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Abstract

Photodynamic diagnosis/therapy (PDD/PDT) are novel modalities for the diagnosis and

treatment of cancer. The photosensitizer protoporphyrin IX is metabolized from 5-aminole-

vulinic acid (5-ALA) intracellularly, and PDD/PDT using 5-ALA have been approved in der-

matologic malignancies and gliomas. However, the molecular mechanism that defines the

efficacy of PDD/PDT is unknown. In this study, we analyzed the functions of ATP-binding

cassette (ABC) transporters in PDD using 5-ALA. Most of the human gastrointestinal cancer

line cells examined showed a homogenous staining pattern with 5-ALA, except for the pan-

creatic cancer line PANC-1, which showed heterogeneous staining. To analyze this hetero-

geneous staining pattern, single cell clones were established from PANC-1 cells and the

expression of ABC transporters was assessed. Among the ABC transporter genes exam-

ined, ABCG2 showed an inverse correlation with the rate of 5-ALA-positive staining. PANC-

1 clone #2 cells showed the highest level of ABCG2 expression and the lowest level of 5-

ALA staining, with only a 0.6% positive rate. Knockdown of the ABCG2 gene by small inter-

fering RNAs increased the positive rate of 5-ALA staining in PANC-1 wild-type and clone

cells. Interestingly, PANC-1 clone #2 cells showed the high sphere-forming ability and

tumor-formation ability, indicating that the cells contained high numbers of cancer stem cells

(CSCs). Knockdown or inhibition of ABCG2 increased the rate of 5-ALA staining, but did not

decrease sphere-forming ability. These results indicate that gastrointestinal cancer cell lines

expressing high levels of ABCG2 are enriched with CSCs and show low rates of 5-ALA

staining, but 5-ALA staining rates can be improved by inhibition of ABCG2.
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Introduction

Photodynamic diagnosis/therapy (PDD/PDT) are novel modalities to detect cancer cells based

on the principle that a photosensitizer can accumulate specifically in cancer cells. Recently,

PDD and PDT with 5-aminolevulinic acid (5-ALA) have been used for the diagnosis of glioma

[1–4], and the application of PDD/PDT is expanding to various cancers. PDD is an especially

useful approach for intraoperative cancer diagnosis, such as gastric cancer and pancreatic can-

cer, and can detect intraperitoneal lymph node metastasis or peritoneal metastasis because the

presence of peritoneal dissemination or distant lymph node metastasis is critical for the surgi-

cal approach used, and the accessibility of pathological diagnosis using frozen sections is often

limited.

The detection rate of PDD is essential for its successful application; however, its sensitivity

is varied in various cancers and its detection rate is sometimes low and not satisfactory [5–8].

Thus, the identification of novel biomarkers for PDD and the improvement of the success rate

of PDT are important. 5-ALA is transported into the cytoplasm by the amino acid transporters

PEPT1 and PEPT2, and the intermediate coproporphyrinogen III is synthesized. Copropor-

phyrinogen III is transported from the cytoplasm to the mitochondria by the ATP-binding

cassette (ABC) transporter ABCB6. In the mitochondria, the photosensitizer protoporphyrin

IX (PpIX) is synthesized from coproporphyrinogen III. PpIX is exported by ABCG2 from the

mitochondria to the cytoplasm and from the cytoplasm to the extracellular space [9]. Thus,

several molecules are involved in the accumulation of PpIX, and several approaches have been

tried to improve the efficacy of 5-ALA PDD/PDT [10, 11]. Recent studies have demonstrated

that 5-ALA PDD is useful for the detection of lymph node metastasis and peritoneal dissemi-

nation, indicating that this approach can be a powerful tool during surgical treatment [6, 12].

Cancer stem cells (CSCs) are defined as small subpopulation of cancer cells that are

endowed with high tumorigenicity, capacity for self-renewal, and differentiation ability [13],

and CSCs are resistant to chemotherapy and radiotherapy due to several molecular mecha-

nisms, namely, high expression of anti-apoptosis proteins, dormant state, and high expression

of transporters [14, 15]. Therefore, an effective treatment for CSCs is essential to improve cur-

rent cancer therapy.

