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Abstract: We aimed to build a deep learning-based, objective, fast, and accurate collateral circulation
assessment model. We included 92 patients who had suffered acute ischemic stroke (AIS) with large
vessel occlusion in the anterior circulation in this study, following their admission to our hospital
from June 2020 to August 2021. We analyzed their baseline whole-brain four-dimensional computed
tomography angiography (4D-CTA)/CT perfusion. The images of the arterial, arteriovenous, venous,
and late venous phases were extracted from 4D-CTA according to the perfusion time–density curve.
The subtraction images of each phase were created by subtracting the non-contrast CT. Each patient
was marked as having good or poor collateral circulation. Based on the ResNet34 classification
network, we developed a single-image input and a multi-image input network for binary classification
of collateral circulation. The training and test sets included 65 and 27 patients, respectively, and Monte
Carlo cross-validation was employed for five iterations. The network performance was evaluated
based on its precision, accuracy, recall, F1-score, and AUC. All the five performance indicators of
the single-image input model were higher than those of the other model. The single-image input
processing network, combining multiphase CTA images, can better classify AIS collateral circulation.
This automated collateral assessment tool could help to streamline clinical workflows, and screen
patients for reperfusion therapy.

Keywords: acute ischemic stroke; collateral circulation; large vessel occlusion; deep learning; 4D-CTA

1. Introduction

Stroke is the third leading cause of death and disability among Chinese residents,
and acute ischemic stroke (AIS) accounts for 81.9% of all patients [1]. Acute large vessel
occlusion (LVO) of the brain causes severe ischemia in the blood supply area and leads
to severe disability and mortality. Good collateral circulation can maintain the basic
metabolism of brain tissue in the penumbra region, slow down the expansion of infarct
foci and disease progression, and improve the success rate of reperfusion [2]. Collateral
circulation is crucial for the treatment and prognosis of patients with AIS [3,4]. However,
assessing collateral circulation is a challenging topic due to the complexity and difficulty of
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quantifying the neurological vessels’ structure. Although previous studies have tried and
reported various methods for assessing collateral circulation, there is no unified standard
for assessing collateral circulation [5,6]. Moreover, even when the same assessment method
is used, physicians have significant inter-rater differences. The key to saving stroke patients
is to restore perfusion as early as possible [7–11], and the accurate assessment of collateral
circulation is essential for patient treatment decisions.

CTA has become the primary assessment method of collateral circulation for AIS
because it is fast and non-invasive. Since the establishment of the collateral circulation is a
dynamic process, dynamic multi-phase CTA can show the details of collateral circulation,
and some studies [12,13] have proved its advantages and clinical value. Four-dimensional
computed tomography angiography (4D-CTA) is obtained while completing the emergency
CT perfusion, so it has high temporal resolution and provides accurate images of the
arterial, venous, and adjacent phases.

Deep learning, as a subset of artificial intelligence, can be applied to medical imaging
and has shown promise for automated detection. Deep learning analyzes the task in a
data-driven manner, and it automatically learns relevant data features from a specific data
set. Through learning, the model selects the correct features from the training data and this
enables the classifier to make the correct decisions when testing new data. The learning
process is essentially an optimization problem-solving process.

The importance of the collateral circulation is well known, but due to the complexity
of the collateral circulation assessment, pre-treatment evaluation inevitably causes a delay
in reperfusion time. We hypothesized that adopting advanced deep learning algorithms to
learn and model the information regarding the collateral circulation provided by dynamic
CTA would provide a model for rapid, accurate and objective assessment of the collateral
circulation; this could assist the clinic in obtaining a more detailed assessment of the
condition prior to treatment to develop an individualized treatment plan.

2. Material and Methods
2.1. Patients

Ninety-two consecutive patients with AIS who were admitted to our stroke center
from July 2020 to August 2021 were included in the study. The inclusion criteria were:
(1) age ≥ 18 years; (2) complaints of acute neurological dysfunction located on one side of
cerebral hemisphere; (3) an emergency one-stop whole-brain four-dimensional computed
tomography angiography (4D-CTA)/CT perfusion (CTP) examination found occlusion
of the internal carotid artery (ICA) or the M1/M2 segment of middle cerebral artery on
one side and abnormal perfusion in the corresponding blood supply region; (4) standard
treatment according to the guidelines for the early management of AIS patients; and (5) a
complete medical record file of hospitalization. The Human Ethics Committee of the First
Affiliated Hospital of Chongqing Medical University approved this study under approval
number 2021-274.

