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Abstract

Background: The probe percent bound value, calculated using multi-state equilibrium models of solution hybridization, is
shown to be useful in understanding the hybridization behavior of microarray probes having 50 nucleotides, with and
without mismatches. These longer oligonucleotides are in widespread use on microarrays, but there are few controlled
studies of their interactions with mismatched targets compared to 25-mer based platforms.

Principal Findings: 50-mer oligonucleotides with centrally placed single, double and triple mismatches were spotted on an
array. Over a range of target concentrations it was possible to discriminate binding to perfect matches and mismatches, and
the type of mismatch could be predicted accurately in the concentration midrange (100 pM to 200 pM) using solution
hybridization modeling methods. These results have implications for microarray design, optimization and analysis methods.

Conclusions: Our results highlight the importance of incorporating biophysical factors in both the design and the analysis
of microarrays. Use of the probe ‘‘percent bound’’ value predicted by equilibrium models of hybridization is confirmed to be
important for predicting and interpreting the behavior of long oligonucleotide arrays, as has been shown for short
oligonucleotide arrays.
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Introduction

DNA microarrays [1] have revolutionized every area in biology

[2]. Microarrays allow thousands of genes to be assayed at once,

offering global views of biological processes at the transcriptional

level [3], as well as allowing surveys of DNA sequence variation

[2], and alternative splicing [4]. Integration of the results with

other data informs many projects, such as those that perform

cancer classification [5], genome annotation [6] and functional

genomics [7]. The biology research community has invested

heavily in microarray technology and values it, despite ongoing

challenges with data quality and data interpretation.

DNA microarray chips are constructed on a solid surface, which

provides reactive groups to which can be attached nucleic acids,

called probes [8]. The sequences of these probes are designed to

interact with selected mixtures of labeled nucleic acids, called

targets [8]. While PCR preparation is used occasionally, most

probes are synthesized using organic chemistry methods. Lengths

vary from short (20–30mer) to long (50–70mer) sequences [9], and

often include a carbon-spacer with an amino or thiol reactive

group on one end for covalent surface attachment. The origin of

the targets depends on the type of the experiment, ranging from

mRNA for gene expression studies to genomic DNA for SNP and

CNV studies. A stable target-probe heteroduplex produces a

detectable signal, whose interpretation depends on the experi-

mental details, such as how target processing steps affect transcript

abundance in gene expression experiments [10,11], and whether

probe sequences match sample SNP alleles [12].

Probes in the length range 50–70 nucleotides deliver higher

sensitivity than shorter probes [9,13], due to their higher target

affinities. Chou et al. [14] found that 60-mer probes can detect

targets with eightfold higher sensitivity than 25-mer probes. Thus,

depending on the question, microarrays using longer oligonucle-

otides will require fewer probes [15,16], and uniqueness can be

more easily achieved. While sensitive and specific in gene

expression experiments, long probes have disadvantages when

microarrays are used for other applications. The usability of long

probes in SNP detection, for example, is limited, because a target

containing a single mismatch can still bind to the probe with an

affinity nearly as high as the perfect match. Long probes are rarely

used for detecting splice junctions by spanning two exons, for

similar reasons. Since sequence specificity decreases as the length

of probes increases, the excellent sensitivity of the long probe has

to be balanced with concerns about cross-hybridization with

unintended targets of high affinity, and with the potential for stable

structure formation in the probe. Long probes are also difficult to

optimize in situations where the target sequence is very short.

From the analysis perspective, however, long probe platforms

are simpler to deal with than platforms using multiple short

probes. An averaging method is usually not needed, since there is
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often only one probe interrogating each gene. Short probe

platforms require an averaging or summarization of a set of probes

for each gene. Handling noise and specificity factors is much more

complicated on short probe platforms due to the compact nature

of these arrays, and to the higher noise generated by short probes

[9].

