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Abstract: Porcine circovirus 2 (PCV2) has been recognized as an immunosuppressive pathogen.
However, the crosstalk between this virus and its host cells in related signaling pathways remains
poorly understood. In this study, the expression profiles of 84 genes involved in transforming
growth factor-beta (TGF-β) signaling pathway were probed in PCV2b-infected primary porcine
alveolar macrophages (PAMs) by using an RT2 profiler PCR array system. The protein expression
levels of cytokines involved in the TGF-β signaling pathway were determined with a RayBiotech
fluorescent Quantibody® porcine cytokine array system. Results showed that 48, 30, and 42 genes
were differentially expressed at 1, 24, and 48 h after infection, respectively. A large number of genes
analyzed by a co-expression network and implicated in transcriptional regulation and apoptosis
were differentially expressed in PCV2b-infected PAMs. Among these genes, TGF-β, interleukin-
10, CCAAT/enhancer-binding protein beta (C/EBPB), growth arrest, and DNA-damage-inducible
45 beta (GADD45B), and BCL2 were upregulated. By contrast, SMAD family member 1 (smad1)
and smad3 were downregulated. These results suggested that the TGF-β signaling pathway was
repressed in PAMs at the early onset of PCV2 infection. The inhibited apoptosis was indicated by the
upregulated C/EBPB, GADD45B, and BCL2, and by the downregulated smad1 and smad3, which
possibly increased the duration of PCV2 replication-permissive conditions and caused a persistent
infection. Our study may provide insights into the underlying antiviral functional changes in the
immune system of PCV2-infected pigs.

Keywords: porcine circovirus 2; transforming growth factor-beta; mRNA; signaling pathway analysis

1. Introduction

Porcine circovirus 2 (PCV2), a non-enveloped, single-stranded circular DNA virus,
is the primary causative pathogen of PCV2 systemic disease (PCV2-SD) and other PCV2
associated diseases (PCVADs). PCVADs are the most economically important diseases
affecting the global swine industry [1,2]. A remarkable feature of PCV2-SD pigs is sys-
temic immunosuppression. Pigs with PCV2-SD show severe depletion in lymphocytes
in their lymphoid tissues and a remarkable decrease in T and B cells in their peripheral
blood, suggesting that lymphoid depletion largely contributes to immunosuppression in
PCV2-affected pigs [3–5]. The PCV2-induced decrease in the proliferation and lysis of
lymphocytes [6,7] and apoptosis of primary lymphoid organs or precursor cells [8–10], are
potential causes of lymphocyte depletion.
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Cytokines, secreted by cells undergoing cellular stress, are essential for the develop-
ment of the immune response. The differential expression of some cytokines, such as inter-
leukin (IL)-1/8/10/12, and TNF-α, in PCV2-infected porcine monocytes and macrophages,
have been reported [11–15]. IL-10 has been suggested to play an important role in PCV2-
induced systemic immunosuppression. Transforming growth factor-beta (TGF-β) and its
signaling pathway participates in cell growth, apoptosis, differentiation, migration, and
metastasis in a context-dependent manner in various cell types [16,17]. Dysregulation of
TGF-β signaling pathway has been implicated in numerous human diseases [18]. In addi-
tion, it is a pleiotropic cytokine and has regulatory activity on multiple types of immune
cells. T cells are established as critical targets of TGF-β, which regulates T cell development,
homeostasis, tolerance, and differentiation [19–21]. TGF-β plays its biological role primarily
through the canonical Smads signaling pathway which has three isoforms that are involved
in several developmental processes as TGF-βs, TβRs, and Smads [22]. Current reports
indicated that the TGF-β and IL-10 play an important role in immunosuppression induced
by porcine reproductive and respiratory syndrome virus (PRRSV) [23–26]. However, the
involvement of TGF-β and its regulated downstream events in PCV2-induced systemic
immunosuppression in PCV2-infected pigs is yet to be investigated. In this study, the
early expression profile of TGF-β and its signaling pathway targets in porcine alveolar
macrophage (PAM) inoculated with PCV2 were analyzed using a PCR array system. Our
results will enhance our understanding of the role of TGF-β and its signaling pathway
targets in the interaction of immune cells and PCV2.