The exclusion criteria were: (1) the presence of significant motion artifacts in the
images that affect accurate observation and post-processing evaluation; (2) the combination
of other neurological diseases such as cerebral hemorrhage and tumors; (3) the combination
of vertebral-basilar system disease or posterior cranial fossa cerebrovascular disease; and
(4) bilateral internal carotid artery or middle cerebral artery stenosis or occlusion.

Patient demographic and clinical data were collected, including age, sex, time from
onset to examination, National Institutes of Health Stroke Scale Baseline Score (NIHSS) at
time of admission, TOAST typing of acute stroke etiology, treatment protocol, and whether
hemorrhagic transformation occurred.

2.2. CT Examination Equipment and Scanning Protocols

A 320-row detector CT scanner (Aquilion Vision, Canon Medical Systems Corporation,
Otawara, Japan) was used for all patients’ whole-brain one-stop 4D-CTA/CTP examination.
The patient was placed in the supine position, and the patient’s head was immobilized
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using a head brace and straps to reduce motion artifacts. The scan was performed from
the greater foramen magnum to the cranial vault. Iodine 400 (Iopamidol 400, Bracco
Sine, Italy) was used as the contrast agent. The scans and contrast injection were started
simultaneously, and after 7 s of contrast injection, the dynamic volume perfusion scan
was started. First, the non-contrast computed tomography (NCCT) was performed in
dynamic volume single scan mode, followed by a 4D-CTA/CTP scan in whole-brain
dynamic volume interrupted acquisition mode. Data were acquired in 2 s intermittent
scans during the arterial phase (11–36 s) and 5 s intermittent scans during the venous phase
(40–60 s). The total acquisition time was 60 s, and 19 volumes were acquired, including
NCCT, CTP, and 4D-CTA. The scanning parameters were: 80 kV, 150–310 mA, spherical
tube speed 0.75 s, coverage 140–160 mm, field of view (FOV) 240 mm × 240 mm, matrix
512 × 512, an adaptive iterative reconstruction algorithm was used to reduce the dose, a
reconstruction layer with a thickness of 1.0 mm and layer spacing of 1.0 mm was applied to
improve the reconstruction speed. The total dose was 5.0–6.0 mSv (k = 0.0021). The contrast
protocol was performed using high-pressure injector P3T technology (MEDRAD Stellant CT
Injection System, Bayer Medical Care, Pittsburgh, USA), which automatically calculates the
contrast dose and rate based on patient gender, weight, height, and contrast concentration.

2.3. Image Preprocessing

All image data obtained from the whole brain one-stop 4D-CTA/CTP scans, totaling
19 volumetric data packages, were selected and imported into a workstation (Vitrea, fX, 1.0,
Canon Medical Systems Corporation, Japan) for post-processing. The data were loaded
into the “SVD+ algorithm-based deconvolution method for cerebral perfusion” protocol,
and the software system automatically labeled the inflow arteries and outflow veins for
post-processing. After the automatic post-processing was completed, the operator manually
checked whether the arterial and venous curves were selected accurately. The requirements
were as follows: the peaks of the arterial and venous time curves were prominent and
noticeable, and were single-peaked “bell-shaped,” with no double or multiple peaks; the
arterial and venous starting position was after 0 s on the time axis, and ended after the
outflow platform period; the peak of the arterial curve was in front, and the peak of the
venous curve was behind. If the temporal density curve had double or multiple peaks,
motion artifact calibration was first performed; secondly, arterial and venous points were
re-selected. The arteries with the earliest enhancement were generally selected, e.g., ICA
and MCA. Regarding the selection of veins, the superior sagittal and transverse sinuses
were usually set. Recalculation was performed after the choice had been made and the
images were generated.