In this study, we investigated the efficacy of 5-ALA PDD using gastrointestinal cancer cell

lines. We found that the pancreatic cancer cell line PANC-1 showed lower PpIX accumulation

than the other cell lines examined. Analysis at clone level revealed that high ABCG2 expression

was responsible for the lower accumulation of PpIX. Furthermore, ABCG2-high clone cells

were enriched with CSCs, and inhibition of ABCG2 improved 5-ALA PDD. Thus, ABCG2

might be a novel target to improve the detection and therapeutic efficacy of 5-ALA PDD/PDT

for CSCs.

Materials and methods

Ethics statement

Mice were maintained and experimented on in accordance with the guidelines of and after

approval by the Committee of Sapporo Medical University School of Medicine, Animal Exper-

imentation Center under permit number (08–006). Any animal found unhealthy or sick was

promptly euthanized.

Cell lines and culture methods

The human pancreas cancer cell lines CFPAC and PANC-1 (American Type Culture Collec-

tion, Rockville, MD) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-
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Aldrich, St. Louis, MO) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich) and

5% penicillin-streptomycin (5 mg/mL penicillin, 5 mg/mL streptomycin; Thermo Fisher Sci-

entific, Waltham, MA). The gastric cancer cell line MKN45 (Japanese Collection of Research

Bioresources Cell Bank, Osaka, Japan), esophagus cancer cell lines TE4 and TE9 (Japanese Cell

Resource Center for Biomedical Research, Sendai, Japan), and pancreas cancer cell line PK9

(Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer,

Tohoku University, Sendai, Japan) were cultured in RPMI-1640 medium (Sigma-Aldrich)

supplemented with 10% FBS and 5% penicillin-streptomycin.

5-ALA staining and fluorescence-activated cell sorting analysis

The cell lines were suspended at 1.0 × 106 cells/mL in DMEM supplemented with 5% FBS.

5-ALA (Novel Pharma, Tokyo, Japan) was added to the suspended cells at a final concentration

of 150 μg/mL and incubated for 4 h at 37˚C. The cells were washed with 1× phosphate-buff-

ered saline (PBS) twice and analyzed using a fluorescence-activated cell sorting (FACS) Aria II

(BD Biosciences, San Jose, CA). PpIX fluorescence was detected at excitation and emission

wavelengths of 488 nm laser with a 695/40 nm band-pass filter. 5-ALA non-treated cells were

used as negative controls.

Percent mean fluorescent intensity (%MFI) increase was calculated by following formula: %

MFI increase = (MFI of 5-ALA treated sample)�100/(MFI of 5-ALA non-treated sample)

Establishment of PANC-1 clone cells

PANC-1 cells were suspended at 1.0 × 106 cells/mL in DMEM supplemented with 5% FBS,

stained with 5-ALA for 4 h at 37˚C, and sorted into single cells into 96-well plates using a

FACS Aria II. After culture for several weeks, seven clone cell lines were established and used

for further analysis.

RT-PCR and quantitative RT-PCR

Total RNA samples were extracted using an RNeasy Mini Kit (QIAGEN, Germantown, MD),

and cDNA samples were synthesized with 1 μg total RNA using Superscript III Reverse Tran-

scriptase (Thermo Fisher Scientific) in accordance with the manufacturer’s protocol. PCR was

performed using Taq DNA polymerase (QIAGEN) and the following thermal cycling condi-

tions: initial denaturation for 2 min at 94˚C, followed by 35 cycles of denaturation for 15 s at

94˚C, annealing for 30 s at 55˚C, and elongation for 30 s at 72˚C, and a final elongation step

for 5 min at 72˚C. The primer pairs used for RT-PCR analysis are in S1 Table and previous

reports [16, 17].

Quantitative RT-PCR (qRT-PCR) was performed using an ABI PRISM 7000 Sequence

Detection System (Thermo Fisher Scientific) in accordance with the manufacturer’s protocol.

