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This study aimed to investigate the value of amplitude of low-frequency fluctuation
(ALFF)-based histogram analysis in the diagnosis of Parkinson’s disease (PD) and
to investigate the regions of the most important discriminative features and their
contribution to classification discrimination. Patients with PD (n = 59) and healthy controls
(HCs; n = 41) were identified and divided into a primary set (80 cases, including
48 patients with PD and 32 HCs) and a validation set (20 cases, including 11 patients
with PD and nine HCs). The Automated Anatomical Labeling (AAL) 116 atlas was used
to extract the histogram features of the regions of interest in the brain. Machine learning
methods were used in the primary set for data dimensionality reduction, feature selection,
model construction, and model performance evaluation. The model performance was
further validated in the validation set. After feature data dimension reduction and feature
selection, 23 of a total of 1,276 features were entered in the model. The brain regions of
the selected features included the frontal, temporal, parietal, occipital, and limbic lobes,
as well as the cerebellum and the thalamus. In the primary set, the area under the curve
(AUC) of the model was 0.974, the sensitivity was 93.8%, the specificity was 90.6%,
and the accuracy was 93.8%. In the validation set, the AUC, sensitivity, specificity, and
accuracy were 0.980, 90.9%, 88.9%, and 90.0%, respectively. ALFF-based histogram
analysis can be used to classify patients with PD and HCs and to effectively identify
abnormal brain function regions in PD patients.

Keywords: Parkinson’s disease, functional MRI, amplitude of low-frequency fluctuation, histogram analysis, least
absolute shrinkage and selection operator, machine learning

INTRODUCTION

Parkinson’s disease (PD) is one of the most common clinically progressive neurodegenerative
diseases worldwide, with prevalence second only to Alzheimer’s disease, and it affects
more than 10 million people worldwide (Kim et al., 2017; Srivastav et al., 2017). Early
diagnosis and treatment of PD are crucial to stop its progression in the initial stages
(Chen et al., 2014; Adeli et al., 2016; Heim et al., 2017). In the early stage of PD,
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the main manifestations are non-motor symptoms, which are
nonspecific and difficult to diagnose (Peng et al., 2017; Cigdem
et al., 2018; Tuovinen et al., 2018; Rubbert et al., 2019).
However, advancements in neuroimaging and machine learning
technologies have led to an increasing role of such technologies
in the accurate diagnosis of PD (Chen et al., 2014; Szewczyk-
Krolikowski et al., 2014; Peng et al., 2017; Amoroso et al., 2018).

Resting-state functional magnetic resonance (rs-fMRI; Qin
et al., 2019; Zhou Z. W. et al., 2019) is one of the most
commonly used techniques for neuroimaging. The amplitude
of low-frequency fluctuation (ALFF; Zhang et al., 2017; Xu
et al., 2019), which can detect the amplitude of spontaneous
brain fluctuations, is one of the most commonly used fMRI
measurements.

Radiomics has been widely used in clinical oncology studies
(Ji et al., 2020; Zhao K. et al., 2020); the medical images can
be converted into feature sets that can be used to characterize
tumor characteristics by a series of algorithms (Lambin et al.,
2012; Ji et al., 2020). Radiomics has now been widely used in the
study of neuropsychological diseases, their diagnosis, and their
neurological mechanism (Sun et al., 2018; Huang K. et al., 2019;
Mo et al., 2019; Wang et al., 2020). Histogram analysis is the
most commonly used radiomic feature extraction method, which
is widely used in neuroimaging research (Cui et al., 2016; Sun
et al., 2018; Huang K. et al., 2019; Zhou et al., 2020). To our
knowledge, there is no existing study that has used histogram
analysis to diagnose PD.

Therefore, this study aimed to explore the value of using
ALFF-based histogram analysis in the diagnosis of PD and to
investigate the regions of the most important discriminative
features and their contribution to classification discrimination in
order to explore its potential pathological mechanism.