These considerations, along with the decreasing cost of

synthesis, have led to widespread use of long oligo microarrays

[17], especially when arrays are being designed for non-model

organisms where a commercial short-oligo array is not readily

available. Despite the popularity of long-oligo platforms, model

development for the interaction of the reactants on long-oligo

arrays has received relatively little attention. Partly because the

interactions fit a two-state hybridization model, most biophysical

studies have focused on short oligonucleotide microarrays

[18,19,20]. Our long-term goal is to address the deficiencies in

modeling of long-oligo microarrays, and here we report a

significant step towards that goal.

The effects of mismatches in the duplex on hybridization
The signal from a spot is used as a proxy for the amount of

target present, frequently in a ratio relative to the same target in

another sample. Accurate interpretation of the signal relies on the

specificity of the hybridization reaction, and whether conditions

allow discrimination between fully complementary hybrids and

those with some degree of mismatch [21]. Short oligonucleotide

probes are well suited to discriminating small sequence differences

and the effect of sequence variation on their hybrid stability has

been thoroughly studied [22,23,24,25,26]. While the biophysics of

short oligonucleotide binding in solution is well understood [27],

the binding properties of longer, tethered oligonucleotides are less

well characterized [27], although it is still the case that the effects

of mismatches depend on position and context, unlike the case of

very long polymers.

The degradation in hybrid stability when probes and targets are

mismatched can lead to a number of false conclusions. The total

signal per mass of target is decreased when a mismatch is present,

and even analyses that rely on relative signal between two channels

will be subject to errors as the signal-to-noise ratio decreases. Not

all cross-hybridization scans take mismatches into account, which

can lead to false positive results at different loci [28]. On the other

hand, tolerance for, and correct interpretation of, mismatches

allows applications such as inter-specific interrogation [29] to be

successful.

A number of investigations have explored the minimum

number of base pairs required for formation of a duplex to

produce a signal, under given hybridization conditions, in order to

determine the limits of non-specific hybridization [28,30]. Because

of the number of permutations involved, the published studies of

long oligonucleotide probes use a very limited number of

sequences, consider only greater than three mismatches, or use a

limited target concentration range [18,28]. By introducing

mismatch permutations into the probe set rather than the target

set, we were able to examine the distribution of signal across a

range of interactions with more accuracy.

Applying solution hybridization models to microarray
hybridization

For long-oligo microarrays, multi-state hybridization models

must be used, that take into account factors such as probe folding,

target folding, probe-probe interactions, target-target interactions,

and competition between closely similar sequences [31,32,33].

Thermodynamic models have been used to compare solution

hybridization free energy (nearest neighbor) parameters to surface-

solution hybridization free energy parameters [34,35,36]. From

these studies we are able to determine which parameters are

unchanged between solution and surface-solution reactions, and

which must be modified.

Application of the nearest-neighbor based thermodynamic

model in order to predict long oligonucleotide to target hybrid

stability has been limited. In solution, the model is most accurate

for probes with length #40 oligonucleotides [37,38] and probes

greater than 40 oligonucleotides in length have thus been

considered non-ideal for nearest-neighbor based thermodynamic

modeling. Several groups have shown that solution hybridization

parameters based on the nearest-neighbor model can be applied to

short surface-bound oligonucleotides [34,36]. Hooyberghs et al.

[35] showed that the nearest-neighbor parameters of solution

hybridization and microarray hybridization are well correlated

(r = 0.839) for probes of 30 oligonucleotides in length.

We have identified no studies that have applied the multi-state

solution hybridization models to oligonucleotide probes longer

than 40nt. In this study, we designed and modeled the binding

behavior of ten sets of 50-mer probes, each set having six centrally

located sequence variants with one, two or three mismatches. By

creating mismatches as permutations of the surface-bound probes,

rather than permutations in the target, we are able to

unambiguously separate and directly compare the signal from a

perfectly matched duplex and several variants. Targets have been

chemically synthesized and are end-labeled, so the complexity of

the solution interactions is controlled. Results indicate that current

computational models of solution hybridization are effective for

50-mers across a range of concentrations. An accurate prediction

of input target concentration is obtained using a ‘probe percent

bound’ value, calculated using a multi-state equilibrium model of

solution hybridization that is implemented in the OMP (Oligonu-

cleotide Modeling Platform) software [39].

