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Nitric oxide (NO) is a short-lived gaseous signaling molecule. In blood vessels, it is
synthesized in a dynamic fashion by endothelial nitric oxide synthase (eNOS) and
influences vascular function via two distinct mechanisms, the activation of soluble guanylyl
cyclase (sGC)/cyclic guanosine monophosphate (cGMP)-dependent signaling and the
S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The regulation of eNOS
activity and NO bioavailability is critical to maintain blood vessel function. The activity of
eNOS and ability to generate NO is regulated at the transcriptional, posttranscriptional,
and posttranslational levels. Post-translational modifications acutely impact eNOS activity
and dysregulation of these mechanisms compromise eNOS activity and foster the
development of cardiovascular diseases (CVDs). This review will intergrate past and
current literature on the post-translational modifications of eNOS in both health and
disease.
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Cardiovascular disease (CVD) remains the primary cause of death
in developed and developing countries, and almost 800,000 peo-
ple die annually in the US from CVDs that include atherosclerosis,
hypertension, congestive heart failure, and stroke (Heron et al.,
2009). The endothelium is a single layer of cells lining the lumen
of all blood vessels. Endothelial cells provide a barrier to throm-
bosis, regulate both acute, and chronic blood flow, local inflam-
mation, and vascular cell proliferation (Cines et al., 1998). Loss
of endothelial function precedes vascular disease and is thought
to be an initiating event (Jensovsky, 1994). Nitric oxide (NO)
is a major mediator of endothelial function and is synthesized
in endothelial cells by endothelial nitric oxide synthase (eNOS).
eNOS-derived NO plays a vital role in maintaining cardiovas-
cular homeostasis by influencing vascular tone, smooth muscle
cell proliferation, and migration, leukocyte adhesion, and platelet
aggregation (Forstermann and Munzel, 2006). Numerous studies
have shown that eNOS is protective against pathologic vascu-
lar remodeling, hypertension and atherosclerosis (Shesely et al.,
1996; Rudic et al., 1998; Kuhlencordt et al., 2001). Moreover,
reduced expression and dysregulation of eNOS which result in
the decreased bioaviability of NO and the increased produc-
tion of superoxide instead of NO, increases the severity of CVD
(Oemar et al., 1998; Ozaki et al., 2002). Therefore, corruption of
eNOS/NO signaling is considered an early and common mecha-
nism underling numerous vascular pathologies. A greater under-
standing of eNOS regulation and new approaches to improving
eNOS function is a vital goal in the improved treatment of CVDs.

NO
In 1980, an endothelium-derived relaxing factor (EDRF) was
discovered in rabbit aortae by Furchgott and Zawadzki (1980).
Breakthrough studies by several groups later identified EDRF as

NO (Katsuki and Murad, 1977; Ignarro et al., 1987; Palmer et al.,
1987). NO is a highly lipophilic, hyper reactive, diffusible free rad-
ical gas (Dudzinski et al., 2006) with a short half-life in biological
fluids (Thomas et al., 2001). NO is produced in vary degrees in
the cardiovascular, nervous, digestive and immunological systems
where it exerts a variety of biological actions under both physio-
logical and pathological conditions (Bian et al., 2008). The paired
oxygen and nitrogen atoms of NO exhibit characteristics of both
a partial double bond and partial triple bond as a result of an
unpaired electron (Dudzinski et al., 2006). The free radical char-
acter of NO confers unique reactivities and is responsible for the
interaction of NO with numerous cellular and extracellular tar-
gets. As a lipophilic gas, NO readily diffuses away from the site of
synthesis, across multiple cellular membranes to alter signaling in
distal cells (Dudzinski et al., 2006). Well-characterized actions of
NO include the stimulation of vasodilation, inhibition of smooth
muscle cell proliferation, leukocyte adhesion, and platelet aggre-
gation (Forstermann and Munzel, 2006). Impaired NO activity
is commonly observed as a critical event in the pathogenesis of
CVD (Verhaar et al., 2004; Dudzinski et al., 2006; Versari et al.,
2009). As a consequence, a major therapeutic goal in improv-
ing endothelial function in CVD is centered around enhancing
deficient NO-signaling (Verhaar et al., 2004).