MATERIALS AND METHODS

Subjects
The data in this article were obtained from a public database1

(Hu et al., 2015) including 41 healthy controls (HCs) and 59 PD
patients. Previous studies (Varoquaux, 2018; Gorriz et al., 2021)
have demonstrated that cross-validation in a small sample size
leads to large error bars, and the predictive power of the fitted
classifiers is arguable. Varoquaux (2018) also pointed out that the
best resolution was to test the model performance across several
datasets. Consequently, we divided the subjects into a primary
set (32 HCs and 48 PDs) for training the model and a validation
set (nine HCs and 11 PDs) for testing the model according to
the order in which they entered the group based on an 8:2 ratio
(to ensure a balanced ratio of PD and HC between the two
groups). The clinical data obtained from each subject included
age, sex, years of education, and Mini-Mental State Examination
(MMSE) scores.

Image Acquisition
High-resolution three-dimensional (3D) T1-weighted structure
images and the rs-fMRI data of each participant were collected

1http://dx.doi.org/10.6084/m9.figshare.1433996

with a 3T Siemens MRI scanner (Siemens Healthineers,
Erlangen, Germany). The parameters were as follows (Hu
et al., 2015): 3D T1-weighted anatomical images: repetition
time (TR)/echo time (TE) = 2,530/3.43 ms, field of view
(FOV) = 256 × 256 mm, slice thickness = 1.3 mm, slice
interval = 0.5 mm, slices = 128, matrix = 256 × 192,
flip angle = 7◦; rs-fMRI images: TR/TE = 2,000/30 ms,
FOV = 220 × 220 mm, voxel size = 3.4 × 3.4 × 3.5 mm3,
slice interval = 0.6 mm, slices = 31, matrix = 64 × 64, and flip
angle = 90◦.

Data Preprocessing and ALFF Calculation
The data obtained in this study are the mean ALFF images. The
data had already been preprocessed and the mean ALFF had
been calculated. This processing is a standardized preprocessing
step. The detailed mean ALFF preprocessing and calculation
procedure can be found in a previous study (Hu et al., 2015).
Briefly, the procedure includes the removal of the first 10 time
points of the data, slice timing and realignment (subjects
whose head motion parameters exceeded 2.5 mm of the
maximum translation displacement or 2.5◦ of angular motion
were excluded), image registration, spatial standardization,
and image resampling (3 × 3 × 3 mm3), spatial smoothing
using a 6 × 6 × 6-mm3 full-width half-maximum Gaussian
kernel, high-pass filtering (0.01–0.08 Hz), and linear drift
removal. The ALFF calculation and mean standardization
were further performed on the preprocessed rs-fMRI
data.

Histogram Feature Extraction
Previous studies (Balagurunathan et al., 2014; Zhao et al.,
2016; Berenguer et al., 2018) have demonstrated that histogram
statistical features are reproducible and easy to interpret.
Meanwhile, if the feature dimension is too high, it is easy for
the model to fall into a ‘‘curse of dimensionality.’’ Consequently,
in this study, we segmented the individual mean ALFF map
into 116 regions of interest (ROIs) using the Automated
Anatomical Labeling (AAL) 116 atlas (Figure 1), which consists
of 90 subregions in the cerebrum and 26 subregions in
the cerebellum. We extracted 11 intensity-based histogram
features of the ALFF in each ROI, including the mean,
minimum, maximum, range, standard deviation, variance,
median, skewness, kurtosis, 10th percentile, and 90th percentile.
The definitions and details of the features are described
elsewhere (Aerts et al., 2014; Sun et al., 2018; Zhao K.
et al., 2020). We extracted a total of 1,276 features for each
subject.