The ABCG2 probe was designed by the manufacturer (TaqMan Gene expression assays;

Thermo Fisher Scientific), and thermal cycling was performed under the following conditions:

45 cycles of 95˚C for 15 s and 60˚C for 1 min. Each experiment was performed in triplicate,

and GAPDH was used for internal normalization.

Small interfering RNA transfection and treatment with an ABCG2

inhibitor

Pre-designed small interfering RNAs (siRNAs) targeting ABCG2 were purchased

(Silencer Select siRNA; s18056, s18057, s18058) from Thermo Fisher Scientific, and siRNA

transfection was performed using the Lipofectamine RNAiMAX reagent (Thermo Fisher

PDD for ABCG2-positive cancer stem cells
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Scientific) in accordance with the manufacturer’s protocol. The cells were seeded in 6-well

plates at 3.0 × 105 cells/well in 2 mL DMEM supplemented with 10% FBS and 5% penicillin-

streptomycin. Negative control siRNA (Silencer Select) was used as a negative control. Cells

transfected with 20 nM siRNAs were harvested at 2 days after transfection and used for some

experiments.

Ko143 (Santa Cruz Biotechnology, Dallas, TX), an ABCG2 inhibitor, was used at a concen-

tration of 10 or 20 μM for 24 h.

Side population assay, sphere-forming assay and Mouse xenograft assay

Side population (SP) and sphere-forming assays were performed as described previously [18,

19]. Briefly, PANC-1 wild-type (W/T) cells, clone #2 cells, and clone #4 cells were stained with

Hoechst 33342 (Lonza, Basel, Switzerland) at a final concentration of 2.5 μg/mL for 60 min at

37˚C. After washing with PBS, the cells were analyzed using a FACS Aria II. Verapamil was

used at 75 μM as a negative control.

For the sphere-forming assay, the cells were seeded into a 96-well Ultra-Low Attachment

Surface Culture Plate (Corning) at 1, 10, 100, and 1000 cells/wells in DMEM/F12 medium sup-

plemented with 20 ng/mL basic fibroblast growth factor (R&D Systems, Minneapolis, MN,

USA) and 20 ng/mL epidermal growth factor (R&D Systems) for 7 days. The sphere-positive

wells were counted, and CSC frequency and statistical analysis were performed at the ELDA

web site (http://bioinf.wehi.edu.au/software/elda) [20].

Xenograft transplantation experiments using animals were performed in accordance with

the institutional guidelines for the use of laboratory animals. PANC-1 clone #2 and clone #4

cells were suspended at 1000 or 10000 cells in 100 μl PBS mixed with Matrigel (BD) at a 1:1 vol-

ume and injected subcutaneously into the backs of 4-6-week-old female BALB/c-nu/nu mice.

Tumor size was assessed weekly using a caliper and calculated using following formula: tumor

size (mm3) = (longest diameter × shortest diameter2)/2.

Statistical analysis

Student’s t-test was used to compare two groups. P<0.05 was considered significant difference.

Correlation between expressions of ABCG2 and %MFI increase was analyzed by Pearson’s cor-

relation coefficient.

Results

The pancreatic cancer cell PANC-1 shows heterogeneous 5-ALA staining

PDD based on 5-ALA-induced PpIX has been applied to several malignancies based on safety

and specificity; however, the molecular aspects that define the efficacy of PDD are unknown.

In this study, we analyzed several gastrointestinal cancer cell lines to investigate differences in

PpIX accumulation. Although most of the TE4, TE9, MKN45, CFPAC, and PK9 cells showed

high PpIX intensity with a positive rate of almost 100%, PANC-1 cells showed lower PpIX

intensity with a positive rate of 43.2% (Fig 1A). To analyze in detail, %MFI increase was calcu-

lated, and PANC-1 cells showed also the lowest %MFI increase (Fig 1B).