NOS
The NOS family of enzymes consists of three distinct isoforms:
neuronal (nNOS, alternatively designated NOSI as it was the
first NOS isoform to be discovered), inducible (iNOS or NOSII),
and endothelial (eNOS or NOSIII) NOS. All three isoforms are
expressed in the human cardiovascular system (Balligand et al.,
1994; Shen et al., 1999; Sears et al., 2003). The neuronal isoform,
nNOS has been shown to be expressed in vascular smooth muscle
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of certain types of blood vessels (Forstermann and Sessa, 2012).
The inducible, iNOS is not normally present in blood vessels but
can be induced following infection or cytokine stimulation and
is prominently found in vascular smooth muscle and immune
cells (Kroncke et al., 1998; Kibbe et al., 1999). In contrast, eNOS
is prominently expressed in all endothelial cells (Toda, 2012).
Expression of eNOS was originally thought to be constitutive, but
recent studies have shown that its expression levels fluctuate in
response to mechanical stimulation (Ziegler et al., 1998), growth
factor (Ziegler et al., 1998; Bouloumie et al., 1999), and cytokines
(Gomez-Fernandez et al., 2005).

eNOS is a bi-domain enzyme comprising a C-terminal reduc-
tase domain which binds nicotinamide adenine dinucleotide
phosphate (NADPH), the flavins mononucleotide (FMN), and
flavin adenine dinucleotide (FAD); an N-terminal oxidase
domain which binds heme, zinc, tetrahydrobiopterin (BH4),
and calmodulin. In addition to the bi-domain catalytic struc-
ture, eNOS forms homodimers and dimerization is essential
for enzymatic activity (Panda et al., 2002). Electrons flow from
the C-terminal reductase domain of one NOS monomer to
the N-terminal oxygenase domain of the other NOS monomer
(Siddhanta et al., 1998). The primary mode of enzyme acti-
vation is the binding of calcium-bound calmodulin to the N-
terminal CaM-binding domain. This facilitates a structure change
and the flow of electrons from NADPH through the flavins to
the oxygenase domain of the other eNOS monomer (Abu-Soud
et al., 1994). Within the oxygenase domain, molecular oxygen
is bound to heme and reduced and then incorporated into L-
arginine to form NO and L-citrulline (Fleming and Busse, 1999;
Verhaar et al., 2004). To generate NO, 1 mole of l-arginine,
1.5 moles of NADPH, and 2 moles of molecular oxygen are
required (Dudzinski et al., 2006). To efficiently produce NO,
eNOS must effectively coordinate the binding of multiple sub-
strates and cofactors. Dirsuption of this highly coordinated
catalysis, such as which occurs in the absence of adequate sub-
strate concentrations or other modifications can result in the
production of superoxide and peroxynitrite (Dudzinski et al.,
2006).

FUNCTIONAL MECHAMISMS OF NO
In blood vessels, NO signaling is orchestrated via at least two dis-
tinct mechanisms. The first is the well characterized activation
of the high affinity soluble guanylyl cyclase (sGC)-cyclic guano-
sine monophosphate (cGMP) signaling pathway (Ziche et al.,
1993; Dimmeler et al., 1997; Ziche and Morbidelli, 2000; Friebe
and Koesling, 2003) This pathway has been established to medi-
ate the NO-dependent relaxation of vascular smooth muscle and
the ability of NO to suppress platelet aggregation (Friebe et al.,
2007). NO-sensitive soluble guanylyl cyclase (sGC) is the cognate
receptor for NO and once activated, sGC catalyzes the forma-
tion of the intracellular messenger cGMP. The affinity of sGC
for NO is very high and thus low amounts of NO (nM) acti-
vate this pathway (Beckman and Koppenol, 1996). Binding of NO,
to the reduced heme moiety of sGC increases the conversion of
guanosine triphosphate (GTP) to cGMP, which in turn activates
downstream effector systems such as protein kinases, phosphodi-
esterases, and ion channels (Murad, 1986). Dysfunction of this

pathway has been reported to contribute to the pathogenesis
of many disorders, including hypertension and atherosclerosis
(Ruetten et al., 1999; Mizuno et al., 2010). Genetic deletion of
sGC results in reduced endothelial-dependent relaxation, reduced
ability of NO to relax smooth muscle and prevent platelet acti-
vation and hypertension (Buys et al., 2008; Dangel et al., 2010;
Groneberg et al., 2010).