Feature Selection, Model Construction,
and Evaluation
First, Z-normalization was performed before feature selection.
In the primary set, a two-sample t-test was performed on the
1,276 histogram features, and the features with P < 0.05 were
selected for the next analysis. If the correlation coefficient of the
two variables was greater than 0.9, we deleted the latter of the two
variables to reduce the multicollinearity between the variables
(Tang et al., 2019). For the selected features, the least absolute
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FIGURE 1 | Whole-brain parcellation with the Automated Anatomical
Labeling (AAL) 116 template.

shrinkage and selection operator (LASSO) logistic regression
based on 10-fold cross-validation was used for further feature
selection and data dimensionality reduction in the primary set,
which used the mean squared error (MSE) and the minimum λ

as the feature selection criteria. The LASSO logistic regression
is suitable for the regression of high-dimensional data and is
widely used in binary classification machine learning studies
(Huang et al., 2016; Nie et al., 2019; Ji et al., 2020; Zhao L.
et al., 2020), including neuropsychiatric disease classification
(Tang et al., 2017; Zhao et al., 2018; Zhang Y. et al., 2019;
Zheng et al., 2019). The LASSO can reduce data dimensionality
by compressing the unimportant feature coefficients to zero,
and then a formula is generated using a linear combination of
selected features that are weighted by their respective LASSO
coefficients. The radiomic signature score (Rag-score) of each
subject was calculated by the formula generated by the LASSO
logistic regression algorithm. Rag-score is a comprehensive
measurement that is calculated based on multiple significance
features, and it can reflect the heterogeneity of the lesion,
ROI, and volume of interest. It has been applied in radiomics-
related studies and in the construction of classification models
extensively (Tang et al., 2019; Ji et al., 2020; Zhao L. et al.,
2020). In the 10-fold cross-validation, the primary set was divided
into 10 parts: one part was left out for testing the model,
and the model was trained on the remaining parts, with each
part then repeated in turn. Receiver operating characteristic
(ROC) curve analysis based on the Rag-score was performed,
and we calculated the area under the curve (AUC), sensitivity,
specificity, and accuracy to evaluate the diagnostic efficacy of
the model. In the validation set, we calculated the Rag-score

of each participant with the same features and the formula
derived from the LASSO logistic regression algorithm in the
primary set. The diagnostic performance of the model in
the validation set was evaluated and validated. The threshold
obtained by the ROC analysis in the primary set was used
as the cutoff value to evaluate the performance. As described
above, cross-validation in a small sample size leads to large
error bars, and the predictive power of the fitted classifiers
is arguable. We also calculated the 95% confidence interval
(CI) of the AUC, sensitivity, and specificity (Gorriz et al.,
2021).

Validating the Performance
To evaluate the robustness and generalization of the model
performance, we performed the LASSO logistic algorithm
with 5-fold cross-validation and leave-one-out (LOO) cross-
validation for feature selection. We also reported the AUC,
accuracy, sensitivity, specificity, and the 95% CI to evaluate the
performance of the model.

Statistical Analysis
The statistical analysis of this study was conducted using
MATLAB 2012b (MathWorks, Natick, MA, USA) and R version
3.6.12. The χ2 test was used to assess the sex differences between
patients with PD and the HCs, and the independent samples
t-test was used to estimate the differences between PD patients
and HCs in age, years of education, and MMSE scores. LASSO
and ROC analyses used the ‘‘glmnt’’ and ‘‘pROC’’ software
packages in R software. P < 0.05 was considered statistically
significant.

RESULTS

Clinical and Demographic Characteristics
In the primary and validation sets, there was no statistically
significant difference between the HCs and PD patients in terms
of sex, age, years of education, and MMSE scores (Table 1).

Radiomic Feature Selection, Radiomic
Signature Score, and Discriminative
Features
In the primary set, the two-way t-test after Z-standardization
showed that 236 of the 1,276 features had intergroup differences
(P< 0.05); themulticollinearity variables (correlation coefficient,
r > 0.9) were deleted for the remaining 236 features. Finally,
the remaining 129 features (Figure 2) underwent LASSO

2https://cran.r-project.org/

TABLE 1 | Comparison of the general clinical data between healthy controls (HCs) and Parkinson’s disease (PD) patients in the primary and validation sets.

