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Abstract
Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of

proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to

odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding

to a specific set of ligands and conversely a single odorant molecule may bind to a number

of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the

highly variable transmembrane domains of these receptors. The purpose of this study is to

decode the odor-olfactory receptor interactions using in silico docking studies. In this study,

a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking

using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller

datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-

tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking

results were applied on homologous pairs (with varying sequence identity) of ORs from

human and mouse genomes and ligand binding residues and the ligand profile differed

among such related olfactory receptor sequences. This study revealed that homologous

sequences with high sequence identity need not bind to the same/ similar ligand with a

given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis

which will be useful for expression and mutation studies on these receptors.

Introduction
The sense of smell has been the least understood of all the five human senses known till recent
times. The detection of odorants is essential for survival of an individual. The discriminatory
power of olfactory receptors (ORs) is such that it can perceive thousands of volatile chemicals
as having different odors. It is known that the olfactory system uses a combinatorial receptor
coding scheme to decipher the odor molecules. One OR can recognize multiple odorants and
one odorant is recognized by multiple ORs [1]. A slight structural change in the odorant or a
change in the concentration of the odorant in the environment results in a change in the odor-
code of these receptors.
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Each mammalian olfactory receptor neuron encodes only one OR [2–4]. The axons of the
neurons expressing the same olfactory receptor converge to one olfactory bulb, which then pro-
cesses the information to the brain [5]. ORs are structurally similar to G-Protein Coupled
Receptors (GPCRs) and contain seven transmembrane (TM) domains connected by loops. The
functionally important residues are present on the transmembrane helices 2–7 [6–8]. In
insects, the detection of odorants is performed by a smaller set of about sixty odorant receptors
[9]. Due to the lack of X-ray crystal structures of olfactory receptors and the difficulties in het-
erologous expression of ORs, very few ORs have been “de-orphaned” i.e. associated with their
ligands (odors). Odorant-OR binding studies are limited to a small number of ORs that can be
tested at one condition. The number and mixture of odorants that can be used in a single study
are also limited.

Odor molecules belong to a variety of chemical classes: from alcohols, aldehydes, ketones
and carboxylic acids to sulphur-containing compounds and essential oils. The physicochemical
descriptors of odor molecules play an important role in the prediction of odor response by the
OR [10] [11]. Very identical OR sequences can have a structural bias for ligand specificity on
the basis of the number of carbon atoms present in the ligands [12]. About 8000 odorants have
been identified in food. KFO (Key Food Odorants) has identified about 400 odorants which
have been characterized and this number approximately equals the number of ORs found in
humans [13]. The response of mixture of odorants is neither the additive nor an average of its
components [14]. Mixing some odorants lead to the emergence of novel perceptual qualities
that were not present in each component, suggesting that odorant mixture interactions
occurred at some levels in the olfactory system [15]. Odorant molecules in a mixture could act
as an antagonist and hinder the response of the receptor to agonists. Thus, deciphering the
complex coding mechanisms requires large scale analysis to compare and consolidate odorant-
OR interaction across several receptors.

Molecular docking, an in silico approach, can be used to model the interaction between a
small molecule and a protein at atomic levels. This method allows us to characterize the bind-
ing properties of the small molecule to the receptor and the discriminatory mechanisms, as
well as helping to elucidate fundamental biological processes [16]. Docking involves two steps-
—predicting of binding conformation of the ligand, and predicting the binding affinity of the
ligand to the receptor. Knowing the location of the binding site increases the efficiency of the
docking tool. This information about the binding site can be obtained from experimental and
mutational data. The earliest method of docking assumed a lock-and-key model for ligand-
receptor interaction [17]. Since the functional protein is actively re-shaped, the induced fit the-
ory of protein-ligand docking was used to induce flexibility to both receptor and ligand which
would result in an accurate prediction of their interactions [18]. At a large scale, docking tools
help analyze the interactions of receptors to a large set of ligands, and in scoring the best ligand
out of the set. Several in silico docking tools have been developed in the recent past, which
helps us analyse protein-ligand interactions [19–26].

One of the major challenges in the field of docking is handling the flexibility of protein
receptors efficiently. Proteins are in constant motion between different conformational states
with similar energies and this fact is still disregarded in many docking studies due to the large
computational time required and the inherent limitations of such methods to sample alternate
conformations accurately. The use of an ensemble of protein conformations as a starting point
helps to sample various functional states of the receptor protein. The computational time for
this approach scales linearly with the number of protein structures that constitute the ensemble
[27]. Lack of imparting complete protein flexibility in docking approaches still remains a bot-
tleneck in justifying the outcome of a docking analysis. The X-ray crystallographic structures
reveal the buried surface area of a ligand as being between 70 to 100% and thus the binding site
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orientation can be greatly influenced by protein flexibility and solvation [28]. Inducing flexibil-
ity at the ligand binding site can lead to the sampling of a wide range of ligands, instead of dis-
carding them at the initial stages of docking as non-binders. The scoring functions that
accompany a docking tool might be simplified to compromise between speed and accuracy.
Certain scoring functions tend to provide better scores for certain type of binding sites [29]
[30]. This dependence of scoring function on the binding site should be properly weighted.
GLIDE [31] appears to be one of the best docking suites and provides most consistent results
with respect to diversity of binding site, ligand flexibility and overall sampling. Glidescore
(gscore) is an effective scoring function and shows maximum accuracy when compared to
other docking tools such as GOLD and ICM [32]. GLIDE provides an opportunity to minimize
the receptor in the membrane environment before docking, which proves to be very helpful in
the case of membrane bound systems such as ORs.

Computational docking approaches can be useful in understanding odor-receptor interac-
tions, since very few ORs have been de-orphaned experimentally. Of the huge set of mamma-
lian olfactory receptors, 400 in H. sapiens and 1000 inM.musculus, only ~50 receptor-odorant
interactions are known [8]. The known interactions are based on studies with a limited set of
odorants and their mixtures. OR orthologs respond to similar odors with dramatic differences
in efficacy and potency even if OR orthologs respond to similar set of odors more frequently
than paralogs [7].

This study aims at building an odorant profile for a chosen set of mammalian ORs using a
receptor dataset of ten human and mouse homologous pairs of ORs and 125 known odorants
as the ligand data set. The analysis helped build an odorant profile for an OR and compare the
odorant profiles across homologous ORs. We employed the induced-fit docking (IFD) proto-
col to obtain the binding energy scores of odorants to the ORs. The odorant profiles for single
ORs have been obtained using a limited set of odor molecules earlier [33–38]. The earliest
analysis was on mouse OR that responds to eugenol. One study reports the importance of resi-
due Ser 113 as the most important residue required for ligand binding [35]. The analysis on
the same OR under different experimental conditions, shows residue Phe 182 to be important
in ligand binding. The mutation of this Phe residue results in a loss of response to eugenol
[37]. We present a longitudinal study in this paper, where we have developed a reliable
computational pipeline to study more than one OR against a large number of ligands. The
methodology in this study has been standardised using the binding site information of the
mouse eugenol receptor (mOR-EG) and validated using known experimental data, where
possible.