However, not all actions of NO are dependent on activa-
tion of sGC and cGMP/PKG signaling. A second mechanism
is called S-nitrosylation and involves the ability of NO or its
metabolites to react with cysteine residues of target proteins
(Stamler et al., 2001; Dudzinski et al., 2006). In the past decade,
reversible redox modifications of cysteine residues have garnered
considerable attention as a mechanism of intracellular signal-
ing. S-nitrosylation is increasingly recognized for its ability to
influence protein function in a reversible manner analogous to
phosphorylation (Stamler et al., 2001). Indeed, like phospho-
rylation, a motif for S-nitrosylation has been postulated that
consists of a cysteine residue located between an acidic and a
basic amino acid that together lie within a hydrophobic envi-
ronment (Yeh et al., 1999; Hess et al., 2001, 2005; Zimmet and
Hare, 2006; Foster et al., 2009a; Xue et al., 2010). The reversal
of S-nitrosylation has been shown to be mediated by two major
enzymes, the S-nitrosoglutathione reductase (GSNOR) (Liu et al.,
2001, 2004) and thioredoxin 1 (Trx1) (Mitchell and Marletta,
2005). S-nitrosylation has been shown to impact a wide range of
biological processes including apoptosis (Dimmeler et al., 1997;
Kang-Decker et al., 2007; Benhar et al., 2008; Cho et al., 2009),
cellular trafficking (Ozawa et al., 2008), proliferation (Ignarro
et al., 2001), NO synthase activity (Erwin et al., 2005), ion channel
activity and muscle contractility (Xu et al., 1998), transcription
factor activity (Palmer et al., 2000), protein secretion (Matsushita
et al., 2003), blood flow (Singel and Stamler, 2005), as well as a
wide range of pathophysiological conditions (Foster et al., 2009b).
The dysregulation of protein S-nitrosylation has been observed
in a wide spectrum of human diseases, and is increasingly rec-
ognized as source of aberrant cellular function (Lim et al., 2008;
Cho et al., 2009; Lima et al., 2010; Wei et al., 2010; Seth and
Stamler, 2011). In contrast to sGC signaling, higher amounts of
NO (μM) are required for nitrosylation and because of the high
diffusion co-efficient of NO (Martinez-Ruiz and Lamas, 2005),
this may allow for the selective nitrosylation of proteins within
close proximity to the source of NO. To date, a large number of
SNO-proteins have been identified, but the observed specificity of
S-nitrosylation in terms of target proteins and specific cysteines
within modified proteins is not yet well understood (Seth and
Stamler, 2011).

POST-TRANSLATIONAL REGULATION OF eNOS
eNOS activity and ultimately the amount of NO synthesized
is controlled by a complex integration of transcriptional, post-
transcriptional and post-translational mechanisms (Dudzinski
et al., 2006). Acutely, eNOS activity can be robustly regulated by a
number of post-translational modifications, including fatty acid
acylation, substrate, and co-factor availability, degree of phos-
phorylation, S-nitrosylation, acetylation, and protein-protein
interactions.
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INTRACELLULAR LOCALIZATION
Within endothelial cells, eNOS has been shown to be concen-
trated within plasma membrane (PM) caveolae, a pocket-like
invagination on the membrane, which is enriched in choles-
terol and sphingolipids and is important for signal transduc-
tion (Lisanti et al., 1994). Not surprisingly, it has been shown
that caveolae are important for eNOS function (Shaul et al.,
1996; Sowa et al., 2001). The extraction of membrane choles-
terol and exposure of endothelial cells to oxidized low den-
sity lipoprotein (LDL) all have been shown to reduce eNOS
activity by displacing eNOS from the PM to intracellular sites
(Blair et al., 1999; Nuszkowski et al., 2001) suggesting that
eNOS targeting to cholesterol enriched domains is important
for NO synthesis. The subcellular location of eNOS is medi-
ated by protein fatty acid acylation. There are two major lipid
modifications: the co-translational N-myristoylation on glycine-
2 and post-translational palmitoylation on cysteines-15 and 26.
Myristoylation is the first and necessary step for subsequent
palmitoylation (Liu and Sessa, 1994; Robinson and Michel, 1995).
Once eNOS is myristoylated and palmitoylated, it is subsequently
targeted to the Golgi complex and plasmalemmal caveolae (Liu
and Sessa, 1994; Liu et al., 1995, 1997; Garcia-Cardena et al.,
1996b). Previous studies have shown that a glycine-2 to alanine
(G2A) mutant of eNOS is neither myristoylated nor palmitoy-
lated and can be found in the cytosol instead of bound to periph-
eral membranes. The G2A eNOS retains equivalent catalytic
activity in assays replete with cofactors, but within cells, it pro-
duces less NO than the wild type eNOS. These studies revealed an
important role of intracellular location in the catalytic regulation
of eNOS (Church and Fulton, 2006). The importance of palmi-
toylation for optimal eNOS function was revealed by mutation
of Cys-15 and Cys-26 to serines, which prevents eNOS palmitoy-
lation. Loss of palmitoylation leads to the intracellular redistri-
bution of eNOS and diminishes NO synthesis in cells (Liu et al.,
1995; Robinson and Michel, 1995). Further analysis of eNOS tar-
geting motifs revealed that the first 35 amino acids including the
N-myristoylation and palmitoylation sites are sufficient to pro-
vide intracellular targeting of eNOS to regions of the Golgi and
PM (Liu et al., 1997). In addition to the PM, eNOS can be found
attached to various intracellular membranes, such as Golgi, which
produce considerably less NO than PM eNOS. Functional rele-
vance of eNOS on the Golgi remains to be further established
(Liu et al., 1997). The appropriate intracellular localization and
distribution of eNOS in PM and Golgi apparatus is necessary for
Akt (and agonist)-dependent eNOS phosphorylation on Ser-1179
and is impaired in the cytosolic G2A eNOS (Fulton et al., 2002).
In COS-7 cells, when reconstituted with a PM localized eNOS,
eNOS is highly phosphorylated and highly active in response to
the elevation of intracellular calcium. In contrast, Golgi eNOS
is less phosphorylated under basal conditions, but preferentially
activated via mechanisms involving Akt-dependent phosphory-
lation (Fulton et al., 2004). It has also been demonstrated that
eNOS and caveolin-1 can translocate into the nucleus follow-
ing vascular endothelial growth factor (VEGF) stimulation (Feng
et al., 1999). The presence of eNOS in mitochondria has also been
shown and termed as “mitochondria NOS” (mtNOS), which is
thought to contribute to superoxide production in endothelial