Primary set P-value Validation set P-value

HCs PD HCs PD

Sex (M/F) 16/16 28/20 0.46 4/5 7/4 0.68
Age (years) 57.25 ± 4.87 55.94 ± 9.42 0.42 53.22 ± 4.41 58.73 ± 7.89 0.08
Years of education 11.12 ± 4.53 11.38 ± 3.61 0.79 11.89 ± 4.96 11.00 ± 2.61 0.61
MMSE 28.91 ± 1.73 28.52 ± 1.35 0.27 29.67 ± 0.71 29.18 ± 1.08 0.26
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FIGURE 2 | The remaining 129 features correlation heatmap.

FIGURE 3 | Feature selection using the LASSO model. (A) In the primary
dataset, the penalization parameter λ was selected using 10-fold
cross-validation LASSO method with the mean squared error (MSE) as the
criterion. In this study, the minimum MSE was at λ = 0.069, log(λ) = –2.68.
(B) LASSO coefficient profile of 129 radiomic features. There are 23 nonzero
coefficient features at the optimal λ. LASSO, least absolute shrinkage and
selection operator.

regression based on 10-fold cross-validation for further
feature selection using MSE and the minimum λ as the
feature selection criteria. When the MSE was minimum
(λ = 0.069), there were 23 nonzero features (Figure 3),
including the left middle frontal gyrus (Frontal_MidL)mean,
right hippocampus (Hippocampus_R)mean, left inferior
parietal gyrus (Parietal_InfL)mean, left paracentral lobule
(Paracentral_LobuleL)mean, left thalamus (Thalamus_L)mean,

left inferior cerebellum_9 (Cerebelum9L)minimum, left
inferior occipital gyrus (Occipital_InfL)maximum, right
inferior temporal gyrus (Temporal_InfR)maximum, left
superior cerebellum_6 (Cerebelum6L)maximum, right
supplementary motor area (Supp_MotorAreaR)standard deviation,
left inferior occipital gyrus (Occipital_InfL)standard deviation,
right precuneus (Precuneus_R)median, left parahippocampal
gyrus (ParaHippocampal_L)skewness, right parahippocampal
gyrus (ParaHippocampal_R)skewness, right amygdala
(Amygdala_R)skewness, left middle occipital gyrus
(Occipital_MidL)skewness, right inferior parietal gyrus
(Parietal_InfR)skewness, left frontal middle gyrus
(Frontal_MidL)kurtosis, left superior frontal gyrus
(Frontal_SupL)10th percentile, left supplementary motor
area (Supp_MotorAreaL)10th percentile, left inferior parietal
gyrus (Parietal_InfL)10th percentile, right inferior parietal
gyrus (Parietal_InfR)10th percentile, and the right thalamus
(Thalamus_R)10th percentile (Figure 4 and Table 2). The Rag-score
calculation formula is as follows:

Rag-score
= 0.534+ 0.070 × Frontal_MidLmean − 0.016
× Hippocampus_Rmean + 0.099 × Parietal_InfLmean

− 0.115 × Paracentral_LobuleLmean − 0.205
× Thalamus_Lmean + 0.287 × Cerebelum_9Lminimum

− 0.081 × Occipital_InfLmaximum − 0.081
× Temporal_InfRmaximum − 0.191
× Cerebelum_6Lmaximum − 0.229
× Supp_MotorAreaRstandard deviation − 0.012
× Occipital_InfLstandard deviation + 0.119
× Precuneus_Rmedian + 0.072
× ParaHippocampal_Lskewness + 0.020
× Parietal_InfRskewness + 0.215
× Amygdala_Rskewness + 0.086
× Occipital_MidLskewness − 0.137
× Parietal_InfRskewness − 0.037
× Frontal_MidLkurtosis − 0.513
× Frontal_SupL10th percentile − 0.016
× Supp_MotorAreaL10th percentile + 0.018
× Parietal_InfL10th percentile + 0.064
× Parietal_InfR10th percentile − 0.017
× Thalamus_R10th percentile.

The Rag-scores of each subject are shown in Figure 5. It can
be seen from the figure that the Rag-score can distinguish HCs
and PD patients well in both the primary and validation sets.