2. Materials and Methods
2.1. Animals and Isolation of PAM Cells

Three one-month-old Landrace pigs free of PCV1, PCV2, swine fever virus, and
PRRSV, as confirmed by PCR and serum antibody testing, were housed at the Pig Unit of
the Laboratory Animal Center of Lanzhou Veterinary Research Institute.

Before the collection of alveolar fluid, piglets were euthanized with intravenous
sodium pentobarbital overdose. PAMs were isolated from lungs according to previously
described methods [27,28]. The isolated PAMs was adjusted to 1 × 107 cells/mL and
cultured with a growth medium containing RPMI-1640 supplemented with 10% (v/v) fetal
bovine serum (FBS, Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA), 100 U/mL
penicillin, and 100 µg/mL streptomycin and incubated at 37 ◦C with 5% CO2.

2.2. Virus Preparation for Infection

PCV2b virus (ShDNY-PCV2, GenBank No. FJ948167, https://www.ncbi.nlm.nih.Gov/
nuccore/FJ948167.1/, accessed on 11 August 2010) was propagated in porcine kidney
15 cell line (PK-15) as described previously [28]. PK-15 cells monolayers were inoculated at
60% confluence. After 24 h of incubation at 37 ◦C, the monolayer was treated with 200 mM
D-glucosamine for 1 h. After further 72 h incubation, the cells were harvested and lysed
three times by freeze-thawing. The genomic copies of the PCV2 in lysed cell mixture were
determined by qPCR as previously described [29].

PAMs were infected with PCV2b in multiplicity of infection (MOI) 1 (1 viral DNA
copy/cell) as described previously [28]. After infection, cells were cultured in a maintained
medium RPMI-1640 supplemented with 2% FBS and incubated at 37 ◦C, and 5% CO2, for 1,
24, and 48 h respectively. The cells and supernatant were collected respectively at indicated
time intervals. The cells were kept in RNAlater® RNA stabilization reagent kits (Qiagen,
Hilden, Germany) to prevent RNA degradation and stored at −70 ◦C until use.

2.3. Detection of PCV2 in PAMs

PCV2 in PAMs after the infection was detected through immunofluorescence assay
(IFA) [30]. The cells were fixed with 4% paraformaldehyde (Solarbio®, Beijing, China)
and permeabilized with 0.1% TritonX-100 in PBS (Sigma, Burlington, MA, USA). PCV2
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in PAMs was indicated by Quantum dots conjugated specific single domain antibody
(QDs-psdAb) probe.

2.4. RNA Extraction and cDNA Preparation

Total RNA was extracted by using an RNA extraction kit (Qiagen, Hilden, Germany)
according to the instruction. The quantity of RNA was determined with a microspec-
trophotometer (GE, Boston, MA, USA), and the RNA integrity was evaluated through 1.8%
agarose gel electrophoresis. Up to 2 µg of total RNA was reverse transcribed to cDNA
using an RT2 HT first strand kit (Qiagen, Hilden, Germany) according to the instruction.
cDNA was stored at −20 ◦C for further quantitative PCR (qPCR) assay.

2.5. RT2 Profiler PCR Array Assay

TGF-β signaling pathway-related genes were detected by using RT2 Profiler PCR
Array kits (PASS-235Z, Qiagen, Hilden, Germany) in the Mx3005p real-time PCR cycler
(Agilent Technologies, Santa Clara, CA, USA) as described previously [28]. The mRNA
expression levels of aim genes were analyzed using the 2−∆∆Ct methods by PCR Array
system software version 3.5 (Qiagen, Hilden, Germany).

2.6. Analysis of TGF-β Expressions

The secreted TGF-β in the supernatant of PAMs post PCV2 infection was detected by
Quantibody® porcine cytokine array system (RayBiotech, Guangzhou, China) as described
previously [28].

2.7. Co-Expression Network Analysis

The expression data of 84 genes were subjected to co-expression network analysis. A
gene co-expression network was built based on a gene co-expression measure by the R pro-
gramming language. Pearson’s correlation coefficient was used for all possible gene pairs,
and the corresponding p-value was calculated for each correlation. A total of 717 links pairs
yielded p < 0.01. The network was visualized in Cytoscape 3.1.1 [31,32], and network topol-
ogy was examined with the Network Analyzer tool in Cytoscape. MCODE, a Cytoscape
plugin [33], was utilized to identify co-expression modules for the whole network.