cells (Brodsky et al., 2002). C-terminal polybasic domains with an
autoinhibitiory domain of eNOS have also been shown to influ-
ence membrane binding and mitochondrial localization (Gao
et al., 2004). However, the targeting of eNOS to the nucleus
or mitochondria results in an enzyme that produces very lit-
tle NO (Jagnandan et al., 2005). Targeting calcium-independent
forms of NOS (iNOS) or a novel calcium-insensitive eNOS to
the cytosol or to the nucleus and mitochondria resulted in activ-
ity equal to that targeted to the membranes of the Golgi and
PM suggesting that calcium or mechanisms regulating calcium-
sensitivity are central to location-dependent changes in eNOS
activity (Jagnandan et al., 2005; Church and Fulton, 2006).

Although location is clearly an important factor for regulat-
ing eNOS activity, much less is known about its contribution
to downstream NO-dependent signal transduction. Recent stud-
ies have found that eNOS in the Golgi can influence the S-
nitrosylation of local proteins (Iwakiri et al., 2006; Sangwung
et al., 2012). When expressed in the endothelium of intact blood
vessels, the PM location of eNOS results in a greater ability to elicit
cGMP-dependent signaling and endothelium-dependent relax-
ation vs. a Golgi-targed enzyme (Qian et al., 2010). The ability
of PM eNOS to elicit more pronounced endothelium-dependent
relaxations and greater increases in cGMP accumulation is not
surprising given the extraordinary sensitivity of sGC for NO
(Russwurm et al., 1998) and most likely reflects the increased NO
production from this location (Fulton et al., 2004). Consistent
with these studies, the S-nitrosylation-dependent inhibition of
Von Willebrand factor (vWF) release from endothelial cell is
greater in endothelial cells expressing eNOS at the PM compared
to the Golgi. Mechanistically, it was shown that the amount of
NO, and not the location of synthesis, is the most important
variable influencing protein S-nitrosylation and vWF suppres-
sion (Qian et al., 2010). The importance of higher concentra-
tions of NO are also observed in the ability of either PM or
Golgi-restructed eNOS to influence inflammatory NF-κB signal-
ing (Qian and Fulton, 2012). While a PM location favors the
highest output of NO from eNOS, it is also the most susceptible
to extracellular influences such as oxidized LDL which selectively
reduces NO release from PM-targeted eNOS (Shaul, 2002; Zhang
et al., 2006). eNOS restricted to the Golgi is resistant to the actions
of oxidized LDL and Golgi restricted eNOS is also capable of
supplying biologically active NO to adjacent smooth muscle cells
and mediating endothelium-dependent relaxation. While eNOS
is generally regarded as being protective in murine models of
atherosclerosis (Kuhlencordt et al., 2001), it is not yet known
whether a Golgi location of eNOS would offer more protection
against lesion formation vs. the PM.

eNOS PHOSPHORYLATION
eNOS is dynamically regulated by changes in protein phos-
phorylation. It is known that eNOS can be phosphorylated at
multiple sites, including serine (S), threonine (T), and tyrosine
(Y) residues (Michel et al., 1993; Corson et al., 1996; Garcia-
Cardena et al., 1996a; Fulton et al., 2005). Seven primary sites of
eNOS phosphorylation have been identified in human isoform
on Y81, S114, T495, S615, S633, Y657, and S1177 (equivalent to
Y83, S116, T497, S617, S635, Y659, and S1179 of bovine eNOS
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due to two extra amino acids in the bovine eNOS sequence)
(Venema, 2002; Fulton et al., 2005; Fisslthaler et al., 2008). Folic
acid incubation can modulate eNOS phosphorylation at multiple
sites without change eNOS expression level (Taylor et al., 2013).