Model Evaluation
The ROC analysis of the Rag-scores in the primary set showed
that the AUC was 0.974. When the cutoff value was 0.117,
the sensitivity was 93.8%, the specificity was 90.6%, and the
accuracy was 93.8% (Figure 6A and Table 3). The accuracy of
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FIGURE 4 | The brain regions of the selected features. The color bar value represents the feature weight value.

the validation set was 90.0%, with a primary set threshold of
0.117 as the standard, and the sensitivity and specificity of the
validation set were 90.9% and 88.9%, respectively (Figure 6B and
Table 3).

Validation Analysis
To assess the effect of the cross-validation method, we
repeated the LASSO regression process with 5-fold and LOO
cross-validations. We found that our models achieved high
classification performances with the 5-fold cross-validation and
LOO cross-validation in both the primary and validation sets.
However, the CIs were relatively wide, especially in the validation
set (Table 3).

DISCUSSION

In this study, we used the ALFF measurement of rs-fMRI data
to perform feature selection and data dimensionality reduction
by two-way independent samples t-test and LASSO logistic
regression based on 10-fold cross-validation. We calculated
the participants’ Rag-score and performed ROC analysis based
on the selected features. The classification model had a high
diagnostic efficiency, with an AUC of 0.966, a sensitivity of
92.9%, a specificity of 97.6%, and an accuracy of 95.2%. These
results demonstrate that histogram analysis based on rs-fMRI can
be used for the diagnosis of PD.

Radiomics was first proposed by Lambin et al. (2012). It
can extract high-throughput quantitative features of medical
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TABLE 2 | Different brain regions between Parkinson’s disease patients and healthy controls.

AAL number AAL brain areas Brodmann brain areas Features Weight value

7 Frontal_MidL BA46_L Mean 0.070
38 Hippocampus_R BA20_R Mean 0.016
61 Parietal_InfL BA40_L Mean 0.099
69 Paracentral_LobuleL BA4_L Mean 0.115
77 Thalamus_L None Mean 0.205
105 Cerebelum_9L None Minimum 0.287
53 Occipital_InfL BA19_L Maximum 0.081
90 Temporal_InfR BA20_R Maximum 0.081
99 Cerebelum_6L BA19_L Maximum 0.191
20 Supp_Motor_AreaR BA6_R Standard deviation 0.229
53 Occipital_InfL BA19_L Standard deviation 0.012
68 Precuneus_R None Median 0.119
39 ParaHippocampal_L BA35_L Skewness 0.072
40 ParaHippocampal_R BA35_R Skewness 0.020
42 Amygdala_R BA34_R Skewness 0.215
51 Occipital_MidL BA19_L Skewness 0.086
62 Parietal_InfR BA40_R Skewness 0.137
7 Frontal_MidL BA46_L Kurtosis 0.037
3 Frontal_SupL None 10th percentile 0.513

19 Supp_Motor_AreaL BA6_L 10th percentile 0.016
61 Parietal_InfL BA40_L 10th percentile 0.018
62 Parietal_InfR BA40_R 10th percentile 0.064
78 Thalamus_R None 10th percentile 0.017

AAL, Automated Anatomical Labeling; BA, Brodmann brain areas; Frontal_Mid, middle frontal gyrus; Parietal_Inf, inferior parietal gyrus; Occipital_Inf, inferior occipital gyrus;
Temporal_Inf, inferior temporal gyrus; Supp_MotorArea, supplementary motor area; Occipital_Inf, inferior occipital gyrus; Occipital_Mid, middle occipital gyrus; Frontal_Mid, frontal
middle gyrus; Frontal_Sup, superior frontal gyrus; L, left; R, right.