2.8. Statistic Analysis

Statistical differences for PCR array and cytokine array data were evaluated by Stu-
dent’s t-test. A p-value of less than 0.05 was considered significant.

3. Results
3.1. Confirmation of PCV2b Infection in PAMs

PCV2b-infected PAMs were monitored for the presence of PCV2 by IFA. IFA revealed
the presence of virions of PCV2b in PAMs at 24 and 48 hpi compared with mock-infected
control (Figure 1).

Figure 1. PCV2 infection in PAMs. PCV2 in PAMs post-infection was detected by IFA based on the
ODs-psdAb probe (red), the nucleus was stained with DAPI (blue).

3.2. MRNA Expression Profiles

To investigate the roles of TGF-β and its regulated downstream events in the interac-
tion of PCV2 with host cells, PCV2b-infected PAMs were analyzed by using a PCR array kit.
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In this study gene expression differences between the control and treatment groups were
considered significant using p < 0.05 and an absolute fold change ≥1.5 as a cut-off [34,35].
The fold change of differential gene expression is shown with the color scheme in the
heatmap shown in Figure 2A. A total of 58 target genes involved in the TGF-β signaling
pathway were differentially expressed (p < 0.05) in different stages of infection between
the control and PCV2-infected groups (Table 1). At 1 hpi, 35 genes were upregulated, and
13 genes were downregulated. At 24 hpi, 21 genes were upregulated, and 9 genes were
downregulated. At 48 hpi, 29 genes were upregulated, and 13 genes were downregulated.

Figure 2. Gene expression patterns. Sixty-three target genes involved in the TGF-β signaling
pathway were differentially expressed and were significantly different between PCV2-infected and
control PAMs (A). Differentially expressed genes at each time point (B). Green: negative fold change
level. Red: positive fold change level. Fold change was obtained by comparing the relative mRNA
expression of target genes in PCV2-infected and uninfected control PAMs. Results are representative
of three independent experiments and are presented as mean ± SE. ** represents p <0.01, * represents
p < 0.05.

Table 1. Differentially expressed TGF-β target genes (p < 0.05 and absolute fold change ≥1.5) between
PCV2-infected and mock-infected control. Numbers in bold denote significant differential expression.

Gene Symbol Description
Fold Change

1 hpi 24 hpi 48 hpi

Regulation of Transcription and Transcription Factor Activity

C/EBPB CCAAT/enhancer binding protein (C/EBP), beta 4.96 2.87 2.55

CREBBP CREB binding protein 8.75 4.33 3.66

HMOX1 Heme oxygenase (decycling) 1 7.53 4.49 3.50

IL10 Interleukin 10 5.97 4.69 4.68

GADD45B Growth arrest and DNA-damage-inducible, beta 5.62 2.71 3.07

NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in
B-cells inhibitor, alpha 8.67 5.95 3.99

RYBP RING1 and YY1 binding protein 3.42 1.59 1.54
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Table 1. Cont.

Gene Symbol Description
Fold Change

1 hpi 24 hpi 48 hpi

ID3 Inhibitor of DNA binding 3, dominant negative
helix-loop-helix protein 1.28 6.84 28.03

RUNX1 Runt-related transcription factor 1 5.78 1.03 1.76

MBD1 Methyl-CpG binding domain protein 1 1.95 1.49 1.65

SERPINE1 Serpin peptidase inhibitor, clade E (nexin, plasminogen
activator inhibitor type 1), member 1 4.17 –1.12 1.93

ID2 Inhibitor of DNA binding 2, dominant negative
helix-loop-helix protein 1.84 –1.01 2.99

ATF4 Activating transcription factor 4 (tax-responsive enhancer
element B67) 2.08 1.26 1.15

ATP1B1 ATPase, Na+/K+ transporting, beta 1 polypeptide 5.83 1.49 −1.22

BACH1 BTB and CNC homology 1, basic leucine zipper transcription
factor 1 5.48 1.06 −1.04