Methodology

Receptor Dataset
A subset of twenty mammalian olfactory receptors, out of the 100 ORs that were modeled
using homology modeling protocol in our previous analysis [39], were used for the analysis to
decipher the odorant profile of the twenty ORs. From phylogenetic analysis on human and
mouse ORs, ORs are known to form ten distinct clusters [40] (B.Nagarathnam, Ph.D thesis,
2013) which can further be divided into smaller subclusters. One human olfactory receptor was
selected from every cluster of human OR phylogeny for this analysis. Thus, ten human ORs
obtained were aligned to the 338 mouse OR sequences [40]. The ten mouse ORs, which clus-
tered very close to each of the ten human ORs used in this study, were selected for docking
analysis, thereby leading to ten pairs of closely related OR sequences from the human and
mouse OR repertoires which were used for unravelling the odorant profiles.
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Ligand Dataset
One hundred and twenty-five odorant molecules were chosen for this study (Table 1). These
molecules were selected from earlier studies which have proven them to be odorants that can
elicit response from olfactory receptors by in-vitro or in-vivo analysis [41–45]. The odorants
included mammalian and insect-specific odorant molecules. The molecules belonged to differ-
ent chemical classes like alcohols, ketones, acids, aldehydes and sulphuric compounds. Known
antagonists of ORs were also present in the collection of odorants. The three-dimensional coor-
dinates of ligands were obtained from PubChem3D [46] and prepared for docking studies
using the Ligprep suite of Schrodinger GLIDE software (Schrödinger Release 2013–1: LigPrep,
version 2.6, Schrödinger, LLC, New York, NY, 2013).

Grouping of Ligands by Clustering
MOLPRINT2D [47] [48] and Tanimoto co-efficient [49] of the CANVAS module (Schrö-
dinger Release 2013–1: version 2.6, Schrödinger, LLC, New York, NY, 2013) in Schrödinger
software [50] [51] were used to cluster the ligands based on their molecular and chemical fea-
tures. The molecular descriptor calculates numerical binary values such as log P, molecular
weight, electronic and valence states, 3-D pharmacophore interactions and the distance
between molecular fingerprints from their molecular features. The Tanimoto-coefficient calcu-
lates the chemical fingerprint of each odorant using fragment-based binary representation.
Given two molecules, the method calculates similarity upto a given bond along a linear path.
The branching points and cyclic patterns from each of the linear paths are then detected. Using
a proprietary hashing method, a given bit number is set for each pattern. Fourteen known
repellents [52] were included in the clustering for associating their relationship to known odor-
ant molecules through clustering approach (Table 1). The repellents were not used in the cur-
rent docking analysis and could form a basis for a future study on comparing the binding
patterns of odorants and repellents. The resulting ligand clusters were used to analyse the dock-
ing results.

Induced-Fit Docking
The induced-fit docking module of Schrodinger GLIDE software (Schrödinger Release 2013–
1:, version 2.6, Schrödinger, LLC, New York, NY, 2013) was employed for docking 125 ligands
to 10 pairs of closely related human and mouse olfactory receptors [23], [53]. The Schrödinger
suite provides the opportunity to analyse GPCR-like membrane proteins in implicit and
explicit membrane environments, thus mimicking the biological environment of these pro-
teins. The homology models of ORs were energy-minimized in implicit membranes for further
use in docking studies [39]. The docking protocol was standardized using the prior information
on mouse eugenol receptors. The binding pocket of class A GPCRs are known from several
studies [6], [54]. Table 2 shows the parameters that were employed to standardize the protocol
of induced-fit docking for ORs using the mouse eugenol receptor and its ligand. The fifth
parameter was chosen as the best, since it yields the best score for the known receptor-ligand
complex. On the basis of this standardization, large-scale induced-fit docking was carried out
using the grid made of all the residues in TM 3, 4, 5 and 7 in the upper half of the receptor in
the membrane bi-layer which covers the known binding site of any given OR/GPCR protein
(Fig 1). The side chains of residues, which are within 7Å of the initial ligand binding pocket,
were given flexibility so as to induce conformational flexibility in the receptor. The residues in
the receptor were scaled to 0.70 for Van der Waals interaction while for ligands it was scaled to
0.50 of the existing Van der Waals interaction scores. The XP scoring [31] of Schrödinger IFD
module was used to score the final ligand-receptor complexes. The receptor-ligand pair with
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Table 1. List of odorants used in the docking analysis. The odorants have been classified based on their
functional groups. Odorants which are known to bind to insect ORs are listed separately. There are two odor-
ants specific to ORs frommodel organismsC. elegans (odr-10) andM.musculus (mOR-EG). Repellents
were chosen for clustering along with the odorants (based on chemical similarity) to understand their similarity
to the odorants.

Odorant Pubchem ID

ALCOHOLS

1-hexanol 8103

2-ethyl 1-hexanol 7720

1-heptanol 8192

1-octanol 957

2-octanol 20083

3-octanol 11527

4-octanol 11515

1-nonanol 8914

2-nonanlol 12367

1-decanol 8174

1-dodecanol 8193

Geraniol 637566

Phenyl methanol 244

Menthol 16666

Thymol 6989

Gvaiacol 460

Maltol 8369

ACIDS

propionic acid 1032

isobutyric acid 6590

butyric acid 264

hexanoic acid 8892

heptanoic acid 8094

octanoic acid 379

nonanoic acid 8158

decanoic acid 2969

dodecanoic acid 3893

isovaleric acid 10430

Trans-cinnamic acid 444539

Pyrazine 9261

2-methyl pyrazine 7976

2-isobutyl-3-methoxypyrazine 32594

ALDEHYDES

Hexanal 6184

Heptanal 8130

Octanal 454

Nonanal 31289

Decanal 8175

Undecanal 8186

Dodecanal 8194

Benzaldehyde 240

Lyral 91604

+Citronellal 75427

(Continued)
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Table 1. (Continued)

Odorant Pubchem ID

-Citronellal 443157

Citral 638011

Cinnamaldehyde 637511

Helional(phenobarbital) 4763

Para-anisaldehyde 31244

Vanillin 1183

Ethyl-vanillin 8467

KETONES

2-heptanone 8051

2-octanone 8093

3-octanone 246728

2-nonanone 13187

3-nonanone 61235

2-decanone 12741

2-dodecanone 22556

3-hydroxybutan-2-one 179

6-methyl-5-hepten-2-one 9862

piperonyl acetone 62098

Menthone 26447

Beta-ionone 638014

Cyclohexanone 7967

Acetophenone 7410

Hedione 102861

Camphor 2537

ESTERS

isoamyl acetate 31276

ethyl butyrate 7762

ethyl isobutyrate 7342

butyl butyrate 7983

ethyl hexanoate 31265

ethyl heptanoate 7797

ethyl octanoate 7799

ethyl nonanoate 31251

ethyl decanoate 8048

methyl hexanoate 7824

methyl heptanoate 7826

methyl octanoate 8091

methyl nonanoate 15606

methyl decanoate 8050

methyl salicylate 4133

geranyl acetate 1549026

SULPHOREOUS

dimethyl disulfide 12232

3-methyl thiobutrnoate 409240

Thiazole 9256

Benzothiazol 7222

LACTONES

(Continued)
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Table 1. (Continued)

Odorant Pubchem ID

Cumarin 323

Gamma-decalactone 12813

OTHERS

Pyridine 1049

Quinolin 7047

Indole 798

Anisol 7519

Trans-anethol 637563

Cineol 10106

Estragol 8815

Safrol 5144

Citralva 1551246

Limonene 22311

INSECT ODORS

Γ-hexalactone 12756

butyric acid 264

hexanoic acid 8892

Α-terpineol 17100

Linalool 6549

Acetaldehyde 177

Butanal 261

Pentanal 8063

2-pentanone 7895

1-butanol 263

1-pentanol 6276

2-pentanol 22386

3-methyl butanol 31260

3-methyl-2-buten-1-ol 11173

1-octen-3-ol 18827

z-2-hexenol 5363388

propyl acetate 7997

butyl acetate 31272

pentyl acetate 12348

hexyl acetate 8908

Isobutylacetate 8038

E-2-hexenyl acetate 5363374

methyl butyrate 12180

ethyl-3-hydroxybutyrate 62572

ethyl propionate 7749

ethyl-trans-2-butenoate 429065

diethyl succinate 31249

Odorants specific to organisms

Diacetyl (C.elegans) 650

eugenol(M.musculus) 3314

Repellents

DEET 4284

Picaridin 125098

(Continued)
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the highest score (gscore) was selected to compare the best binding mode for the selected recep-
tor pairs. All the 125 receptor-ligand poses for a given receptor were ranked in the descending
order of gscore. The ligand profile for each olfactory receptor was used for comparison across
ORs and validation of the protocol (Fig 2).