The image was reconstructed at a layer thickness of 1 mm and spacing of 1 mm. Ac-
cording to the arterial–venous time–density curve, the computed tomography angiography
(CTA) of the peak phase of the arterial curve was defined as the “arterial phase”, the CTA
of the intersection of the arterial and venous curves was defined as the “arterial–venous
phase”, and the computed tomography venous angiography (CTV) of the peak phase of
the venous curve was defined as the “venous phase”. The CTV of the first phase after the
venous curve dropped into the platform phase was the “late venous phase”. The CTA/CTV
of each phase was reconstructed, then the data from NCCT was used to perform subtraction
and bone removal to obtain the corresponding “arterial phase”, “arterial–venous phase”,
“venous phase”, and “venous late phase” volume packet after vascular subtraction.

The subtracted CTA/CTV-MIP maps were obtained from the subtracted volume data
of each CTA/CTV by the maximum density projection (MIP) algorithm. The CTA/CTV-
MIP maps of four phases (arterial phase, arteriovenous phase, venous phase, and late
venous phase) were stitched together (Figure 1). The MIP algorithm was implemented by
Python 3.8.0, and the packages we used were opencv(4.5.3) and PIL(8.0.1). The DICOM
images were converted into pixel values by normalization according to CT values, and the
sequence images of each period were converted into an array of size N × 512 × 512, N
was the number of mono-temporal sequence images, and the values of the points (x, y) on
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the maximum density projection map were assigned to the maximum pixel values along
the z-axis.
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Figure 1. Flow chart of image pre-processing.

2.4. Collateral Circulation Grading

Collateral circulation grading was performed using a modified ASITN/SIR (Ameri-
can Society of Interventional and Therapeutic Neuroradiology/Society of Interventional
Radiology) collateral grading scale based on dynamic multi-period CTA [5,14,15]. The
scale consists of 5 levels: level 0 indicates no or few collateral branches in the ischemic
area at any stage; level 1 is partial collateral circulation until the late venous phase; level 2
is partial collateral circulation in the ischemic area before the venous phase; level 3 is
complete collateral circulation formation in the ischemic area in the late venous phase, and
level 4 is total collateral circulation before the venous phase. Grades 0 to 2 were defined as
poor collateral circulation (Figure 2), while grades 3 to 4 were defined as good collateral
circulation (Figure 3). We marked patients as having good or poor collateral circulation
according to each patient’s dynamic CTA collateral grading. Two experienced neuroradiol-
ogists performed the scoring, and they negotiated a solution if they had a different opinion.
The scoring process was blinded to the clinical data.

2.5. Model Construction and Training

We tried the commonly used classification networks, VGG, Densenet, ResNet34, etc.,
and finally chose the ResNet34 as it had the best classification effect. The Adam optimizer
was selected during the training process, its learning rate was set to 0.0001, and the batch
size was set to 16. The training was stopped beyond ten epochs or when the loss value
stopped decreasing to prevent overfitting. We also used migration learning to take the
weights obtained from pre-training on ImageNet and assign them to the initialization
weights so that the model can eventually distinguish between good and poor collateral
circulation. The framework for model-building neural networks was Pytorch (1.7.0), and we
also used package pandas (1.1.3) to create datasets. All experiments were performed under
64-bit Windows OS, and the network was trained on NVIDIA GeForce RTX 2070 SUPER.
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The multi-period stitched image that had undergone image pre-processing first passed
through a 3 × 3 convolution layer, then a 3 × 3 maximum pooling layer, and then a
4-layer residual layer, where the residual layer consisted of residual blocks (Figure 4), and
the residual block consisted of two 3 × 3 convolution layers and a batch normalization
layer. The feature maps of the input residual blocks were added element by element to
the output feature maps, with the first layer containing three residual blocks, the second
layer containing four residual blocks, the third layer containing six residual blocks, and the
fourth layer containing three residual blocks. The final fully-connected layer was used as a
classifier, mapping the output features into two categories of actual number distributions,
and the softmax layer mapped the two real numbers into two (0–1) category probability
values, and the sum of the two category probability values was 1. The category with the
higher probability value was the final prediction class (Figure 5).
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Figure 5. Single image input processing network. The feature maps of the input residual blocks were
added element by element to the output feature maps, with the first layer containing three residual
blocks, the second layer containing four residual blocks, the third layer containing six residual blocks,
and the fourth layer containing three residual blocks. The final fully-connected layer was used as a
classifier, mapping the output features into two categories of actual number distributions, and the
softmax layer mapped the two real numbers into two (0–1) category probability values, and the sum
of the two category probability values was 1. The category with the higher probability value was the
final prediction class.
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The multi-image input processing network was consistent with the structure of the
classification network used in the single-input image model. The difference was that the
images of the four periods were input into four independent network branches, and the
four branches corresponding to each category outputted four probability values. The four
probability values were averaged to obtain the final category probability values, with the
type with the higher probability value being the last prediction class (Figure 6).
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The demographic and clinical characteristics of all patients in the groups with good and
poor collateral circulation were statistically described and compared. Continuous variables
conforming to normal distribution were presented as mean ± standard deviation, the
two-independent-samples t-test was used to compare two groups, and one-way ANOVA
was used to compare multiple groups. Continuous variables that did not conform to a
normal distribution were recorded using the median (inter-quartile spacing), comparisons
between two groups were made using the Mann–Whitney U test, and comparisons between
multiple groups were made using the Kruskal–Wallis test or one-way ANOVA. Count
variables were recorded as the number of patients or percentages, and the χ2 test was used
to compare groups.