The phosphorylation of human eNOS S1179 on the C-
terminal reductase domain was one of the first eNOS phosphory-
lation sites identified and is a positive regulator of eNOS activity
(Fulton et al., 1999; Scotland et al., 2002). Phosphorylation of
S1179 via Akt has been shown to be important in the activa-
tion of eNOS in endothelial cells in response to VEGF and shear
stress (Dimmeler et al., 1999; Fulton et al., 1999; Gallis et al.,
1999; Michell et al., 1999). Other protein kinases have also been
shown to phosphorylate eNOS at S1179, including adenosine
monophosphate-activated kinase (AMPK) (Chen et al., 1999),
CaM protein kinase II (Fleming et al., 2001), protein kinase A
(PKA) (Butt et al., 2000; Gangopahyay et al., 2011), and protein
kinase G (PKG) (Butt et al., 2000). Enzymatically, the phospho-
rylation of S1179 increases electron flow and calcium-calmodulin
sensitivity (McCabe et al., 2000) which collectively increase NO
synthesis at lower levels of intracellular calcium.

The phosphorylation of both S617 and S635 have also been
shown to promote increased eNOS-derived NO release (Michell
et al., 2002). The phosphorylaiton of S617 can be induced by
PKA or Akt activity, and may serve to sensitize eNOS to calmod-
ulin binding and modulate the phosphorylation of other eNOS
sites (Michell et al., 2002; Bauer et al., 2003; Erwin et al.,
2005). Mimicking the phosphorylation by mutating S617D only
increases the Ca2+/CaM sensitivity without affecting overall
enzyme activity (Michell et al., 2002). S635, in the FMN binding
domain, is phosphorylated by PKA (Michell et al., 2002) and may
represent a second stimulatory phosphorylation response (Boo
et al., 2002). Mimicking phosphorylation with the S635D muta-
tion results in enhanced eNOS overall activity as well as increased
sensitivity to Ca2+/CaM. Both S617 and S635 are present on the
same auto-inhibitory domain on eNOS. Deletion of this domain
along with the other autoinhibitory domain containing S1179
results in an eNOS enzyme that is calcium-insensitive, which
strongly support the ability of phosphorylation to modulate
eNOS-calcium sensitivity (Church and Fulton, 2006).

The phosphorylation of T497 inhibits eNOS catalytic activity
and is thought to interfere with the binding of calcium-activated
calmodulin (Fleming et al., 2001). The phosphorylation of T497
is mediated by AMPK (Chen et al., 1999) and protein kinase C
(PKC) (Chen et al., 1999; Fleming et al., 2001; Michell et al.,
2001). Importantly, agonists such as bradykinin which increase
NO release, simultaneously induce the dephosphorylation of
T497 (Fleming et al., 2001; Harris et al., 2001), which enables
calmodulin binding and eNOS activation. Dephosphorlyation of
T497 is mediated by calcineurin and inhibited by cyclosporine A
(Harris et al., 2001).

S116 was first identified as a phosphorylation site that can
be induced by shear stress (Gallis et al., 1999). The impact of
phosphorylation on S116 in the eNOS oxygenase domain remains
controversial (Mount et al., 2007). S116 was previously suggested
to be a negative regulatory site (Bauer et al., 2003). Evidence
to support this derives from the ability of VEGF to induce the
dephosphorylation of S116 and a phospho null mutation, S116A

has increased activity (Kou et al., 2002). In contrast, mimick-
ing the phosphorylation of eNOS by S116D mutation decreases
basal NO release from endothelial cells and impairs endothelium-
dependent relaxation in aortic rings (Li et al., 2007). The mech-
anism by which S116 phosphorylation impacts eNOS activity is
not yet fully understood but may involve increased binding to
the negative regulator, caveolin-1 [105]. Dephosphorylation is
mediated by calcineurin which promotes increased activity via
c-Src binding and phosphorylation of tyrosine 83 (Ruan et al.,
2013). In contrast, shear stress (Gallis et al., 1999) and high den-
sity lipoprotein (HDL) (Drew et al., 2004) which increase eNOS
activity have also been reported to increase S116 phosphorylation.
Other studies have found no change in Ser116 phosphorylation
with either shear stress or VEGF, which may reflect cell specific
differences or greater methodological difficulty in detecting the
phosphorylation of this site (Boo et al., 2002).