Molecular Dynamics (MD) Simulations of Mouse OR-EG
The methodology for molecular dynamics simulations is as follows. The mouse OR73 models,
in both ligand-bound and unbound form, were energy-minimized in an implicit membrane
environment until convergence. The energy-minimized structures were then used as the start
point for MD simulations. The MD simulations were carried out using DESMONDmodule
of the GLIDE software [55] for 20 ns using the OPLS_2005 force field in the presence of
1-palmitoyl-2-oleoylphosphatidylcholine (POPC) lipid bilayer and standard NPT conditions.
The protein was solvated in an orthorhombic box with periodic boundary conditions by adding
TIP3P water molecules. The initial equilibration was carried out using default protocol of
restrained minimization followed by molecular dynamics simulations for 20 ns.

Table 1. (Continued)

Odorant Pubchem ID

Eucalypton 10390702

Linalool 6549

Alpha-thujone 261491

Beta-thujone 249286

ethyl anthralite 6877

methyl N,N,-dimethylanthranilite 82336

butyl anthralite 24433

methyl p-tert- butyl phenyl acetate 605629

ethyl chrysanthemate 7334

2-isobutyl 3-methoxy pyrazine 32594

Allyl-ionoe 5365976

2-sec-butyl-3-methoxypyrazine 520098

doi:10.1371/journal.pone.0131077.t001

Table 2. The different parameters used for standardization of IFD protocol. Parameter 5 (marked in bold) shows the highest score for binding of known
agonist, eugenol to mOR-EG. Parameter 5 was thus chosen for further IFD analysis.

S.
No.

GRID Parameter Gscore for Eugenol
(kcal/mol)

1 Ser 113 as grid centre No constraints -5.96

2 Residues known to be at the binding site as grid centre (Ser 113, Phe 182, Phe 203, Phe 206, Asn
207, Leu 212, Phe 252, Ile 256 and Leu 259)

No constraints -6.98

3 Ser 113 as grid centre H-bond with Ser
113

-3.22

4 Residues known to be at the binding site as grid centre (Ser 113, Phe 182, Phe 203, Phe 206, Asn
207, Leu 212, Phe 252, Ile 256 and Leu 259)

H-bond with Ser
113

-7.09

5 The upper half of the protein facing the extracellular mileu (in membrane) as grid No constraints -8.84

6 Different rotameric states of Ser 113 No constraints < -3.00

doi:10.1371/journal.pone.0131077.t002
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Results and Discussions

Optimization of Docking Protocol
Mouse eugenol receptor (MOR73/mOR-EG), isolated from olfactory receptor neuron was
found to respond to eugenol, using calcium imaging studies, in heterologous cells, as well as in
vivo studies [35]. The protein sequence of the receptor is available at NCBI (www.ncbi.nlm.nih.
gov). Since it is a sufficiently well-characterised system, a homology model of the mOR-EG was
built using the methodology described in our earlier analysis [39] [56] and used for evaluation

Fig 1. GRID selected for Induced Fit Docking. Induced Fit docking protocol was standardized using the
experimental data available on mouse ORs that responds to eugenol (mOR-EG). Different grid parameters
and constraints were used to standardize the protocol as shown in Table 2. The use of the upper half of the
receptor facing the extracellular milieu gave the best score for eugenol binding as compared to the other
parameters. Thus similar grid parameters were used for all the IFD runs. The receptor TM helices 1–7 are
coloured in VIBGYOR colour (Violet, Indigo, Blue, Green, Yellow, Orange and Red). Figure has been
generated using PYMOL (The PyMOLMolecular Graphics System, Version 1.5.0.4 Schrödinger, LLC).

doi:10.1371/journal.pone.0131077.g001
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of our docking protocol. The set of 125 ligands were docked to the mOR-EG receptor using the
IFD protocol. The eugenol molecule is known to bind in the pocket made by TM 3, 4, 5 and 7
and interacts with mainly hydrophobic residues. Ser 113, Phe 182, Phe 203, Phe 206, Asn 207,
Leu 212, Phe 252, Ile 256 and Leu 259 were observed at the binding pocket. Mutation of Ser
113 to Valine resulted in a loss of response to eugenol in one study and increase in EC50 value
in another study [35] [37]. Further, the mutation of the residue Phe 182 resulted in complete
loss of response of receptor to eugenol [37]. Different grid parameters were used (Table 2) to
obtain a parameter which would yield highest score for binding of eugenol to the receptor and
also include all the residues known to be involved in ligand binding in the binding pocket. In
90% of the poses, Ser 113 was not found to interact with the ligand, but was present at a dis-
tance of 6Å around the ligand. The receptor with different rotameric states of Ser 113 (S1 Fig)
was used as the input for IFD, to check if change in rotameric state of the residue results in its
interaction with ligands. However, changing the rotameric state of Ser 113 did not change its
binding affinity to the ligand. Phe 182, however, was found to form H-bonds with more than
80% of the ligands including eugenol (Fig 3). All the other residues shown to be at the binding

Fig 2. Induced Fit Docking Protocol. This figure represents the methodology followed for Induced Fit Docking. Ten pairs of human-mouse ORs were used
as receptors and the 125 odorants as ligands and IFD was carried out using XP scoring. The odor profile for all the receptors obtained using IFD has been
represented as heat map (Fig 8).

doi:10.1371/journal.pone.0131077.g002
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site from earlier studies were similar in our evaluation too. The parameter 5 gave the best bind-
ing energy for eugenol and was thus selected for further large scale docking analysis (Table 2).

Olfactory Receptor ‘Orthologs’ with High Sequence Identity Do Not
Share Similar Ligand Binding Profile
Ten pairs of closely related human-mouse olfactory receptors were selected for docking analy-
sis. The receptor pairs had varying sequence identity. The highest identity between a receptor

Fig 3. The bindingmode of eugenol to mOR-EG. The figure shows the binding site of eugenol to mOR-EG.
Phe 182 residue forms a H-bond with the—OH group. Other interacting residues are Tyr 260 and Asn 264,
while other residues contribute to the hydrophobic pocket required for odorant binding. The figure is obtained
using the “Ligand Interaction Diagram” of the GLIDE software (Schrödinger Release 2013–1:, version 2.6,
Schrödinger, LLC, New York, NY, 2013).

doi:10.1371/journal.pone.0131077.g003

Table 3. The receptor dataset used for the IFD study. The table shows the list of human and mouse ORs used for IFD analysis. Both the common name
and GI ID of each OR is mentioned. The OR pair 2 has the maximum sequence identity of 84%. The orthologous pairs of ORs have been marked with an
asterix '*'.