BHLHE40 Basic helix-loop-helix family, member e40 2.76 1.32 1.43

FOXO1 Forkhead box O1 1.85 1.15 1.33

PTK2B PTK2B protein tyrosine kinase 2 beta 1.79 −1.01 −1.01

TXNIP Thioredoxin interacting protein 1.55 −1.28 1.19

VEGFA Vascular endothelial growth factor-A 12.49 1.52 1.91

MAPK8 Mitogen-activated protein kinase 8 1.54 −1.01 −1.31

IFRD1 Interferon-related developmental regulator 1 3.87 1.04 −1.25

LOC396709 Retinoic acid receptor alpha 2.89 1.15 1.17

HSP90AA1 90-kDa heat shock protein 1.50 1.36 1.15

LOC100620797 Focal adhesion kinase 1-like 1.39 1.39 1.79

CTNNB1 Catenin (cadherin-associated protein), beta 1, 88 kDa 1.43 1.67 1.02

SP1 Sp1 transcription factor −1.01 1.52 1.41

PTGS2 Prostaglandin G/H synthase-2 21.61 2.25 −5.99

RGS4 Regulator of G-protein signaling 4 2.39 7.21 −2.49

FURIN Furin-like 2.50 −1.18 −1.57

JARID2 Jumonji, AT rich interactive domain 2 1.63 −1.12 −1.74

EMP1 Epithelial membrane protein 1 3.35 −1.52 −3.65

TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 −4.98 3.95 13.72

MAPK14 Mitogen-activated protein kinase 14 −1.95 1.67 1.63

STC2 Stanniocalcin 2 −2.06 −1.57 −1.52

ME2 Malic enzyme 2, NAD(+)-dependent, mitochondrial −1.63 −1.18 −1.60

GTF2I General transcription factor IIi −3.86 −1.07 1.34

PPARA Peroxisome proliferator-activated receptor alpha −3.69 1.41 1.39

Regulation of programmed cell death and apoptosis

TGFB2 Transforming growth factor, beta 2 1.76 3.94 6.36

S100A8 S100 calcium binding protein A8 2.91 14.55 20.75

SMAD6 SMAD family member 6 2.10 −1.01 1.44

BCL2L1 BCL2-like 1 1.16 1.68 1.59
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Table 1. Cont.

Gene Symbol Description
Fold Change

1 hpi 24 hpi 48 hpi

CDKN1B Cyclin-dependent kinase inhibitor 1B (p27, Kip1) −1.22 1.73 2.20

FOS FBJ murine osteosarcoma viral oncogene homolog −2.63 2.37 18.83

FN1 Fibronectin 1 1.74 −1.12 3.78

MMP2 Matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase,
72kDa type IV collagenase) −1.96 1.23 2.88

ACVR1 Activin A receptor, type I −1.15 −1.58 −1.82

ACVRL1 Activin A receptor type II-like 1 −1.18 −1.69 −1.78

MYC V-myc myelocytomatosis viral oncogene homolog (avian) −1.39 −3.56 −6.66

HES1 Hairy and enhancer of split 1, (Drosophila) −1.33 −2.15 −3.09

JUP Junction plakoglobin −1.30 1.00 −3.28

SMAD1 SMAD family member 1 −2.66 −2.60 1.17

SMAD3 SMAD family member 3 −2.12 −4.28 −1.08

EPHB2 EPH receptor B2 −1.00 −1.73 −1.21

No explicit function annotation

CRYAB Crystallin, alpha B −1.25 −2.25 1.56

SREBF2 Sterol regulatory element binding transcription factor 2 −1.41 −1.90 −5.81

ENG Endoglin 1.58 1.39 2.08

BRF2 Zinc finger protein 36, C3H type-like 2 1.33 1.21 1.93

In these differentially expressed genes, the immunosuppressive cytokines, TGF-β and
IL-10 were upregulated significantly at 24 and 48 hpi. Smad family member 1 (smad1) and
smad3, key mediators of the TGF-β signaling pathway, were downregulated significantly
at 1 and 24 hpi. CCAAT/enhancer-binding protein beta (C/EBPB), growth arrest and
DNA-damage-inducible 45 beta (GADD45B), and BCL2, which are associated with cell
proliferation and apoptosis, were upregulated at different time points after PCV2 infection
(Figure 2B).

3.3. Expression Analyses of TGF-β in PCV2b-Infected PAMs

PCR array results showed that TGF-β was upregulated significantly in PAMs post
PCV2b infection. To further examine the expression in protein level, TGF-β in a culture
supernatant of PAMs post PCV2b infection was detected by the Quantibody® porcine
cytokine array kits. Results showed that the TGF-β was upregulated significantly in protein
levels, which was consistent with the detected by PCR array (Figure 3).