Y83 is a recently identified eNOS phosphorylation site (Fulton
et al., 2005, 2008). Phosphorylation of this residue is mediated
by Src kinase in response to different eNOS-activating agonists,
which increases eNOS activity and NO production in both co-
transfected COS-7 cells and in endothelial cells (Venema, 2002;
Fulton et al., 2005). Phosphonull Y83F mutants of eNOS produce
less NO and exhibit impaired endothelium-dependent relaxation
when reconstituted in aorta from eNOS knockout mice. The tyro-
sine phosphorylation of eNOS has also been reported on Y659
by proline-rich tyrosine kinase 2 (PYK2). Phosphorylation of this
site impairs eNOS activity (Loot et al., 2009).

PROTEIN-PROTEIN INTERACTION
Calmodulin (CaM) was the first protein identified to directly
bind and regulate the activity of eNOS. CaM binds to a cog-
nate binding site on eNOS that lies between the oxygenase and
reductase domains. Binding displaces an adjacent autoinhibitory
loop and promotes NADPH-dependent electron flux to the heme
moiety (Fulton et al., 2001). Electron transfer is impeded in the
absence of bound calmodulin, thus eNOS catalytic activity is
suppressed. eNOS activity is proportional to the level of intracel-
lular calcium and the binding of calcium-activated calmodulin.
The intracellular location of eNOS can influence its ability to
respond to calcium, with eNOS at the PM being more responsive
than intracellular sites particularly in unstimulated cells (Church
and Fulton, 2006). This may be due to proximity to ion chan-
nels or transporters that are present in the PM. Prolonged cell
stimulation and calmodulin binding may trigger the depalmi-
toylation of eNOS via Acyl-Protein Thioesterase-1 (APT-1) and
membrane translocation (Michel et al., 1997; Yeh et al., 1999).
While Ca2+/CaM is the primary means of activating eNOS in
vitro, it is not the only game in town and this is revealed by
changes in calcium-sensitivity and an ability to generate NO with
resting levels of calcium. Many other factors can contribute to
the Ca2+/CaM sensitivity of eNOS. For example, acylation, acety-
lation, phosphorylation, caveolin-1 and heat shock protein 90
(hsp90) binding can also influence the CaM-dependent activation
of eNOS (McCabe et al., 2000; Fulton et al., 2001; Sessa, 2004).

Caveolin-1 (Cav-1) has been shown to directly bind to eNOS.
The scaffolding domain of Cav-1 interacts with the caveolin bind-
ing motif on eNOS that is located between amino acids 350–358.
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The binding of Cav-1 inhibits eNOS activity and reduces NO
production (Smart et al., 1999). Cav-1 binding is inhibited by
calcium-mobilizing agonists and the elevation of intracellular
calcium. Binding of calcium-activated calmodulin to eNOS dis-
places Cav-1 and facilitates eNOS activation (Govers et al., 2002;
Fleming and Busse, 2003). Association of eNOS with Cav-1 can
be decreased in a dose dependent manner by folic acid treat-
ment (Taylor et al., 2013). Over-expression of Cav-1 in COS-7
cells suppresses NOS activity (Garcia-Cardena et al., 1997; Michel
et al., 1997) and peptides encompassing the caveolin-1 scaffold-
ing domain inhibit NO release from eNOS (Bucci et al., 2000).
In Cav-1−/− mice, both basal and stimulated eNOS activity and
vasorelaxation are enhanced in blood vessels (Drab et al., 2001;
Razani et al., 2001). In addition, peptides that displace Cav-1
from eNOS, enhance the synthesis of NO and promote vasodi-
lation and further validate the inhibitory role of caveolin-1 in
eNOS-dependent NO release (Bernatchez et al., 2011).

The hsp90s comprise a family of molecular chaperones
responsible for the proper folding and maturation of client pro-
teins (Pratt, 1997). As part of their chaperone activities, hsp90
regulates a variety of signal transduction pathways. Hsp90 has
been shown to interact with eNOS under resting conditions and
binding to eNOS is increased with numerous endothelial cell
stimuli including VEGF, histamine, fluid shear stress, and estro-
gen, which promotes increased eNOS activity and NO release
(Venema et al., 1996; Garcia-Cardena et al., 1998; Russell et al.,
2000). There are multiple mechanisms by which hsp90 influ-
ences eNOS. Hsp90 binding to eNOS induces a conformational
change in eNOS that promotes increased activity and increased
enzymatic fidelity (Pritchard et al., 2001; Ou et al., 2003, 2004).
Hsp90 binds to the oxygenase domain of eNOS between amino
acid 310–323 (Xu et al., 2007) and it likely thus influences the
binding/function of heme as has been shown for other heme con-
taining proteins (Billecke et al., 2004; Ghosh and Stuehr, 2012).
In addition, hsp90 can also function as a scaffold or platform
for the recruitment and regulation of other regulatory proteins
including kinases and phosphatases that can then secondarily
influence eNOS function (Fulton et al., 2001). Geldanamycin
(GA) can disrupt hsp90-eNOS binding and prevent Akt recruit-
ment to eNOS to reduce eNOS activity (Roviezzo et al., 2007).
Co-Immunopercipitaion revealed that interaction of hsp90 and
eNOS was increased by folic acid (Taylor et al., 2013).