Single cell analysis reveals clonal variation for 5-ALA staining

Since PANC-1 cells showed heterogeneous 5-ALA staining pattern, we established PANC-1

clone cells to analyze the heterogeneity of PpIX accumulation at the single cell level (Fig 2A).

PANC-1 clone cells were stained with 5-ALA and the accumulation of PpIX was analyzed flow

cytometry. The results revealed a heterogeneous PpIX accumulation pattern between the
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PANC-1 clone cells (Fig 2B). Clone #2 cells showed only a 0.6% positive rate, whereas clones

#3 and #4 showed a greater than 50% positive rate, which was higher than that observed in W/

T PANC-1 cells. These data indicate that 5-ALA staining was heterogeneous, and it was diffi-

cult to detect PpIX accumulation in some PANC-1 clone cells. Clone #2 cells showed the low-

est %MFI increase as well (Fig 2C).

Fig 1. 5-ALA staining of gastrointestinal cancer cells. (A) FACS analysis of 5-ALA-stained gastrointestinal cancer cells. Esophageal cancer cells

(TE4 and TE9), gastric cancer cells (MKN45), and pancreatic cancer cells (CFPAC, PANC-1, and PK9) were stained with 5-ALA (150 μg/mL) for 4 h

and analyzed by flow cytometry. Non-stained cells were used as negative controls. Percentages indicate the positive rates of PpIX intensity. (B)

Summary of percent mean fluorescent increase (%MFI).

https://doi.org/10.1371/journal.pone.0216503.g001
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Fig 2. Establishment of PANC-1 clone cells. (A) Schematic summary of single cell sorting of PANC-1 cells. (B) FACS analysis of

5-ALA-stained PANC-1 clone cells. Non-stained cells were used as negative controls. Percentages indicate the positive rates of PpIX

intensity. (C) Summary of percent mean fluorescent increase (%MFI).

https://doi.org/10.1371/journal.pone.0216503.g002
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Gene screening reveals that ABCG2 is a candidate for low-5-ALA staining

To elucidate the mechanism underlying the heterogeneous 5-ALA staining, we focused on

transporters that are responsible for 5-ALA uptake and PpIX efflux. Previous studies revealed

that oligopeptide transporters PEPT1 and PEPT2 are responsible for 5-ALA uptake [21–23].

Thus, we analyzed the expression of PEPT1 and PEPT2 by RT-PCR; however, there was no sig-

nificant difference in their expression between the PANC-1 clone cells (Fig 3B). We then ana-

lyzed ABC transporters using ABC transporter gene-specific primers, because ABC

transporters are related to 5-ALA uptake and PpIX efflux (Fig 3A). ABCB6 is responsible for

5-ALA uptake, while ABCG2 is responsible for PpIX efflux [24, 25]. However, the expression

of ABCB6 was equivalent between W/T PANC-1 cells and clones #2, #4, and #6. ABCG2
expression was high in PANC-1 clone #2 cells and low in clone #4 cells. No other ABC trans-

porter genes showed a significant difference in their expression between the PANC-1 clone

cells. Therefore, we focused on the ABCG2 gene. Genes related to accumulation of PpIX

including PEPT1, PEPT2, ABCB6 and ABCG2 expression were analyzed in other cell lines (Fig

3B). PANC-1, TE4 and TE9 cells expressed ABCG2, but MKN45 and CFPAC cells did not.

MKN45 and CFPAC cells express PEPT1 at high levels, but other cell lines barely expressed

PEPT1 and PEPT2. To confirm the expression of ABCG2, we performed qRT-PCR and found

that PANC-1 clone #2 cells showed the highest level of ABCG2 expression, whereas clones #4

and #5 showed the lowest expression levels (Fig 3C). These data indicate an inverse correlation

between the expression level of the ABCG2 gene and PpIX-positive rates.

To analyze the relation of quantitative ABCG2 expression and %MFI increase correlation

coefficient (CI) was calculated. The expressions of ABCG2 in cancer cell lines and %MFI

increase showed statistically significant inverse correlation (r = -0.9388, p = 0.0055) (Fig 3D).