Human OR GI ID
(common name)

Mouse OR GI ID
(common name)

% Identity between the
OR pairs

OR pair notation (based on the cluster number in phylogeny as
mentioned in methodology)

289547623 (1A1)* 18480066 (MOR125-1)* 84 Pair 2

53828670 (2Y1) 18480552 (MOR256-24) 81 Pair 9

145279179 (8K5)* 18479442 (MOR187-1)* 76 Pair 4

52317190 (2AK2) 18480490 (MOR285-1) 76 Pair 10

52353290 (8H1)* 18479794 (MOR206-1)* 72 Pair 5

52546691 (11H1)* 18480158 (MOR106-5)* 63 Pair 7

52353951 (0J3) 18480958 (MOR267-13) 61 Pair 8

52317182 (10S1) 18480630 (MOR223-5) 54 Pair 3

116642873 (52A1) 18480856 (MOR24-3) 49 Pair 1

153791572 (13A1) 18479466 (MOR255-1) 43 Pair 6

doi:10.1371/journal.pone.0131077.t003
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pair was 84%, while the lowest was 43% (Table 3). The true orthologs (Pairs 2, 4, 5 and 7) have
been marked with ‘�’ (Table 3). This varying sequence identity in the dataset helped us analyse
the possibility of whether highly similar OR sequences respond to similar ligands. The ligand-
binding profiles for the first ten highest scoring ligands were compared for all OR pairs (Fig 4).
It was observed that the OR pair with highest sequence identity (84%) has four common
ligands out of ten best scoring ligands, while the OR pair with 72% and 76% sequence identity
would respond to eight common ligands out of best ten scoring ligands. The ligand clusters
were then analysed to check whether the ten high scoring ligands for the receptor pair with
highest sequence identity belongs to the same cluster (Table 4), which wouldindicate that the
response of receptors depends on chemical composition of the odorant and not on the odor
emitted by the odorant. The receptors with highest sequence identity neither respond to com-
mon ligands nor to ligands belonging to similar clusters. This confirms that subtle changes at
binding site compositions could result in differential odorant binding and odor detection. Such
conclusions have been arrived at by several studies involving OR response to odorant under
different circumstances. OR genetic polymorphism is known to alter function and, on an aver-
age, two individuals have functional differences at over 30%, suggesting that a given olfactory
receptor with minor allelic variations across individuals of the same species could exhibit

Fig 4. The number of common odorants among the best ten high scoring odorants for 10 human-
mouse OR pairs. The figure shows the number of common ligands picked by ten OR pairs. The OR pair with
highest sequence identity (Pair 2) has 4 common ligands while OR pair 5 and 10 have eight common ligands.
The sequence identity of each pair is marked on top of the bar in the graph.

doi:10.1371/journal.pone.0131077.g004

Table 4. The first ten high scoring ligands for human-mouse OR pair 2. The human-mouse OR pair 2 has the maximum sequence identity of 84%. The
highest scoring ligand is Helional for the two ORs, while there are only 4 common ligands out of the ten high scoring ligands (shown in bold font). The ligands
that are dissimilar are from different clusters in ligand clustering analysis (Column 3 and 6).

Odorant Gscore kcal/mol (Human OR
GI: 289547623 (1A1)

Ligand Cluster
Number

Odorant Gscore kcal/mol (Mouse OR GI:
18480066 (MOR125-1)

Ligand Cluster
Number

Helional -8.51 15 Helional -10.96 15

Ethyl-vanillin -7.32 8 Androstadienone -9.50 23

Hedione -7.30 33_4 Androstenone -8.36 23

Cumarin -7.22 9 Nonanoic acid -7.71 33_2

Methyl salicylate -7.17 14 Indole -7.56 12

Piperonyl
acetone

-7.13 18 Methyl salicylate -7.56 14

Thymol -7.09 17 Piperonyl acetone -7.35 18

Vanillin -7.08 8 Butyric acid -7.23 31

Menthol -7.08 21 Lyral -7.21 27

Androstadienone -7.04 23 Octanoic acid -7.18 33_2

doi:10.1371/journal.pone.0131077.t004
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difference in responses to similar ligands [57]. Eighty seven percent of human-primate ortho-
logs and 94% of mouse-rat orthologs showed differences in receptor potency to an individual
ligand [7]. Despite high overall sequence identity (of 84%), only four residues are identical at
the binding site of OR pair 2, while other residues are different. This difference in the local
chemical environment could explain the varied response to a given set of odors of two closely
related ORs (Fig 5). The electrostatic surface representation of the binding site of two receptors
clearly shows the variation in the local chemical environment which could lead to different
ligand binding profiles for the two receptors (S2 Fig). This difference in binding profiles may
not be reflected by marked differences in gscores between human and mouse OR homologous
pairs. The distribution of gscores (maximum, minimum and spread of gscores) for all the OR

Fig 5. Odorant (Helional) binding residues of OR pair 2. (a): The odorant binding residues of human
OR1A1. (b): The odorant binding residues of mouse OR18480066. The residues circled in red are the ones
that are equivalent (identical) to both human and mouse ORs. The variability in the binding site results in
differential responses and orientation of ligand binding of the two closely related ORs to the given odorant.
The figure is obtained using the “Ligand Interaction Diagram” of the GLIDE software (Schrödinger Release
2013–1: version 2.6, Schrödinger, LLC, New York, NY, 2013) and PyMOL (The PyMOLMolecular Graphics
System, Version 1.5.0.4 Schrödinger, LLC).

doi:10.1371/journal.pone.0131077.g005

Fig 6. The distribution of odorants (125) into different chemical classes. The odorants belonged to
different chemical classes with varying length of carbon chains. Few specific odorants that induce responses
from insect ORs and mammalian ORs were grouped separately to understand their receptor binding activity.

doi:10.1371/journal.pone.0131077.g006
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pairs has been represented as a boxplot (S3 Fig). The gscores range from -4 to -6 kcal/mol for
the 10 pairs of ORs under study. The median values differ beween the human OR and its
closely related mouse homologue by 1 unit; human_OR2 and mouse_OR2 (OR pair 2) with
highest sequence identity (84%) retains identical median value.

Ligand Dataset
The ligand dataset consists of 125 odorant molecules belonging to various chemical classes like
alcohols, ketones, carboxylic acids, aldehydes and sulphur containing compounds (Fig 6). The
ligands were clustered using the canvas module of Schrödinger software into 36 unique clus-
ters. The clustering was analysed at merging distance ranging from 0.1 to 1.0 at regular inter-
vals of 0.5 (Table 5). At each of the merging distances, the clusters were manually checked to
confirm that ligands with similar features were clustered into a group. The clustering that
resulted in maximum number of similar ligands in a given cluster was selected for further anal-
ysis. The merging distance of 0.85 yielded 36 clusters and was used for further studies. The
cluster 33 had 55 aliphatic odorant members in it and it was further divided into 11 sub-clus-
ters based on the number of carbon atoms. The number of ligands in each cluster is given in
Table 6. Based on MOLPRINT2D, the ligands were classified based on their molecular weight,
number of rotatable bonds, number of aromatic rings and number of hydrogen bond donors
and acceptors. More than 60 of the ligands have a molecular weight between 100–150 Daltons.
The ligands contain 1–11 rotatable bonds while 75% of the dataset contains aliphatic chains.
Seventy odorants contain at least two hydrogen bond acceptor groups, while 80 ligands contain
at least one hydrogen bond donor group (Fig 7). The ligand clusters were further used to com-
pare odor-binding profiles of OR proteins under study. Binding of similar odorants or odorants
belonging to the same clusters to a given OR will indicate common binding modes.

Table 5. The different merging distances used for clustering of ligands. The ligand clusters obtained at
a merging distance of 0.85 shows the presence of highly similar ligands in a given cluster and thus has been
used for further analysis.