3.4. Network Modularity

We constructed the co-expression network from the expression profiles of 84 TGF-β
pathway-related genes. A total of 717 links were found in the network between the 84 genes,
which were clustered to three highly interactive modules (Figure 4A) and showed high
average clustering coefficients (Figure 4B). Functional analysis showed that the largest
module had 32 enriched genes for the regulation of transcription. For these genes, 24 were
upregulated and 5 were downregulated at 1 hpi, 7 were upregulated and 1 was downregu-
lated at 24 hpi, and 10 were upregulated, and 5 were downregulated at 48 hpi. The second
module with 14 genes was involved in the regulation of programmed cell death. For these
genes, 3 were upregulated and 5 were downregulated at 1 hpi, 5 were upregulated and
5 were downregulated at 24 hpi, and 8 were upregulated, and 5 were downregulated at
48 hpi. The third module with seven genes had no explicit functional annotation. The gene
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expression levels of ID2 (2.99 fold at 48 hpi), ID3 (6.84 and 28.03 fold at 24 and 48 hpi),
and SREBF2 (−1.9 and −5.81 fold at 24 and 48 hpi), which are implicated in the regulation
of transcription, were significantly altered. TNFSF10, the apoptosis-related gene, was
downregulated at 1 hpi but was upregulated at 24 and 48 hpi (Table 1).

Figure 3. Expression of TGF-β at the protein level. TGF-β in the culture supernatants of control and
PCV2-infected PAMs were measured by using porcine cytokine array kits. Data are expressed as
pg/mL of three independent experiments. * represents p < 0.05.

Figure 4. Co-expression network. A co-expression network from the expression profiles of 84 TGF-β
signaling pathway-related genes was constructed. Interactive modules (A), Clustering coefficients (B).
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4. Discussion

PCV2, one of the most important pathogens in domestic swine worldwide, is the
causative agent of PCVAD, a widespread complex multi-factorial disease with recognized
immunosuppressive characteristics. Vaccines against this virus display high levels of
efficacy in controlling the infection [36,37], but the molecular mechanisms of immunosup-
pression in PCVAD remain largely unknown. PCV2 infection and replication in immune
system cells are known as the potential mechanism for virus-induced immunosuppression.
In addition, PCV2 causes immunosuppression by induction of apoptosis of immune system
cells, and by acting as cytokines or cytokines inhibitors/enhancers [5,38]. Previous reports
have shown that TGF-β is involved in apoptosis [39,40] and cell survival [41]. The present
study aimed to analyze the expression profile of TGF-β and its signaling pathway target
genes in the interaction of PCV2 with PAMs.

Monocyte/macrophage lineage cells play important roles in resisting the infection
of pathogens. PCV2 has been shown to infect and persist in cells of the immune system,
including PAMs [42–44]. PCV2 alone likely causes remarkable functional impairment in
PAMs, including a reduction in phagocytosis and microbicidal capability [43]. Transcription
analyses on PCV2-infected monocyte/macrophage lineage cells have shown that genes
related to inflammation and apoptosis are differentially expressed [14]. In the present
study, TGF-β signaling pathway target genes were analyzed in PCV2-infected PAMs by
using a PCR array system. Meanwhile, the functions of 84 TGF-β signaling pathway target
genes were explored by a co-expression network analysis. These genes were clustered into
three highly interactive modules, which showed that their functions are in the regulation
of transcription, programmed cell death, and apoptosis. The results of the PCR array
showed that 58 of the 84 genes targeting the TGF-β signaling pathway were differentially
expressed in PAM in different stages of post PCV2 infection. These results suggested that
the TGF-β signaling pathway was possibly implicated in functional changes in PCV2-
infected PAMs. Interestingly, 48 genes were differentially regulated at 1 hpi which only
satisfy the adsorption and internalization for the virus [45]. Our results indicated that
PAMs showed a strong reaction toward PCV2 during adsorption and internalization of the
virus. Moreover, results suggested that the nucleic acid and structural protein of PCV2 may
play a vital role in PAM’s reactivity. However, a comparative analysis of the differentially
expressed genes in different infection stages revealed reduced host response of PAMs to
PCV2-challenge. In particular, the genes involved in the regulation of transcription were
reduced at 1 hpi (24 upregulated and 5 downregulated) to 48 hpi (10 upregulated and
5 downregulated). PAMs are the first line of defense cells to encounter PCV2 in the lungs
and are involved in phagocytic clearance, inflammatory reactions, and tissue homeostasis.
Thus, a decreased response to PCV2 may be a result of self-regulation of PAMs.