FIGURE 5 | The Rag-score for each subject in the primary (A) and validation
(B) sets. Red bars represent the HC group and blue bars represent the PD
group. The greater the score, the more likely it is to be PD. Rag-scores,
radiomic signature scores; HC, healthy control; PD, Parkinson’s disease.

images and can provide greater features than conventional
image analysis methods, thus improving disease diagnosis and
prognostic evaluation (Nie et al., 2019; Tang et al., 2019; Ji et al.,

2020). It was first used for tumor heterogeneity evaluation, tumor
diagnosis and differential diagnosis (Nie et al., 2019), prognostic
evaluation (Zhao L. et al., 2020), and tumor recurrence (Tang
et al., 2019; Ji et al., 2020), among other uses. Recent studies
have also indicated that it has a great application value in
neuropsychological diseases (Tang et al., 2017; Péran et al., 2018;
Sun et al., 2018; Huang K. et al., 2019). Different from the
previous radiomic studies in the field of oncology, they often have
only one ROI. However, in our study, there are 116 brain ROIs.
We therefore only extracted the first-order intensity statistical
features—histogram features; otherwise, our model will have too
many features. It is easy for a model to fall into a ‘‘curse of
dimension’’ and model overfitting.

Rs-fMRI is widely used in the study of PD (Gu et al., 2016;
Amoroso et al., 2018; Hohenfeld et al., 2018; Rispoli et al., 2018),
and ALFF is one of its commonly used metrics (Hu et al., 2015;
Gu et al., 2016). In this study, the ROI-based method (Tang
et al., 2017; Sun et al., 2018) was used to extract the histogram
features of the ALFF images in specific brain areas using the AAL
116 atlas, and the machine learning method was used for data
dimensionality reduction and modeling to explore the diagnostic
value of the rs-fMRI-based machine learning in PD.

In this study, we standardized the data before data analysis.
This procedure is widely used in the preprocessing of machine
learning, which can effectively reduce the influence of the
different units between features or reduce the influence of signal
changes in a larger image signal range, which is beneficial to the
improvement of model performance (Pereira et al., 2009; Tang
et al., 2019). Among them, the Z-standardization (Tang et al.,
2019; Wang et al., 2020) used in this research is one of the most
commonly used methods.
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FIGURE 6 | Receiver operating characteristic (ROC) analysis of the radiomic signature scores in the primary (A) and validation (B) sets.

Most previous studies have extracted features based on
the brain atlas, which only extracted the mean values of the
metrics (such as ALFF, fractional anisotropy, mean diffusivity,
regional homogeneity, functional connectivity, voxel-mirrored
homotopic connectivity, etc.) in the ROI defined by the brain
atlas (Dai et al., 2012; Cui et al., 2016; Ding et al., 2017;
Tang et al., 2017; Sun et al., 2018; Zhou et al., 2020). In our
study, we extracted not only the mean ALFF values in the
predefined ROIs but also other histogram features, including
the minimum, maximum, range, standard deviation, variance,
median, skewness, kurtosis, 10th percentile, and the 90th
percentile, which could more comprehensively reflect ALFF
information in the predefined ROIs. Our method achieved great
classification performance on both the primary set and the
validation set. We found that these features could be used to
distinguish PD patients and HCs, which indicated that these
features have physiological significance. Tang et al. (2017)
combined the mean diffusion tensor imaging metrics to detect
HIV patients. The accuracy and AUC of the model were 83.08%
and 0.911, respectively. A machine learning study using ALFF
metrics to detect PD used the AAL 116 atlas to extract the mean
ALFF features. The accuracy and AUC were 80.75% and 0.8109,
respectively. Another study used the Harvard–Oxford atlas to
extract the mean ReHo, ALFF, VMHC, gray matter volume,
and FC features. The authors found that both random forest
(accuracy = 0.8261, AUC = 0.9015) and support vector machine
(accuracy = 0.8483, AUC = 0.9697) achieved the perfect accuracy
and AUC for distinguishing between PD and HC subjects (Cao
et al., 2020). Our results are better than those of these studies,
which may indicate that our histogram analysis method can
extract more information in the ROIs (Lambin et al., 2012; Gillies
et al., 2016).