Merging Distance of Clustering Number of Clusters

0.1 96

0.2 96

0.25 96

0.3 96

0.35 96

0.4 89

0.45 84

0.5 81

0.55 78

0.6 72

0.65 67

0.7 59

0.75 48

0.8 39

0.85 36

0.9 24

0.95 13

0.99 5

doi:10.1371/journal.pone.0131077.t005
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Table 6. The number of ligands in each of the 36 ligand clusters obtained by clustering (asmentioned
in methods). Cluster 33 has 55 aliphatic odorant members in it and thus it is further subdivided into 11 sub-
clusters based on functional groups of the odorants.

Cluster Number Number of Ligands

1 1

2 1

3 1

4 1

5 2

6 3

7 4

8 4

9 1

10 2

11 1

12 3

13 1

14 4

15 1

16 1

17 2

18 3

19 2

20 9

21 2

22 4

23 3

24 1

25 1

26 1

27 3

28 1

29 1

30 5

31 3

32 9

33 55

33_1 2

33_2 7

33_3 12

33_4 1

33_5 3

33_6 6

33_7 9

33_8 1

33_9 1

33_10 8

33_11 5

34 1

35 1

36 1

doi:10.1371/journal.pone.0131077.t006
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Induced Fit Docking
Induced fit docking of 10 homologous human-mouse OR pairs. One hundred and

twenty five odorant molecules, as mentioned earlier, were docked to each of the twenty olfac-
tory receptors individually using the IFD module of GLIDE Schrödinger software (Schrö-
dinger Release 2013–1:, version 2.6, Schrödinger, LLC, New York, NY, 2013). Each IFD run
takes upto six days on an I7 Linux machine with 2 processors. For each receptor, 125 or more
complexes were generated based on the different tautomeric states of ligands. The table of ener-
gies has been reproduced as a heat map for visualization (Fig 8).

The average energy of OR binding to odorants is in the range of -4kcal/mol to -6kcal/mol.
The average energy of interaction between human ORs and the odorants is -4.85kcal/mol,
while for mouse ORs it is slightly higher, -5.09kcal/mol. The average difference in the binding
of odorants between closely related human and mouse OR pairs was calculated. The pair with
the highest sequence identity (Pair 2) has the minimum difference of average binding (Table 7)
scores indicating overall similarity in binding mode between closely related OR sequences. The
odorants with the highest scores for the 20 ORs belong to varied clusters of the ligand cluster-
ing data, perhaps since chemically similar odorants exhibit different odors and a given OR rec-
ognizes odorants based on shape or odor similarity.

Validation of docking protocol. In this section, we summarize the data on OR-odorant
interactions known till date in the light of our computational study of OR-ligand modeling.

ThemOR-EG receptor is known to respond to eugenol and compounds belonging to vari-
ous chemical classes (vanillin-like compounds, polycyclic compounds and benzene derivatives
etc.) [37]. The results using the IFD protocol mentioned above identifies similar vanillin-like,
polycyclic and aromatic compounds (Helional, Ethyl-vanillin and Piperonyl acetone) to be
high scoring ligands as compared to eugenol (Tables 8 and 9).

Fig 7. The distribution of MOLPRINT2D features of the odorants. (a) shows the range of molecular
weight of the odorants. Most of the odorants have a molecular weight between 100–150 Daltons. (b) shows
the number of rotatable bonds present in the given set of odorants. The number of rotatable bonds varies
from 1 to 11. (c) shows the number of aromatic rings present in the odorants. 80% of the odorants are
aliphatic. (d) and (e) show the number of hydrogen bond acceptors and donor atoms respectively in the
odorants. There are a maximum of 5 hydrogen bond acceptors and 3 hydrogen bond donor atom in the
odorants.

doi:10.1371/journal.pone.0131077.g007
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HumanOR1A1 (belonging to OR pair 2) responds to citronellol and helional even at lower
concentrations when compared to aldehydes with 6–9 carbons atoms (Table 9) [58]. Among
the different stereoisomers of citronellol, the receptor is more responsive to (-) citronellol than
(+) citronellol. The hydrophobic binding pocket is very similar to the one observed in
mOR-EG receptor. The TM 3, 4, 5, 6, and 7 are involved in interactions with the ligand. Gly
108, Asn 109 and Ser 112 are involved in interactions with the ligand and mutation of these
residues results in a reduction of response to these odorants. These residues are found in the
binding pocket of OR1A1, derived from the current OR-ligand docking protocol. Helional is
the highest scoring ligand (-8.51kcal/mol) in this mini-virtual screening exercise, while (-) cit-
ronellol obtains a GLIDE score of -5.76kcal/mol, though the binding pockets for both ligands
are similar in our analysis (Fig 9). (+) citronellol scores lower than the two above mentioned
odorants. Comparing the residues at the binding pocket for the close homologue of OR1A1 in
mouse (Fig 5), we observe that the four residues known to be important in ligand binding are

Fig 8. Heat map of the odorant profile of 10 human-mouse OR pairs. X-axis shows the human-mouse OR pair and the sequence identity between
human-mouse OR pairs. Y-axis indicates the number of 130 odorants used in this study. The heat map is obtained using the gscore (kcal/mol) of interaction
of each ligand to the given receptor. The scores have been normalized between 0 to 1 as shown in the scale. The odorants for which experimental data are
available (Steroids, Helional, Undecanal, Eugenol and Citronellol) have been marked with a red arrow. Insect ORs have been marked in a green rectangular
box. The heat map has been generated using R software.

doi:10.1371/journal.pone.0131077.g008

Modeling Odorant-Olfactory Receptor Interactions

PLOS ONE | DOI:10.1371/journal.pone.0131077 July 29, 2015 17 / 30



common, while the rest of the binding pockets differ in the composition of residues. This vari-
ability at the functional site allows the closely related OR sequences to bind to myriad
odorants.

HumanOR1D2 is a receptor found in human spermatozoa [59]. It is known to respond to
bourgeonal and is suppressed by undecanal (Table 9). The OR1D2 receptor is evolutionarily
related to the human receptor 7D4, that detects steroids such as androstenone and androstadie-
none. Point mutations in OR7D4 result in variations in response to the known odorants across
different individuals [60]. It is reported that OR1D2 also responds to steroid hormones with
lesser efficacy as compared to OR7D4 (Table 9). In the docking analysis, androstenone and
androstadienone are observed as the best scoring ligands for 1D2, with a GLIDE score in the
range of -10kcal/mol, while bourgeonal binds with a score of -4.48kcal/mol. The binding pock-
ets remain similar for both the odorants. This study confirms the fact that by subtle changes at

Table 7. Average difference in binding energies (kcal/mol) of odorants to 10 human-mouse OR pairs.
The average binding energies of 125 odorants to each of the ORs were calculated and the difference in the
average energy between each human-mouse OR pair has been reported. The OR pair 2 (with the highest
sequence identity of 84%) has the minimum difference in binding energy.

OR pair Average difference in binding energies to odorants
(kcal/mol)

% Identity between the OR
pairs

OR pair 1 0.59 49

OR pair 2 0.01 84

OR pair 3 0.08 54

OR pair 4 1.97 76

OR pair 5 0.45 72

OR pair 6 1.74 43

OR pair 7 0.32 63

OR pair 8 1.17 61

OR pair 9 0.03 81

OR pair
10

0.65 76

doi:10.1371/journal.pone.0131077.t007

Table 8. The ten high scoring odorants for mOR-EG. Helional, Ethyl-vanillin and Eugenol are the experi-
mentally proven ligands for mOR-EG which occur among the top five best scoring odorant-receptor
interactions.