Five Monte Carlo cross-validations were applied to each of the two models. The ratio
of the training and validation sets was 70% and 30%. Specifically, each training included
65 patients in the training set and 27 patients in the validation set. The performance
indicators of the models were accuracy, precision, recall, F1-score, and area under the
subject’s working characteristic curve (AUC).

Accuracy: the probability of correct judgment in the total sample size.

Accuracy =
tp + tn

tp + tn + f p + f n

Precision (positive predictive value): the probability of a true positive in a sample
judged to be positive.

Precision =
tp

tp + f p
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Recall (sensitivity): the probability that a sample of actual true positives was predicted
to be positive.

Recall =
tp

tp + f n

F1-score: Defined as the harmonic mean between precision and recall, and used to
evaluate the effectiveness of the binary classification model. (F1-score values range from 0
to 1, where 1 represents the best output of the model and 0 illustrates the worst output of
the model.)

F1 − score = 2 · precision · recall
precision + recall

3. Results

Ninety-two patients who suffered from AIS with large vessel occlusion were included
in this study. The baseline clinical characteristics of the patients were as follows: 1© 61 were
male, and 31 were female, with an average age of 66.24 ± 13.64 years; 2© distribution of
onset time: 32 patients within 6 h, 19 patients within 6–24 h, and 41 patients over 24 h;
3© responsible vessels: 64 patients had a middle cerebral artery (MCA) occlusion (with

or without anterior cerebral artery (ACA) occlusion), 14 patients had an internal carotid
artery (ICA) occlusion, 13 patients had ICA and MCA occlusion, and there was 1 case of
ICA, MCA, and ACA occlusion; 4© the median NIHSS score was 8.50 (12); 5© the modified
ASITN/SIR collateral score based on dynamic multi-period CTA was 3 (1) points; 6© TOAST
typing included 63 patients of large artery atherosclerosis type (LAA), 24 patients of car-
diogenic embolism type (CE), and five patients of stroke of other determined etiology
(SOE); 7© treatment methods included 22 patients who had endovascular intervention,
eight patients had thrombolytic treatment, three patients had thrombolytic bridging and en-
dovascular intervention, and 59 patients were subjected to conservative treatment. 8© There
were 19 patients with hemorrhagic transformation.

Patients were divided into two groups based on good or poor collateral circulation,
and statistically compared with each other regarding the above indicators (see Table 1 for
details). Comparing the two groups with good collateral circulation and poor collateral
circulation, showed that age, baseline NIHSS score, occluded artery, hemorrhagic transfor-
mation, and dynamic CTA ASTIN/SIR collateral classification were statistically different
between the two groups (all p < 0.05). Gender, onset time, treatment method, and TOAST
typing showed no statistical difference between the two groups (p > 0.05).