The expressions of ABCG2 in PANC-1 clone cells and %MFI increase showed tendency to

inverse correlation but did not reach statistical significance (r = -0.4558, p = 0.2563) (Fig 3E).

All these data suggest the inverse relation of ABCG2 expression and PpIX intensity.

ABCG2 knockdown using siRNAs reveals that ABCG2 has a role in low

5-ALA staining

A previous study revealed that ABCG2 has a role in PpIX efflux [24]; thus, we analyzed the

role of ABCG2 in 5-ALA staining using siRNAs. The ABCG2 gene was knocked down using

ABCG2-specific siRNAs in PANC-1 W/T, clone #2 cells, and clone #4 cells, and knockdown

efficiency was confirmed by qRT-PCR (Fig 4A). Knockdown of ABCG2 increased PpIX-posi-

tive rates in W/T cells, clone #2 cells, and clone #4 cells (Fig 4B), indicating that ABCG2 has a

role in low 5-ALA staining rates.

ABCG2-high cells are enriched with CSCs, but ABCG2 is not related to

cancer stemness

Several studies have revealed that a highly tumorigenic subpopulation, termed CSCs, are

enriched in SP cells, and SP cells are defined by ABCG2 expression [18, 26–29]. Therefore, we

hypothesized that PANC-1 clone #2 cells are enriched with CSCs and performed an SP assay

and sphere formation assay. PANC-1 clone #2 cells showed an SP rate of 15.9%, whereas W/T

cells and clone #4 cells showed SP rates of 4.4% and 0.5%, respectively (Fig 5A). A sphere for-

mation assay revealed that PANC-1 clone #2 cells has higher sphere formation ability than

clone #4 cells (P = 0.0204) (Fig 5B). To analyze the expressions of stem cell genes in PANC-1

clone cells, we performed RT-PCR. Clone #2 cells showed relative high expression of NANOG,

but clone #4 cells did not (Fig 3A). Clone #2 cells showed higher CDH2 gene, an epithelial-
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mesenchymal transition marker than that in clone #4 cells suggesting that clone #2 cells are

enriched with CSCs and have EMT-like phenotype (Fig 3A). Furthermore, clone #2 cells

showed higher tumorigenicity than clone #4 cells (Fig 5C and 5D), indicating that clone #2

cells contain a higher proportion of CSCs compared with W/T or clone #4 cells. Since PANC-

1 clone #2 cells showed the highest level of ABCG2 expression, we analyzed the relationship

between ABCG2 expression and CSC phenotype. Knockdown of ABCG2 using siRNAs and

inhibition of ABCG2 using Ko143 decreased the SP rate (Fig 5E and 5F), whereas knockdown

of ABCG2 and inhibition of ABCG2 did not decrease sphere formation (Fig 5G and 5H), indi-

cating that ABCG2 expression is not related to tumor formation.

Discussion

5-ALA PDD/PDT have been approved for dermatologic malignancies and gliomas and have

been applied to several malignant tumors [30]. A phase III clinical trial of surgery with

5-ALA PDD for malignant gliomas revealed that it significantly improved progression-free

survival [2], indicating that 5-ALA PDD is an effective approach for the diagnosis of malignant

tumors. However, most of the patients enrolled in that study showed disease progression,

Fig 3. Expression of ABC transporter genes. (A) RT-PCR analysis of PANC-1 clone cells. The expression of ABC transporter genes, NANOG,

CDH1 and CDH2 in PANC-1 W/T cells, clone #2 cells, clone #4 cells, and clone #6 cells was analyzed by RT-PCR. GAPDH was used as an internal

positive control. (B) RT-PCR analysis of gastrointestinal cancer cells. PEPT1, PEPT2, ABCB6 and ABCG2 expression was analyzed by RT-PCR.