Odorant Gscore (kcal/mol) of binding to mOR-EG

Helional -11.87

Ethyl-vanillin -9.74

Piperonyl acetone -8.96

Eugenol -8.84

Menthol -8.49

Cumarin -8.15

Decanoic acid -8.08

Cineol -8.07

Acetophenone -7.52

2-Methyl pyrazine -7.18

2-Octanone -6.08

doi:10.1371/journal.pone.0131077.t008
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Table 9. OR-odorant interactions reported till date. The OR-odorant interactions reported in studies done so far has been mentioned in this table. The
remarks column indicates the results from the current study that correspond to the known data on OR-odorant interactions.

OR name Ligands Remarks Reference

mOR-EG (Mouse) Eugenol,methyl isoeugenol,lyral. Undecanal (antagonist), 2-methoxy-
4-ethylphenol;, 2-methoxy-4-methylphenol;, eugenol acetate,eugenol ethyl
ether, ethyl vanillin, Mousse Cristal, 4-hydroxy-3-methyl benzaldehyde

mOR-EG-Eugenol complex is in the top 5 best
binding receptor-ligand complexes in the current
study. Undecanal is found to bind better than many
selected odorants and in the same binding pocket as
the known ligands suggesting competitive inhibition.
Eugenol and compounds structurally similar to it such
as ethyl vanillin have been ranked in the top 10 best
binding odorants to mOR-EG. (Please refer Table 8).

[8], [15] and
[35].

MOR-EV (Mouse) Ethyl-vanillin - Same as
above

MOR-23 (Mouse) Lyral - Same as
above

MOR1-1,MOR105-1,
MOR106-1

(+)-2-Phenylbutyric acid, (+)-Camphor, (+)-Carvone, (+)-Dihydrocarvone,
(+)-Fenchone, (-)-2-Phenylbutyric acid, (-)-Camphor, (-)-Carvone
(-)-Fenchone, (-)-b-Citronellol, 1-Decanol, 1-Heptanol, 1-Hexanol,
1-Nonanol, 1-Octanol, 1-Pentanol, 2-Coumaranone, 2-Heptanone,
2-Hexanone, 2-Nonanone, 2-Octanone, 2-Pentanone, 23-Hexanedione,
3-Heptanone, 3-Octanone, 34-Hexanedione, 4-Chromanone,
4-Hydroxycoumarin, Acetophenone, Allyl benzene, Allyl heptanoate, Allyl
phenylacetate,Amyl hexanoate, Benzene Benzophenone, Benzyl acetate,
Butyl butyryllactate, Butyl formate, Coumarin, Cyclohexanone, Decanal,
Decanoic acid, Dihydrojasmone, Ethyl isobutyrate, Geraniol, Heptanal,
Heptanoic acid, Hexanal, Hexanoic acid, Hexyl acetate, Lyral, Nonanal,
Nonanethiol, Nonanoic acid, Octanal, Octanethiol, Octanoic acid, Pentanoic
acid, Phenyl acetate, Prenyl acetate, Propionic acid, Vanillic acid, g-
Caprolactone

The interaction between OR1A1 and the odorant (-)
Citronellol is found to score better than the
interaction between OR1A1 and (+) Citronellol in the
current study. The review reports (-) Citronellol to be
an agonist for OR1A1 while the other stereoisomer do
not activate the OR (please see text for details).

[8].

MOR107-1,
MOR128-2,
MOR129-1

MOR136-1,
MOR139-1,
MOR140-1

MOR15-1,MOR161-
1,MOR162-1

MOR170-1,MOR18-
1,MOR180-1

MOR182-1,
MOR184-1,
MOR185-1

MOR189-1,MOR2-1,
MOR203-1

MOR204-6,
MOR205-1,
MOR207-1

MOR222-1,
MOR223-1,MOR23-
1

MOR236-1,MOR25-
1,MOR250-1

MOR251-1,
MOR253-1,
MOR256-17

MOR258-1,
MOR259-1,
MOR260-1

MOR261-1,
MOR268-1,
MOR269-1

MOR271-1,
MOR272-1,
MOR273-1

MOR277-1,MOR30-
1,MOR31-1

MOR33-1,MOR37-1,
MOR4-1

MOR40-1,MOR41-1,
MOR5-1

MOR9-1,OR10J5,
OR1A1,OR2C1,
OR2J2,

OR2M7,OR2W1,
OR51E1,OR51E2

,OR51L1,OR5P3 (53
Mouse ORs and
10Human ORs).

M71 OR (Mouse) acetophenone and benzaldehyde - [69]

(Continued)
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the receptor binding site, the receptor can accommodate similar ligands. The difference in
ligand binding scores could be because of the difference in the functional groups of the odor-
ants (Fig 10).

Undecanal is a known inhibitor for human olfactory receptor hOr17-4 (1D2) (Table 9) [59]
[61] and for its homologue in rat, the I7 receptor. The human and the rat ORs are known to

Table 9. (Continued)

OR name Ligands Remarks Reference

S6 (Human) Nonanedioic acid, Octanoic acid - [70]

S86 (Human) Nonanoic acid, Octanoic acid, Heptanoic acid - Same as
above

r-I7 (Rat) Octanal, Heptanal - Same as
above

m-I7 (Mouse) Octanal, Heptanal - Same as
above

OR17-40 (Human) Helional OR1D2 in the current study is also labeled as OR17-
40 in certain studies. Helional-OR1D2 complex is in
the top 10 of the best scoring receptor-ligand complex
among the 125 other odorants used in the study.

Same as
above

mOR912-93 (Mouse) 2-Heptanone - Same as
above

mI-C6 (Mouse) (−)Citronellal, β-Citronellol - Same as
above

Olfr43 (Human) (−)Citronellal, β-Citronellol - Same as
above

OR1G1 (Human) Nonanal,9-Decen-1-ol,1-Nonanal,camphor,n-butanal, 3-methylbut-1-yl
ethanoate (isoamyl acetate), 3-methylbut-1-yl ethanoate (isoamyl acetate),
2-ethyl-1-hexanol, 1-nonanol,ethyl isobutyrate,γ-decalactone,nonanal,trans-
anethol, piperonyl acetone, lyral and hedione, pyrazines, thiazols,
cyclohexanone, Octopamine, isoamyl acetate, ethyl isobutyrate, tridecanal,
2-undecanone.

- [38], [41], [65]
and [66].

OR52D1 (Human) methyl octanoate,ethyl heptanoate,
1-nonanol,2-nonanol,3-nonanone,3-octanone

- Same as
above

MOR42-3 (Mouse) undecanal and nonanoic acid - [71]

tetramethyl-hexadec-1-en-3-ol, 1-methyl-ethyl-2-phenylethanoate,ethyl-
3-methyl-3-phenyl-oxirane-2-carboylate, 5-methyl-2-phenyl-hex-2-enal, 4-
(4-hydroxy-4-methylpentyl)-cyclohexen-1-carbaldehyde

Human ORs Aldehydes and Helional In this review psychometric function test was used to
show that Helional is the most potent Aldehyde at a
low odorant concentration. In the current study we find
that of all the aldehyde group of odorants, Helional-
receptor complexes have the highest average gscore
(please refer Table 9).

[62]

OR7D4 and OR1D2
(Human)

Bourgeonal, androstenone,androstadionone. The human OR7D4 and OR1D2 and known to be
evolutionarily related and found to be expressed
ectopically in testis. Bourgeonal is known to be the
endogenous ligand for these receptors, while they do
respond to androstenone and other testicular
odorants. In the current study androstenone is
reported to be the highest scoring OR-odorant
complex for 1D2. Bourgeonal is found to bind in the
same binding pocket as androstenone but with a
lower binding score.