The training time for the single-image input processing network was 69 min, the
prediction time was 0.26 s, the accuracy was 0.852 ± 0.045, the precision was 0.932 ± 0.034,
the recall was 0.827 ± 0.076, and the F1-score was 0.860 ± 0.044. The training time for
the multi-image input processing network was 120 min, the prediction time was 0.37 s,
the accuracy was 0.822 ± 0.017, precision was 0.571 ± 0.081, recall was 0.813 ± 0.056,
and F1-score was 0.836 ± 0.008 (Table 2). The single-image input processing network
outperformed the multi-image input processing network in all indexes.

ROC curves were plotted for single-image and multi-image input networks for di-
chotomous collateral circulation evaluation (Figures 7 and 8). The dashed line represents
the ROC curve for each Monte Carlo cross-validation. The solid line is the average ROC
curve for five iterations. The gray-shaded area indicates the interval of ±1 standard de-
viation. The AUC is labeled in each figure. The average AUC of the single-image input
processing network for evaluating the collateral circulation was 0.89 ± 0.05, which was far
more accurate than the multi-image input model.
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Table 1. The description and comparison of clinical characteristics between groups with good or poor
collateral circulation.

All Patients Poor Collateral Good Collateral p-Value

Gender (Male/%) 61/66 30/71 31/62 0.341
age 66.24 ± 13.64 69.45 ± 14.05 63.54 ± 12.82 0.038

NIHSS,M(IQR) 8.50 (12) 12 (10) 3.50 (9) 0.001
Onset time 0.132

<6 h 32 17 15
6–24 h 19 11 8
>24 h 41 14 27

Treatment method 0.729
Thrombolysis 8 5 3

Endovascular interventions 22 9 13
Thrombolytic bridging intervention 3 1 2

Conservative treatment 59 27 32
Responsible Artery 0.041

ICA 14 3 9
MCA (ACA) 64 28 36
ICA + MCA 13 10 3

ICA + MCA + ACA 1 1 0
TOAST type 0.126

LAA 63 25 38
CE 24 15 9

SOE 5 2 3
Hemorrhage conversion

(cases/%) 19/21 13/31 6/12 0.025

collateral grading 3 (3) 0 (2) 4 (1) <0.001

Note: Age, NIHSS, occluded artery, hemorrhagic transformation, and dynamic CTA ASTIN/SIR collateral grading
were statistically different between groups with good and poor collateral circulation (all p < 0.05).

Table 2. Performance of single-image input processing network and multi-image input
processing network.

Network Accuracy Precision Recall F1-Score

Single-image input 0.852 ± 0.045 0.932 ± 0.034 0.827 ± 0.076 0.860 ± 0.044
Multi-image input 0.822 ± 0.017 0.571 ± 0.081 0.813 ± 0.056 0.836 ± 0.008

Note: The single-image input processing network outperforms the multi-image input processing network on all
indicators, and the differences in AUC and accuracy rate were especially obvious.
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4. Discussion

A study has shown that reperfusion within the first 100 min after emergency CT
imaging helps to reduce mortality in patients with AIS [16]; therefore, it is essential to
establish a reliable and fast assessment method for grading collateral circulation to help
optimize reperfusion therapy patient selection. Our study developed two new collateral
circulation evaluation networks, namely, a single-image input processing network and
multi-image input processing network, based on the ResNet34 classification network.
The single-image input processing network could perform a dichotomous assessment of
collateral circulation with higher accuracy, precision, recall, FI score, and AUC.

