingly, musical regularities can be manipulated to different degrees, for example
through variations in the metric complexity [87], or via violations of pitch expectations [88].
This type of stimuli, varying in predictive load, can be easily adapted to an fMRI paradigm
in order to explore the cerebellar involvement in predictive processes. In a continuous
music listening task, participants are asked to listen to less, moderately, and highly pre-
dictable rhythms. Higher cerebellar activation should be observed for highly predictable as
compared to moderately predictable stimuli, and for moderately predictable as compared
to less predictable stimuli. As musical training has been shown to lead to a predictive
listening advantage, also associated with changes in cerebellar connectivity [89,90], the
gradient of cerebellar involvement could be further explored by investigating the differ-
ences between musicians and non-musicians. In particular, the expected effect (i.e., higher
cerebellar activations for highly versus moderately versus less predictable excerpts) should
be stronger in a group of trained musicians as compared with non-musician participants.

As stated above, language and music can be considered as two ideal domains to test
our hypotheses, since they both allow for a formal, quantitative definition of the associative
and predictive relationship between stimuli. However, cerebellar involvement has also
been reported across several other domains, as in the case of the three main components of
executive functions (e.g., inhibition, multitasking and working memory; [42,91]). Accord-
ingly, the gradient hypothesis outlined here could also be tested on executive functions,
possibly employing predictive tasks already established in the cerebellar literature [33].
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6. Conclusions

Prediction is involved in almost every human function, from more basic ones, such as
in the case of motor coordination, to more complex ones, such as in the case of semantic
memory. Here, we argue that, despite several studies reporting evidence for the involve-
ment of a large number of brain areas in predictive processes, the cerebellum should be
considered as the principal hub of the predictive brain. This proposal was grounded in
the uniformity of cerebellar cortex microstructure and its segregated connections with
the cerebral cortex, as well as in its functional role, which makes the cerebellum the ideal
director coordinating predictive computations. Moreover, to explain the relatively high
heterogeneity found in cerebellar activation across various motor and non-motor tasks, we
proposed that cerebellar involvement in predictive processes follows a continuous gradient,
with specific predictions that were outlined to fully probe this possibility in the language
and music domains. This is especially desirable to ultimately improve our understanding
of a brain system such as the human cerebellum, which has been traditionally associated
with motor aspects but whose participation in cognitive processes is arousing more and
more interest.
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