GAPDH was used as an internal positive control. (C) qRT-PCR analysis of ABCG2 expression. ABCG2 expression was analyzed by qRT-PCR. Data

are shown as the mean ± standard deviation. (D) Correlation of expressions of ABCG2 and %MFI increase. Correlation of expression of

quantitative ABCG2 expressions of gastrointestinal cancer cell lines and %MFI increase was analyzed by Pearson’s correlation coefficient. (E)

Correlation of expressions of ABCG2 and %MFI increase. Correlation of expression of quantitative ABCG2 expressions of PANC-1 clone cells

and %MFI increase was analyzed by Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0216503.g003

Fig 4. Knockdown of ABCG2 in PANC-1 clone cells increases 5-ALA staining. (A) qRT-PCR analysis of ABCG2 expression. PANC-1 W/T cells, clone #2

cells, and clone #4 cells were transfected with ABCG2 siRNAs. At 2 days after transfection, ABCG2 expression was analyzed by qRT-PCR. Data are shown as

the mean ± standard deviation. (B) FACS analysis of 5-ALA-stained ABCG2 knockdown cells. PANC-1 W/T cells, clone #2 cells, and clone #4 cells were

transfected with ABCG2 siRNAs. At 2 days after transfection, the cells were stained with 5-ALA (150 μg/mL) for 4 h and analyzed by flow cytometry.

Percentages indicate the positive rates of PpIX intensity.

https://doi.org/10.1371/journal.pone.0216503.g004
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demonstrating that detection efficacy needs to be improved. In this regard, several analyses at

the molecular level have been reported.

ABCG2 (breast cancer resistance protein, BCRP) transports various endogenous and exoge-

nous chemicals [31], thereby mediating drug resistance and affecting the pharmacological

action of many compounds in different drug-resistant cancer cells [32–34]. A study using dif-

fuse large B cell lymphoma cells revealed that ABCG2 is a transcriptional target of the hedge-

hog signaling transcription factor GLI1 [35]. Sonic hedgehog (SHH) signaling is one of the

major signaling pathway activated in pancreatic cancer [36]. A phase Ib/II clinical trial using

Vismodegib, an SHH inhibitor, plus gemcitabine did not improve progression-free or overall

survival in patients with metastatic pancreatic cancer [37], suggesting difficulties in targeting

SHH signaling. Regarding hedgehog signaling, a study using PANC-1 cells revealed that

sphere-forming CSCs showed high expression of the epithelial-mesenchymal transition tran-

scription factor SNAI1 and hedgehog signaling ligand SMO [38], indicating that the activation

of SHH signaling, CSC phenotype, and epithelial-mesenchymal transition are deeply related to

each other. In the present study, ABCG2-high PANC-1 clone #2 cells showed high sphere-

forming ability compared with ABCG2-low clone #4 cells. Therefore, ABCG2-high pancreatic

CSCs might be well targeted by 5-ALA PDT using an ABCG2 inhibitor, and this approach

could be another way to target SHH signaling-activated pancreatic cancer cells. ABCG2

knockdown using siRNAs increased accumulation of PpIX, however, the PpIX positive rate

did not reached 100% even in clone #4 cells. PANC-1 cells express both ABCB6 and ABCG2,

however the expression levels of PEPT1 and PEPT2 were very low (Fig 3B). Therefore, the

accumulation rates of PpIX in PANC-1 clone cells might also depend on also low expressions

of PEPT1 and PEPT2. A recent study revealed that C6 rat glioma cells with low PpIX accumu-

lation are enriched with glioma stem cells [39]. Interestingly, the accumulation of PpIX in gli-

oma stem cells was not enhanced by ABCG2 inhibition using reserpine, but was enhanced by

deferoxamine-mediated iron chelation, suggesting that PpIX accumulation depends on several

factors.