The main advantages of our model are: first, four-phase dynamic CTA/CTV data for
collateral circulation evaluation used in this study was extracted from a whole-brain one-
stop 4D-CTA/CTP examination. Frolich et al. [17] demonstrated that the 4D-CTA technique
could better describe the collateral circulation, which could be due to the establishment
of the collateral circulation as a dynamic process. Moreover, 4D-CTA/CTP provides more
accurate images of the arterial, arteriovenous, venous, and late venous phases based on
perfusion time–density curves, and does not additionally increase the radiation dose. This
multi-phase dynamic CTA evaluation of collateral flow has a high temporal resolution
and a smoother baseline between patients, providing reliable original data for collateral
circulation evaluation, enabling a complete assessment of collateral circulation [18] and
improving diagnostic accuracy [19], as well as providing value in determining clinical
prognosis [12]. Second, a residual convolutional neural network [20] was employed,
which can improve the performance of image classification tasks while deepening the
network. Deep convolutional neural networks perform well in image classification tasks,
and increasing the network depth can directly improve the network feature extraction,
but it creates the problem of gradient loss. We used the ResNet classification network
by combining the residual blocks, and upper-level features were passed to the bottom
through cross-layer connections. The features of different layers could be given to each
other, which further improved the network’s performance and alleviated the gradient loss
problem. Third, the pre-processing method was simple, and saved time and labor costs.
The Vitrea post-processing workstation used in this study had a robust and rigid alignment
subtraction technique, which maximized the removal of skull and brain tissue effects, gave
a clean background to the MIP images, and achieved similar results in similar studies that
used very complex data pre-processing methods.

There are few similar studies. Ryan et al. [21] also performed an automated grading
study of the collateral circulation, in which they used single-phase arterial CTA subtraction
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images and pre-processed reconstructed axial MIP, coronal MIP, axial MIP + coronal MIP,
and 3D images as inputs to build a model for automated assessment of the collateral
circulation. They found that the network model with axial MIP as input had the highest
AUC value (of 0.93 ± 0.01). Therefore, this study selected the axial MIP images as model
input. CTA/CTV subtraction images of the artery, arteriovenous, venous, and late venous
phase were added as modeling input. The input images were processed in two ways,
the first one stitched the four stages of CTA/CTV subtraction images of each subject
into one image for model learning, and the second input the four stages of CTA/CTV
subtraction images of each subject into the four branches of the model separately for
learning, and finally, the average probability was calculated. The performance of the
single-image input processing model was significantly higher than that of the multi-image
input processing model, and the average AUC value was slightly lower (0.89 ± 0.05) than
that of Ryan’s study. However, the accuracy and recall were higher than that of Ryan’s
model, while overall, the two models had similar efficacy. The reason for the significantly
greater AUC and accuracy of the single-image input processing model compared to the
multi-image input processing model may be due to the practice of stitching the four-phase
CTA/CTV subtraction images into a single image input model for learning, which allows
the computer to more clearly learn the changes in the vessel volume of the same patient over
different phases, i.e., increasing the information about the collateral circulation at different
phases and reducing the model training time, thus improving the learning efficiency and
classification performance.

Mumu et al. [22] performed an automated collateral circulation evaluation using
4D-CTA images. They firstly established a 4D-CTA cerebrovascular standard template
using data from 12 normal subjects, then they made unfilled vessel subtraction images after
aligning the patient’s data with the established cerebrovascular template, and performed
a trichotomous analysis of poor, moderate, and good collateral circulation based on the
latter. Finally, they used 4D-CTA data from 46 patients with AIS for testing and obtained
a collateral circulation classification model with an AUC of 0.85. This approach avoided
the extensive work of collecting data and training the model, and allowed us to make an
intuitive judgment regarding poorly filled vessels. The study had three shortcomings: first,
there are many variants in the human cerebral vessels. For example, the literature reports
five variants in the anterior circulation and ten variants in the posterior circulation of the
Willis circle in normal subjects [23], the probability of such variants was more pronounced
in the population of patients with AIS [24], the branching variants of the distal vessels
are more complex, and atherosclerotic type stroke patients have significantly tortuous
and elongated large arteries. These conditions lead to difficulties in aligning the patient’s
CTA images with the template established with healthy human CTA data, and modeling
the assessment of patients with fit human data will cause significant systematic errors.
Secondly, the critical advantage of 4D-CTA is that its high temporal resolution can show
the blood velocity alterations during the establishment of the collateral circulation in stroke
patients. Our results showed that the normal side of the cerebral vessels in patients with
LVO-AIS also suffered from significant blood velocity alterations, which were characterized
by a marked delay in filling of the draining veins and even a failure to empty the contrast
on the affected side at the end of the 4D-CTA scan, which is quite different from normal
subjects. Third, blood circulation also varies in each individual, and even with the same
scanning modality, the velocity of vascular visualization can vary between patients. It is
impossible to obtain accurate results on this basis by using each phase of 4D-CTA to align
and compare the differences in cerebral vascular volumes. Therefore, although all images
of 4D-CTA were applied in this study, we believe that the results may not be as accurate as
comparisons between specific phases that are filtered based on perfusion curves.