Radiomics can extract a large number of quantitative features;
however, its data dimensionality is too high when compared

with the sample size of most studies, making it is easy to fall
into a ‘‘curse of dimensionality,’’ thus causing the model to
overfit. Hence, the features must be selected for dimensionality
reduction to obtain the most valuable features in order to
improve the reliability and accuracy of the model (Gu et al.,
2016; Péran et al., 2018; Rubbert et al., 2019; Wang et al., 2020).
In our study, we performed a two-way independent samples
t-test on the standardized data to select the features that were
significantly different between groups for subsequent analysis.
Then, we applied previous research data processing methods
(Mo et al., 2019; Tang et al., 2019; Wang et al., 2020) and used
correlation analysis to remove the features with high correlation
coefficients in order to reduce the multicollinearity of variables.
We chose a correlation coefficient threshold of 0.9 to remove
highly correlated variables (Tang et al., 2019). The LASSO
logistic regression is very suitable for high-dimensional data
processing. It can select the most predictive radiomic features
and compress the non-important feature coefficients to zero in
order to achieve the purpose of data dimensionality reduction
and feature selection (Huang K. et al., 2019; Wang et al., 2020).
The linear combination of the selected features weighted by
their respective coefficients was used to calculate the Rag-score
of each subject, and the resulting Rag-score was analyzed by
ROC analysis to evaluate the diagnostic efficacy of the model.
In this study, LASSO based on 10-fold cross-validation was
used for further dimensionality reduction and feature selection
of the data; at the same time, the Rag-score of each subject
was calculated and ROC analysis was performed to evaluate the
performance of the model.

Previous studies (Varoquaux, 2018; Gorriz et al., 2021) have
demonstrated that cross-validation in a small sample size leads to
large error bars. Varoquaux (2018) also pointed out that the best
way to solving the problem was to test the model performance
across several datasets. Therefore, we divided the dataset into
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TABLE 3 | Classification performances of the different cross-validation methods.

CV methods Dataset AUC (95% CI) Accuracy (%) Sensitivity Specificity
(%; 95% CI) (%; 95% CI)

10-fold Primary 0.974 (0.946–1) 93.8 93.8 (82.8–98.69) 90.6 (74.98–98.02)
Validation 0.980 (0.929–1) 90.0 90.9 (58.72–99.77) 88.9 (51.75–99.72)

5-fold Primary 0.978 (0.953–1) 90.0 97.9 (88.93–99.95) 78.1 (60.03–90.72)
Validation 0.981 (0.925–1) 90.0 100 (71.51–100) 77.8 (39.99–97.19)

LOO Primary 0.971 (0.940–1) 83.8 75.0 (60.4–86.36) 96.9 (83.78–99.92)
Validation 0.968 (0.918–1) 85.0 72.7 (39.03–93.98) 100 (66.37–100)

CV, cross-validation; LOO, leave one out; AUC, area under the curve; CI, confidence interval.

a primary set and an independent validation set, and we tested
the model performance using the independent validation set. In
our study, we found that our models achieved high classification
performances with different cross-validation methods both in
the primary and validation sets. However, the error bars were
relatively large, especially in the validation set. Our findings
are consistent with those of previous studies (Varoquaux, 2018;
Gorriz et al., 2021). In spite of the arguable power of the model,
cross-validation is the best tool available because it is the only
non-parametric method to test for model generalization and
it can measure the ability of the model to predict new data
(Varoquaux, 2018). Currently, cross-validation is still the most
popular method in use.