eNOS localization and activity can also be regulated by pro-
tein:protein interaction. Nitric oxide synthase interacting protein
(NOSIP) and nitric oxide synthase traffick inducer (NOSTRIN)
are both eNOS associated proteins. NOSIP and NOSTRIN, pro-
mote the translocation of eNOS from plasmalemmal caveolae to
other intracellular compartments, such as Golgi. By promoting
a reduced proportion of eNOS at the PM portion, NOSIP and
NOSTRIN decrease eNOS activity and NO release (Dedio et al.,
2001; Zimmermann et al., 2002).

Several transmembrane receptors and ion channels have also
been shown to impact eNOS regulation. The bradykinin (BK) B2
receptor is a G-protein coupled receptor (GPCR) also functions
as an allosteric regulator of eNOS activity. The binding of eNOS
and the BK B2 receptor is dynamic and driven by Ca2+/CaM sec-
ondarily to cell stimulation with BK or other calcium mobilizing

agonists and are reversed by blocking the elevation in intracellu-
lar calcium (Fulton et al., 2001). Using Coimmunoprecipitation
experiments followed by mass spectrometry, the voltage depen-
dent anion channel-porin was identified as a direct binding
partner of eNOS and interaction with eNOS augmented activity
probably through increased intracellular calcium (Sun and Liao,
2002).

Recently, another novel form of eNOS regulation was revealed,
through phosphorylation mediated-protein association. The
interaction of Pin1 prolyl isomerase with eNOS was observed
only when S116 is phosphorylated. In both endothelial cells and
blood vessels, inhibition of Pin1 increased NO release, and over-
expression of Pin1 supressesed NO production, validating the
functional significance of this interaction (Ruan et al., 2011).

eNOS function can also be indirectly regulated by many other
proteins. APT-1 induces the depalmitoylation and translocation
of eNOS (Yeh et al., 1999; Prabhakar et al., 2000). The cationic
amino acid transporter-1 (CAT-1) is a major L-arginine trans-
porter in ECs and has been shown to interact directly with eNOS
and enhance its activity through a mechanism that paradoxically
does not involve L-arginine transport (Li et al., 2005). In addition
to CAT-1, the arginine recycling enzymes argininosuccinate lyase
(ASL), and argininosuccinate synthase (ASS) have been shown to
bind and regulate eNOS activity, but surprisingly this also does
not require catalytic activity (Chen et al., 2013). The cell division
cycle 37 (Cdc 37), a co-chaperone of hsp90 interacts directly with
eNOS and inhibits its activity (Harris et al., 2006). The C-terminal
hsp70-interacting protein (CHIP) associates with both hsp70 and
90, and negatively regulates eNOS trafficking into the Golgi com-
plex (Jiang et al., 2003). Dynamin-2, a large GTPase has also
been shown to bind to eNOS. Binding to eNOS can be increased
by calcium ionophore and augments eNOS activity (Cao et al.,
2001). Beta-actin, generally acknowledged for its house keep-
ing functions, is associated with the eNOS oxygenase domain
and that binding activates eNOS to increase NO production and
decrease superoxide formation (Kondrikov et al., 2010). Another
novel eNOS partner is the G-protein-coupled receptor kinase
interactor-1 (GIT1) shown to bind eNOS in sinusoidal endothe-
lial cells. Association of GIT1 with eNOS promoted Ser1179
phosphorylation, enzyme activation, and NO synthesis (Liu et al.,
2012). In addition, eNOS has also been shown to interact with
signaling molecules including Src kinase (Fulton et al., 2005),
Akt-kinase (Michell et al., 1999), and sGC (Venema et al., 2003).
Given the large array of eNOS interacting proteins an important
unresolved question is how binding is coordinated and whether
binding is direct or indirect. For example, hsp90 binds numerous
co-chaperones and hundreds of client proteins and could readily
mediate indirect associations of multiple proteins. Some binding
partners are bound constitutively and other dynamic. The best
described dynamic partner is calmodulin which may actually be
bound constitutively and alternate between low and high affinity
binding. How the other eNOS binding proteins are shuttled on
and off is less well described.