This study also found that (i) patients with good collateral circulation were younger
than those in the other group, as reported in previous studies [25], which may be related to
the greater circulatory compensatory capacity of younger patients; (ii) patients with good
collateral circulation had lower NIHSS scores, consistent with previous studies, as patients
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with good collateral circulation tended to have smaller infarct cores and slow core growth
rates, and therefore had milder disease and lower stroke scores [26]; and (iii) patients with
good collateral circulation had a lower incidence of hemorrhagic transformation, consistent
with previous studies [2], again demonstrating the protective effect of collateral circulation.

There are some limitations of this study that need to be considered: (1) we only
performed a dichotomous evaluation of collateral circulation. The modified ASITN/SIR
collateral grading scale based on dynamic multi-period CTA consists of 5 levels, Grades
0 to 2 were defined as poor collateral circulation, while grades 3 to 4 were defined as
good collateral circulation according to previous studies. Dichotomizing simplified the
statistical analysis and led to the easy interpretation and presentation of results. Indeed,
dichotomizing may lead to several problems such as loss of information and reduced
statistical power, but the loss of information is quite small compared to the five-group
category. Furthermore, the present sample size was relatively small for a deep learning
algorithm. Therefore, we believe that dichotomizing the 5-level collateral circulation
grading as a classification criterion for computer deep learning models produced more
reliable results under the current sample size. We will further explore the use of deep
learning algorithms for multi-category evaluation of collateral circulation in a future study
with a larger data set; (2) this study is a single-center study, and all 4D-CTA images were
acquired with the same imaging equipment. Different equipment parameters, contrast
dosage, and subtraction methods may create differences in the original images. Future
multi-center studies should be conducted to promote network applicability further; and
(3) the number of patients included in the study was relatively small. Patients with large
vessel occlusion are relatively few in acute ischemic stroke; thus, the sample size was not
large enough. However, we have used cross-validation to address this issue.

5. Conclusions

The single-image input processing network, which included stitching multi-period
CTA images as input, can better classify AIS collateral circulation. This automated col-
lateral assessment tool can help streamline clinical workflows, and screen patients for
reperfusion therapy.

Author Contributions: Conceptualization, J.W. (Jingjie Wang); methodology, D.T. and S.C.; formal
analysis, D.T.; data curation, J.W. (Jingjie Wang), J.L., J.W. (Jiajing Wu) and H.X.; writing—original
draft preparation, J.W. (Jingjie Wang) and D.T.; writing—review and editing, F.H. and Y.L.; supervi-
sion, T.L., S.C. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Medical Research Program of the Chongqing Na-
tional Health Commission and Chongqing Science and Technology Bureau, China (grant number
2021MSXM155).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Human Ethics Committee of the First Affiliated Hospital of
Chongqing Medical University (protocol code 2021-274 and date of approval was 16 June 2021).
Informed consent was obtained from all subjects involved in the study.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy or ethical considerations.

Acknowledgments: We would like to thank our colleagues from the neurology departments for their
cooperation in the project.

Conflicts of Interest: The authors declare no conflict of interest.



Diagnostics 2022, 12, 1562 13 of 14

Abbreviations

AIS—acute ischemic strokes; LVO—large vessel occlusion; 4D-CTA—four-dimensional com-
puted tomography angiography; MCA—middle cerebral artery; ACA—anterior cerebral artery;
ICA—internal carotid artery; NIHSS—National Institutes of Health Stroke Scale Baseline Score;
ASITN/SIR—American Society of Interventional and Therapeutic Neuroradiology/Society of Inter-
ventional Radiology; TOAST —Trial of Org 10172 in Acute Stroke Treatment classification; LAA—
large artery atherosclerosis type; CE—cardiogenic embolism type; SOE—stroke of other determined
etiology; MIP—maximum intensity projection.
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