In this study, the discriminative brain areas that can be used
for PD diagnosis are located in the frontal, temporal, parietal,
occipital, and limbic lobes, as well as in the cerebellum and the
thalamus, which are consistent with the results of previous PD
studies (Szewczyk-Krolikowski et al., 2014; O’Callaghan et al.,
2016; Chen et al., 2017; Tuovinen et al., 2018). Many studies have
indicated that damage to the corticothalamus–striatum–cortical
pathway and the reciprocal striatum–cerebellar loop is the basis
of many clinical symptoms of PD, and the thalamus plays an
important role in function regulation and conduction (Szewczyk-
Krolikowski et al., 2014; O’Callaghan et al., 2016; Tuovinen et al.,
2018). In this study, we found that the radiomic features of
the bilateral thalamus are helpful in the diagnosis of PD. A
previous study (O’Callaghan et al., 2016) showed that multiple
brain areas of the cerebellum of PD patients were atrophied,
including the bilateral lobules I–IV, VI, VII (crus I and crus
II), VIIb, VIIIa, VIIIb, right V, and the cerebellar vermis. The
study also indicated that the modulatory relationship of the
subthalamic nucleus on intracerebellar connectivity was lost in
PD patients and that there were extensive cerebellar–cortical
network abnormalities. Tuovinen et al. (2018) found that the
connections within the cerebellum and between the cerebellum
and the sensorimotor network in PD patients increased, the
connections between the cerebellum and the caudate nucleus,
thalamus, and amygdala increased, and the connection between
the supplementary motor area and the cingulate gyrus decreased.
Chen et al. (2017) found that the bilateral cerebellar gray matter
volume was reduced and that the functional connections among
the bilateral cerebellum, angular gyrus, hippocampus, middle
occipital gyrus, and posterior cingulate gyrus were abnormal. Hu
et al. (2015) also showed that PD patients had cerebellum ALFF
abnormalities and abnormal functional connections between the
cerebellum and the left middle cingulate gyrus. In our study,

we also found extensive brain dysfunction in the cerebellum
and multiple gray matter areas, which is consistent with the
findings of a previous study. Besides, previous studies (Szewczyk-
Krolikowski et al., 2014; Hu et al., 2015; Lucas-Jiménez et al.,
2015; Hou et al., 2016; Li et al., 2016; Huang L. C. et al.,
2019) also found structural and functional abnormalities in the
insula, lingual gyrus, paracentral lobule, right inferior temporal
gyrus, parahippocampal gyrus, precuneus, middle frontal cortex,
dorsolateral prefrontal lobe, and other brain areas, which were
similar to the results of the present study. This study showed that
radiomics based on rs-fMRI can effectively identify abnormal
brain activity areas in PD patients and provide support for the
interpretation of PD neural mechanisms.

This study has some limitations. Firstly, as obtaining a large
dataset is difficult in neuroimaging, where data acquisition
is costly, the sample size of this study is relatively limited,
but compared with the sample sizes of previous intergroup
comparison studies (Lei et al., 2017; Zhou M. et al., 2019) and
some machine learning articles (Hou et al., 2016; Tang et al.,
2017), the sample size of this study is relatively large. Previous
studies (Sun et al., 2018; Huang K. et al., 2019) have shown
that multimodal imaging and clinical indicators can improve
the performance of machine learning models. This study only
selected the ALFF of rs-fMRI as input variables. Subsequent
work can incorporate more rs-fMRI metrics, different functional
imaging sequences, and clinical measurements to explore its
effect on the classification model. In this study, both the
primary and validation sets confirmed that the model has good
classification accuracy, but no external validation was performed
to further verify the generalization ability of the model. Other
machine learning models or methods, such as support vector
machine (Zhou et al., 2020), convolution neural network (Zhang
J. et al., 2019), deep neural network (Liu et al., 2020), and transfer
learning (Wang S. et al., 2019), have also been applied in previous
neuroimaging studies, and they can obtain great classification
performance. A previous study (Wang S. H. et al., 2019)
used AlexNet as the basic transfer learning model to identify
alcoholism. The method yielded a sensitivity of 97.44 ± 1.15%, a
specificity of 97.41± 1.51%, and an accuracy of 97.42± 0.95% on
the test set. In another study (Wang S. H. et al., 2019) employing
densely connected neural network as the basic algorithm for
transfer learning to detect cerebral micro-bleedings, the model
achieved 97.71% classification accuracy. In the future, we will try
other machine learning methods to detect PD.

In conclusion, this study used rs-fMRI data to extract the
histogram features of brain regions based on brain atlases and
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used machine learning analysis to build a PD classification
model. The study showed that this method can classify PD
patients and HCs well and effectively identify PD patients’
regions of abnormal brain function; furthermore, it can assist in
the early diagnosis of PD and provide ameans for PDmechanism
research and clinical therapeutic efficacy evaluation.
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