[60]

OR1D2 (Human) Bourgeonal and Undecanal Bourgeonal is the known agonist for OR1D2 while
undecanal is the antagonist. In the current study both
bourgeonal and undecanal bind in the same binding
pocket of the OR1D2. The OR-undecanal complex
scores higher than the OR-bourgeonal complex
indicating that undecanal may act as a competitive
inhibitor.

[59]

doi:10.1371/journal.pone.0131077.t009
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respond to bourgeonal, the agonist [15]. The gscore of undecanal interaction with the receptor
1D2 in this study is -5.2 kcal/mol, which is lower than binding affinity of the highest scoring
pair (-10.73kcal/mol), but better than bourgeonal (-4.48Kcal/mol) which is the known agonist
(inhibited by undecanal). The binding site of undecanal is same as the other high scoring
ligands, suggesting competitive inhibition of these receptors by undecanal (Fig 11).

Aldehydes of varying carbon length show high response by human olfactory receptors
(Table 9) [62]. Helional is the most potent aldehyde when compared to butanal, hexanal, hep-
tanal, octanal, nonanal and decanal. Helional has the highest average docking score (-5.66kcal/
mol) for the twenty olfactory receptors under study by IFD. The average score for other alde-
hydes are as reported in Table 10. The highest score of helional is -12.26kcal/mol and it forms
three H-bonds, one salt bridge and one pi-pi interaction (Fig 12), which results in the most sta-
ble interaction as compared to other ligands. Invariably, larger ligands would score better than
eugenol due to higher extents of hydrophobic interactions.

Insect olfactory receptors are known to detect odorants with lesser numbers of carbon
atoms (2–5 carbon atoms), while mammalian odor detect odorants with higher numbers of
carbon atoms (5–12 carbon atoms) [42] [63]. The ligand dataset consisted of 25 insect OR spe-
cific odorants, comprising about one-fifth of the whole dataset of odorants. The average energy
score of insect odorants upon docking to the 10 human-mouse pairs is -4.15 kcal/mol, as com-
pared to mammalian specific odorants which have an average energy score of -5.18 kcal/mol.
This confirms that mammalian specific odors form better interactions to mammalian ORs and
thus have a high binding score. Similar studies on insect ORs require the availability of

Fig 9. Bindingmode of Helional and (-) Citronellol to human OR1A1.Helional (a) forms three hydrogen bonds and one salt bridge with the residues of
OR1A1, while Citronellol (b) forms only one H-bond with the residues of OR. Helional is known to be the most potent alcohol for human ORs. The figure is
obtained using the “Ligand Interaction Diagram” of the GLIDE software (Schrödinger Release 2013–1:, version 2.6, Schrödinger, LLC, New York, NY,
2013).

doi:10.1371/journal.pone.0131077.g009
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homology models for many insect ORs and their co-receptors. Due to the inverted topology
and varying loop lengths, it is difficult to obtain high quality homology models for several
insect ORs [64]. Such a study will, however, be very important in understanding how insect
vectors detect human hosts using the sense of smell.

Antagonistic Activity of Odorants
Olfactory receptors exhibit a combinatorial code of response [1]. Odorant response varies
when presented as single odorant and as a mixture of odorants. In a mixture, some odorants
are known to antagonize the effect of other odorants and the response is the cumulative effect
of all the odorants in the mixture. The antagonistic effect also depends on the neuron in which
the OR is expressed. There has been no study to differentiate the perception of agonists and
antagonists [15] as antagonists also bind to the ORs unlike the non-binders (which can be dif-
ferentiated using the free energy of binding). The odorant which acts as an agonist for one OR
could behave as an antagonist for another OR [41]. The response to antagonists may not neces-
sarily lead to an inactive state of the receptor. It may result in a decreased response of the ago-
nist and thus cannot be differentiated at the receptor expression levels. Antagonists tend to be
structurally related to agonists. For example undecanal (an antagonist) is structurally similar to
bourgeonal (an agonist) [41]. In nature, odorants exist as a mixture and very rarely as a single
compound. Thus, in the docking studies to understand one to one OR-odorant relation, it
becomes difficult to differentiate the antagonists from the agonist until one studies the activa-
tion of ORs using these ligands [65, 66]. In this study, it is observed that undecanal, a proven

Fig 10. Bindingmode of bourgeonal to human OR1D2. Bourgeonal is known to be the most potent ligand
of human OR1D2. It forms a H-bond with the residue Phe168 of the receptor. It binds to the common GPCR
binding pocket formed by TM3, 4, 5 and 7. The figure is obtained using the “Ligand Interaction Diagram” of
the GLIDE software (Schrödinger Release 2013–1:, version 2.6, Schrödinger, LLC, New York, NY, 2013).

doi:10.1371/journal.pone.0131077.g010
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Fig 11. Binding mode of androstenone (agonist) and undecanal (antagonist) to the human olfactory receptor 1D2. Both the odorants bind in the same
binding pocket but interact with different residues. Val108, Val 109, Phe 168, Ile 187, Ser 230, Tyr 233 and Gly 234 are the common residues at the binding
site. The figure is obtained using the “Ligand Interaction Diagram” of the GLIDE software (Schrödinger Release 2013–1:, version 2.6, Schrödinger, LLC,
New York, NY, 2013).

doi:10.1371/journal.pone.0131077.g011

Table 10. Average gscore (kcal/mol) for interactions between aldehydes in the odorant dataset to the
10 human-mouse OR pairs. The average binding energy of each of the aldehyde to the 20 ORs was calcu-
lated. Helional is known to be the most potent aldehyde as compared to aldehydes with 5–10 carbon atoms.

Odorant (aldehyde) Average gscore (kcal/mol) of binding to 10 human-mouse OR pairs

Helional -5.66

Butanal -2.36

Pentanal -2.21

Hexanal -2.17

Heptanal -2.35

Octanal -2.75

Nonanal -3.09

Decanal -2.49

doi:10.1371/journal.pone.0131077.t010
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antagonist for the human OR1D2, scores higher than the endogenous ligand, bourgeonal. It is
known to inhibit the response of OR1D2 to bourgeonal by binding to the same ligand binding
pocket as that of bourgeonal [41].

MD Simulations of Mouse OR-EG
MD simulations of the mouse OR-EG was performed as mentioned in methods. The energy
drift of the ligand-bound form in the initial 10 ns is ~ -300kcal/mol while in the last 5 ns it is ~
-100kcal/mol. This suggests that the receptor in the ligand-bound form remains in a stable
state throughout the simulation, without huge differences in the energy of the system. Overall,
the ligand-bound form has lower energy throughout the simulations as compared to the
unbound form (S4 Fig). We find the ligand-binding pocket is made up mostly of hydrophobic
residues and few polar residues that form H-bonds. Ser 113, which is shown to be important in
ligand binding [35, 37], is found to form a H-bond in about 35% of the overall simulation time
(S5 and S6 Figs). We find that the residues at the binding site are spatially clustered and remain
so throughout the MD simulation indicating that the ligand is bound firmly in a particular
binding pocket and does not switch positions (S7 Fig).