ABCB6 is a transporter for the uptake of 5-ALA, and high ABCB6 expression is related to

high PpIX accumulation [25]. High ABCB6 expression is related to the response to neoadju-

vant chemotherapy in breast cancer and the progression of prostate cancer [40, 41]. Although,

the molecular mechanisms by which ABCB6 expression is related to chemotherapy resistance

or cancer progression are unknown, ABCB6-high malignant cancers are considered to be suit-

able targets for 5-ALA PDD/PDT because ABCB6-high cancer cells are thought to accumulate

PpIX. However, the expression levels of ABCB6 were equivalent between PANC-1 W/T cells

and clone cells by RT-PCR, and ABCB6 expression might not be related to PpIX accumulation

Fig 5. Inhibition of ABCG2 decreases SP cells, but not sphere-forming ability. (A) SP analysis of PANC-1 cells. PANC-1 W/T cells, clone #2 cells, and clone

#4 cells were stained with Hoechst 33342 and analyzed by flow cytometry. Verapamil was used as a negative control. Percentages indicate the rates of SP cells.

(B) Sphere-forming ability of PANC-1 cells. PANC-1 W/T cells, clone #2 cells, and clone #4 cells were seeded in 96-well ultra-low attachment plates at 1, 10,

100, and 1000 cells/well. At 1 week later, sphere-forming wells were counted, and CSC frequency was calculated using the ELDA website. The chi-square test

was performed to determine statistically significant differences. (C and D) Tumorigenicity of PANC-1 clone #2 and #4 cells. Growth curves of tumors derived

from PANC-1 clone #2 and clone #4 cells. 1000 cells (C) and 10000 cells (D) were injected into BALB/c-nu/nu mice, and tumors were measured weekly. Data

are shown as means±SD. Asterisks indicates a statistically difference (P<0.05). (E) SP analysis of ABCG2 knockdown PANC-1 clone #2 cells. PANC-1 clone

#2 cells were transfected with ABCG2 siRNAs. At 2 days after transfection, the cells were analyzed by an SP assay. Verapamil was used as a negative control.

Percentages indicate the rates of SP cells. (F) Sphere-forming ability of ABCG2 knockdown PANC-1 clone #2 cells. PANC-1 clone #2 cells were transfected

with ABCG2 siRNAs. At 1 day after transfection, the cells were seeded in 96-well ultra-low attachment plates at 1, 10, 100, and 1000 cells/well. At 1 week later,

sphere-forming wells were counted, and CSC frequency was calculated using the ELDA website. The chi-square test was performed to determine statistically

significant differences. N.S.: No significant difference. (G) SP analysis of Ko143-treated PANC-1 clone #2 cells. PANC-1 clone #2 cells were treated with

Ko143 at a concentration of 0, 10, or 20 μM for 24 h and analyzed by an SP assay. Verapamil was used as a negative control. Percentages indicate the rates of SP

cells. (H) Sphere-forming ability of Ko143-treated PANC-1 clone #2 cells. PANC-1 clone #2 cells were seeded in 96-well ultra-low attachment plates at 1, 10,

100, and 1000 cells/well with Ko143 at a concentration of 0, 10, or 20 μM. At 1 week later, sphere-forming wells were counted, and CSC frequency was

calculated using the ELDA website. The chi-square test was performed to determine statistically significant differences. N.S.: No significant difference.

https://doi.org/10.1371/journal.pone.0216503.g005
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in pancreatic cancer cells. These results suggest that ABCB6 expression might not be an accu-

rate marker for predicting the efficacy of 5-ALA PDD/PDT in pancreatic cancer. The accumu-

lation of data using clinical samples from subjects with pancreatic cancer should be conducted

in the future.

In summary, we reported that most of the gastrointestinal cancer cell lines examined

showed homogenous 5-ALA staining. However, the pancreatic cancer cell line PANC-1

showed heterogeneous 5-ALA staining. High ABCG2 expression might be responsible for low

5-ALA staining, and CSCs are enriched in the ABCG2-high population. Inhibition of ABCG2

improved 5-ALA staining, but had no effect on cancer stemness. These results indicate that

ABCG2 expression might become a novel biomarker for poor 5-ALA PDD/PDT efficacy, and

the combination of 5-ALA PDD/PDT with an ABCG2 inhibitor might improve efficacy.

Finally, CSCs could also be targeted by the combination of 5-ALA PDD/PDT with an ABCG2

inhibitor.
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