SUBSTRATE AND COFACTOR AVAILABILITY
L-arginine is the substrate for eNOS and the catalytic activ-
ity also requires NADPH and the co-factor, tetrahydrobiopterin
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(BH4). Many studies have suggested that cellular deficiency of
either L-arginine or BH4 can cause endothelial dysfunction by
“uncoupling” eNOS. Uncoupled eNOS is a term used to describe
a change in the ratio of NO to O−

2 produced in favor of
decreased NO and increased O−

2 . The consequences of this are
both reduced synthesis and bioavailability of NO and increased
levels of superoxide and peroxynitrite (Forstermann and Munzel,
2006). Depletion of the NOS substrate L-arginine has been pro-
posed to occur via catabolism by arginase. Both arginase I and
II in endothelial cells have also been proposed to inhibit eNOS
activity via this mechanism (Wu and Morris, 1998; Zhang et al.,
2001; Hallemeesch et al., 2002; Berkowitz et al., 2003). Increased
Arginase II levels co-presents with endothelial dysfunction and
has been observed with CVDs such as atherosclerosis (Ming
et al., 2004) or hypertension (Zhang et al., 2004). Not surpris-
ingly, the supplementation of L-arginine has been shown to have
beneficial effects on eNOS activity (Elms et al., 2013) and in
humans with pathophysiological conditions including hyperc-
holesterolemia and hypertension. However, this remains a con-
troversial approach as the levels of L-arginine, even in disease
states, are much higher than required for eNOS synthesis (Drexler
et al., 1991; Rossitch et al., 1991; Imaizumi et al., 1992) and more
importantly long term supplementation of L-arginine may be
detrimental (Chen et al., 2013).

Oxidation and depletion of BH4 levels promotes eNOS
(Vasquez-Vivar et al., 1998) and endothelial dysfunction
(Shinozaki et al., 1999; Hong et al., 2001). Supplementation of
BH4 has been shown to improve endothelial-dependent vasodila-
tion in animal models of diabetes (Pieper and Siebeneich, 1997)
and insulin resistance (Shinozaki et al., 2000), as well as in
patients with hypercholesterolemia (Stroes et al., 1997), diabetes
mellitus (Pieper, 1997), essential hypertension (Higashi et al.,
2002), and in chronic smokers (Heitzer et al., 2000). These find-
ings suggest that limited synthesis or recycling of BH4 is an
important rate-limiting step in the eNOS-dependent synthesis of
NO in CVD states.

S-NITROSYLATION
Not only is eNOS activity influenced by a wide range of protein
regulators, but eNOS is itself post-translationally modified by S-
nitrosylation in a product feedback relationship that constrains
further NO synthesis. S-nitrosylation is a covalent modification
of protein cysteine thiols by NO to yield an S-nitrosothiol (SNO)
(Erwin et al., 2005; Lima et al., 2010). In endothelial cells, the
source of NO for nitrosylation comes primarily from eNOS. The
subcellular targeting of eNOS to the PM has been shown to be
important for eNOS S-nitrosylation which is not surprising given
the higher amount of NO produced at this location (Erwin et al.,
2006). In quiescent or unstimulated endothelial cells, eNOS is
predominantly S-nitrosylated on Cys-94 and Cys-99 (Dudzinski
et al., 2006). Agonist stimulation promotes the rapid denitro-
sylation of eNOS and this occurs within a similar time frame
to increased phosphorylation at Ser-1179 (Erwin et al., 2005).
The nitrosylated cysteines are present within the zinc tetrathi-
olate cluster, a structure that is intimately connected with the
eNOS dimer interface, but mutation of these sites does not impact
dimer formation in intact cells (Erwin et al., 2005). Thus, the

mechanism of exactly how nitrosylation represses the activity of
eNOS remains poorly understood.

PROTEIN ACETYLATION
The ability of aspirin and acetylating analogs to activate eNOS was
due to direct acetylation of eNOS protein (Taubert et al., 2004).
Deacetlyation of eNOS, acetylated at lysine 609 is mediated by
histone deacetylase 3 (HDAC3), which decreases NO production
by reduced calmodulin association (Jung et al., 2010). Sirtuin1
(SIRT1) also has been shown to regulate eNOS acetylation and
inactivation of Sirt1 by oxidants can increase eNOS acetylation
(Arunachalam et al., 2010; Donato et al., 2011). eNOS is also
nitrated on multiple tyrosines (Zickus et al., 2008) and perox-
ynitrite inactivates eNOS by inducing uncoupling (Zou et al.,
2002).

In summary, NO is a highly diffusible, gaseous signaling
molecule that influences organ function by a number of different
mechanisms. The synthesis of NO in the cardiovascular system is
highly regulated through a complex array of transcriptional and
post-translational modifications.

NO-dependent signaling becomes corrupted in CVDs states
and occurs alongside progressive vascular dysfunction. The exten-
sive knowledge on eNOS regulation, as detailed in this review,
will enable a more insightful identification of variables that can
be modified to restore NO balance in CVD states.
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