Fig 12. Best bindingmode of Helional to OR. This interaction has the highest score in the IFD runs. There are three H-bonds and one salt bridge
interaction between the odorant and the residues of the olfactory receptor. The figure is obtained using the “Ligand Interaction Diagram” of the GLIDE
software (Schrödinger Release 2013–1:, version 2.6, Schrödinger, LLC, New York, NY, 2013).

doi:10.1371/journal.pone.0131077.g012
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Database of Olfactory Receptors-Access to Receptor-Ligand
Complexes
The Database of Olfactory Receptors (DOR database) (http://caps.ncbs.res.in/DOR) [67] con-
tains information on sequences, phylogenetic analysis and homology models of olfactory
receptors from five eukaryotic organisms. Models of the Receptor-Ligand complexes for the 20
olfactory receptors with each of the 125 ligands have now been included in the DOR database.
The files are available in the ‘LIGAND DOCKING’ tab of the database. The user can download
a compressed ‘tar file’ for each olfactory receptor and its ligand complexes. The olfactory recep-
tors are labelled as per their ‘GI Ids’ (Table 3). The receptor-ligand complexes are in the PDB
format and they are labelled based on the Pubchem code for each of the ligand used in the
study (Table 1). The availability of all the protein-ligand complexes in the public domain will
be helpful for a wide range of analysis on these classes of proteins.

Conclusion
Previously, we had exploited distant relationships between ORs and GPCRs to arrive at three-
dimensional models of 100 ORs using tools like homology modelling [39]. Olfactory receptors
are known to have a combinatorial response to odors and OR-ligand discrimination has been
recorded in literature only for a few ORs through careful experiments. In this paper, we
selected 20 ORs of both human and mouse origin, and used docking and virtual screening of
125 known ligands to arrive at OR-ligand profiles. To the best of our knowledge, this is the first
longitudinal large-scale computational study using docking to arrive at OR-ligand profile. Fur-
ther, docking scores that correlate well with OR-ligand affinities known from experiments have
been obtained. Eugenol and eugenol-like ligands were recognised as top-ranking ones by the
current docking protocol. We have shown the selective non-affinity of Drosophila OR-ligands
by mammalian ORs. The current docking protocol and scores are sensitive even to identify bet-
ter ligands between stereoisomers like (+) and (–) citronellol. Known ligands and inhibitors
could be correctly identified for MOR73, human OR1A1 and 1D2 using docking scores. We
are currently predicting a large number of OR-ligand pairs whose relative affinities are yet to
be tested.

Using a well-validated protocol, methods have been standardized to obtain an odorant pro-
file, through mini-virtual screening, for a given olfactory receptor protein for a limited number
of odorants. Olfactory receptors bind to myriad of odors and it is difficult to decode this com-
plex combinatorial response process. Many OR-odorant profiles still remain undeciphered. In
silico tools like homology modeling and induced fit docking provide us the advantage of induc-
ing flexibility to both receptor and ligand. This creates a scenario very similar to the one that
occurs biologically in a cell, wherein a receptor undergoes conformational changes to accom-
modate a given ligand. OR sequences exhibit great diversity. Homologous OR sequences do
not respond similarly to a given set of odorants. A small change in residue composition at the
binding site results in different odor profiles, which cannot be realised from the overall
sequence identity of two ORs under question. The binding site and binding mode vary greatly
across ORs. This helps the ORs recognize numerous odors in the environment. Another
method that could be pursued is to introduce flexibility to the ORs using Molecular Dynamics
(MD) simulations. The different conformations obtained for a receptor can then be used to
identify a set of odorants that would bind to the receptor above a given energy threshold.
Molecular Dynamics simulation study for a large data set of receptors (400–1000 mammalian
ORs) is very computer intensive and time consuming. In this regard MD simulations were car-
ried out for mouse OR-EG in the eugenol-bound and unbound form. We find that key interac-
tions between this ligand and OR remain the same throughout 20 ns simulations.
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ORs are known to be expressed in tissues other than oro-nasal cavity i.e. testis, lungs and
pancreas [68]. Obtaining the odorant profile for such ORs will help us in understanding their
role in the given tissue. ORs are known to be over-expressed in certain types of cancer and dia-
betes and it will be interesting to decode the function of such ORs that could then be used in
pharmacological studies. From the current study, known ligands are observed to bind with a
energy threshold greater than -4.5kcal/mol. This can be used as a cut-off to obtain ligand pro-
file for a given odorant. Highly related OR pairs show least difference in average binding energy
to the given set of odorants. This can be used to compare the odorant profiles of similar ORs,
especially in cases where one of the OR has been de-orphaned. Induced fit docking protocol
can thus be systematically used to understand the structural and functional divergence of olfac-
tory receptor class of proteins.

Supporting Information
S1 Fig. The different rotameric states of Ser 113 residue of mOR-EG. Different rotameric
states of Ser 113 were obtained using PRIME module of GLIDE. Ser 113 was shown to be
important for binding of eugenol to mOR-EG. Different rotameric states of Ser 113 were used
to check if the odorants form any bonded interaction with Ser 113 in its different rotameric
states. The change in rotameric state of Ser 113 residue did not increase its proximity to the
ligand. The figure is obtained using PyMOL (The PyMOL Molecular Graphics System, Version
1.5.0.4 Schrödinger, LLC).
(TIF)

S2 Fig. Electrostatic surface representation of Mouse OR (18480066) and Human OR
(1A1). Electrostatics is represented by calculated charge from red (acidic residues; -5 kbT/ec)
to blue (basic residues; +5 kbT/ec) as in Adaptive Poisson—Boltzmann Solver (APBS) program
in PyMOL (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.).
The surface electrostatics at the binding site of human and mouse ORs (Sequence identity is
84%) is different and this explains the difference in varied ligand profiles of these receptors.
(TIFF)

S3 Fig. Distribution of gscores for 20 Olfactory receptor proteins and their interaction
with the 125 odor molecules. The distribution of gscores for OR proteins and the odor mole-
cules has been represented as a Box-Whisker plot (prepared using R-scripts). The plot repre-
sents the spread of gscores for 125 odor molecules against each of the 20 OR proteins. The
gscores range from -4 to -6 kcal/mol for all the ORs under study. For the OR pair (Pair 2) with
highest sequence identity (84%) the median value of gscore is equal. The circles outside the
plot represent the outliers. The OR proteins are numbered based on the pair they belong to.
For eg: Human 1 and Mouse 1 belong to OR pair 1 under study.
(TIFF)

S4 Fig. Graph representing the energy of the mouse OR-EG model for the 20 ns MD simu-
lation. (a) Receptor in the unbound form and (b) Receptor bound to eugenol. E is the final
potential energy, E-p is the potential energy without the electrostatics component, T is the tem-
perature, P is the pressure and V is the volume.
(TIFF)

S5 Fig. Ligand-protein interactions during the 20 ns MD simulations of the eugenol-bound
form of mouse OR73. The figure shows the fraction of number of snapshots where interac-
tions between ligand and residues were retained at the binding site for the 20 ns MD simula-
tion. Ser 113 is present more than 35% of the simulation time at the binding site.
(TIFF)
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S6 Fig. The residues present at the ligand-binding site for more than 35% of the total simu-
lation time. Ser 113 is seen to be present at the binding site and forms a H-bond with the
ligand for more than 35% of the total simulation time. The figure is obtained using the “Ligand
Interaction Diagram” of the GLIDE software (Schrödinger Release 2013–1:, version 2.6,
Schrödinger, LLC, New York, NY, 2013).
(TIFF)

S7 Fig. The ligand-binding residues for the mouse OR-eugenol complex mapped on the
three-dimensional homology model. The ligand-binding residues (red) of mouse OR-eugenol
complex (blue) are spatially clustered and the ligand remains in this binding pocket throughout
the MD simulations.
(TIFF)
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