Whether gene expression leads to protein expression changes was determined by
analyzing the differentially expressed genes TGF-β at the protein level with a Quantibody®

array assay. The difference in TGF-β expression fitted well at mRNA and protein levels.
Systemic immunosuppression is a remarkable feature of PCV2-infected pigs. TGF-β,
which affects proliferation, differentiation, and apoptosis of immune cells through its
signaling pathway, is also an immunosuppressive cytokine. In this study, TGF-β were
upregulated significantly in PAM post-PCV2 challenge, implying that they may function in
PCV2 pathogenesis.

TGF-β was significantly upregulated at mRNA and protein levels in PAM post-PCV2
infection. Smad1 and smad3, however, key mediators of the TGF-β signaling pathway for
cell apoptosis [46–48] were downregulated. Moreover, BCL2, a hallmark protein partic-
ipating in TGF-β-induced apoptosis and functioning pathophysiologically in apoptosis
protection [49,50], was upregulated. In addition, C/EBPB and C/EBPB were upregu-
lated. C/EBPB is involved in the differentiation of macrophages to functionally different
subpopulations, and it is a key regulator for the survival of alveolar macrophages [51–53].
GADD45B, an anti-apoptotic factor, represses JNK-mediated apoptosis [54] and enhances
the activation of C/EBPB. These two factors can function cooperatively in the regulation of
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cell differentiation [55]. Thus, the upregulation of BCL2, C/EBPB, and GADD45B, along
with the downregulation of smad1 and smad3 may be a mechanism of apoptosis inhibition
in PCV2-infected PAMs. These results suggested that even though TGF-β increased, PCV2
infection may have repressed TGF-β signaling pathway-induced apoptosis in PAMs. The
inhibition of apoptosis will prolong the life of PAMs and may, therefore, contribute to PCV2
escaping host immunity and lengthen the duration of PCV2 replication-permissive conditions.

Global gene expression in PCV2-infected PAMs based on microarray analysis has
been reported previously [14,56]. Similar to described for microarray analysis on PCV2-
infected PAMs at an early stage (24 and 48 hpi), PCV2 seems to induce a large number
of genes differential expression. Particularly, our research highlight the expression trend
of EMP1, TNFSF10, S100A8, BCL2, and MYC genes involved in the regulation of tran-
scription and apoptosis were the same as the microarray analysis [56]. However, the
differentially expressed genes in this study, such as C/EBPB, CREBBP, IL-10, GADD45B,
ID3, TGF-β (Table 1) were not shown in the differential expressed gene data of microarray
analysis [14,56]. In addition, Mavrommatis et al. research [14] showed that PCV2 infec-
tion of PAMs (1 and 24 hpi) resulted in differential regulation of much fewer genes than
described here or in Li et al. [56]. Whereas the differences between these results are not
completely clear. The use of the different mock-infection, virus strains, and multiplicity
of infection may be contributing to the differences between these results. Indeed, the
virus strains and multiplicity of infection were different in these studies. Moreover, the
treatment of cells and the reagents contaminated by LPS were potential reasons as well [14].
Furthermore, the different pig breeds (large white piglets, crossbred large white × landrace
piglets were used in Li et al. [56] and Mavrommatis et al. [14] research respectively, landrace
piglets was used here) and the potential microorganisms in PAMs (even though the specific
pathogens are free) that may contribute to differential regulation of these genes.

5. Conclusions

PCR array analysis showed that 58 of the downstream genes of the TGF-β signaling
pathway were differentially expressed in PAMs in different stages after PCV2 infection.
Among these genes, IL-10 and TGF-β were upregulated significantly, suggesting their par-
ticipation in PCV2 pathogenesis. However, the inhibited apoptosis in the PAMs indicated
by the downregulated smad1 and smad3 and by the upregulated C/EBPB, GADD45B,
and BCL2 may have partly prolonged PCV2 replication-permissive conditions and caused
persistent infection in clinical cases. The observed expression profile of TGF-β signaling
pathway-associated genes in PCV2-infected PAMs may provide a possible mechanism of
the functional changes in the immune system of PCV2-affected pigs.
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