Results

Effect of central mismatches on signal intensity
Depending on fractional presence and context, a small number

of mismatches reduces, but need not abolish, hybridization

efficiency [40]. The experiments reported here were designed to

determine the effect of one, two or three centrally placed

mismatches in a 50-mer probe on target binding, at different

target concentrations. In Figure 1, we show the effect of these

mismatches (MM) on the hybridization signal intensity at eight

different target concentrations, for the probe set labeled 5005.

Even three mismatches did not abolish the hybridization signal.

There is a target concentration effect: at the lowest target

concentration examined (6.25 pM) the three categories of MMs

have approximately the same signal intensity as the perfect match

(PM) probe, but all of them are only marginally above the

background level. At medium target concentrations (12.5–

200 pM), the effect of having different numbers of mismatches is

clear. As expected, the signal intensity decreases with increasing

number of mismatches (PM.single-MM.double-MM.triple-

MM). At higher target concentrations (1000 pM and 5000 pM)

the signal intensities from each MM probe are close to that of the

PM probe, and the presence of MM probes does not degrade the

target concentration estimate provided by the PM probe. Similar

trends were observed for the other nine probe sets (data not

shown).

We next tested whether the signal intensity differences within a

related probe set, in the intermediate concentration range

corresponding to the linear range of the experiment, were

statistically significant. Using a one-sided t-test, we tested the null

Modeling Oligo Microarrays
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hypothesis that the mean signal intensity of each PM probe is

lower than the mean signal intensity of its: (A) single-MM

counterparts (each PM probe has three single-MM probes), (B)

double-MM counterparts (each PM probe has two double-MM

probes), (C) triple-MM counterpart (each PM probe has one triple-

MM probe) at different a levels (see Figure 2).

The result of this analysis, for all of the probes, is presented in

Figure 2. In all cases, the more mismatches present the larger the

signal difference and the more significant that difference. Target

concentrations in the range of 100–200pM yielded the most

significant differences, as expected. Figure 2A shows box plots of p-

values for the difference between PM and single-MM probes. The

100-200pM range, the signal differences between PM and single-

MM probes are small but significant. Figures 2B and 2C show box

plots of p-values for the difference between PM and double- and

triple-MM probes, respectively. We were able to differentiate

between PM and double- and triple-MM signals except at 6.25,

12.5 and 50pM (for PM versus double-MM) and 6.25 and 12.5pM

(PM versus triple-MM).

Similar results were obtained when comparing the signals from

probes with the mismatch at different positions to one another

(data not shown). At target concentrations of 100 and 200pM

differences were most significant, while at low end (concentrations

of 6.25 and 12.5pM) the mean signal intensity differences were not

significant. For none of the comparisons did the single-MM

position affect the mean signal difference, nor could the double-

MM comparisons discriminate the pairs, for probes in any of the

sets (data not shown).

All 70 probes were classified according to the mismatch base

change, and the mean signal intensities were analyzed for

correlations to type and position. None of the changes (ART,

TRA, GRC or CRG) gave a consistently different response. This

differs from effects seen with 25-mers, where responses showed

strong sequence dependence for position and base identity of

mismatches [41,42,43,44], but it is consistent with the general

trend that as polynucleotides get longer the sensitivity to small

sequence differences diminishes. Similar results were seen for

double-MM probes.

50-mer probe signal intensities show nonlinear response
over target concentrations

To study the hybridization characteristics of 50-mer probes, we

fitted the data to equation 1 (see Materials and Methods). Figure 3

shows, as an example, the responses at probe 5003 and its six MM

probes over eight different target concentrations. The response

curves closely follow the Langmuir isotherm model; the model

captures the observations with an R2$0.97. Figure 3 also shows

the clear separation in the responses of a perfect match probe and

its related single-, double- and triple-MM probes; again, the

location and base identify of mismatches in a class are

indistinguishable.

Figure 3 also shows that the response, of all probes in all classes

(PM and MM), plateaus when the target is present at 1000–

5000 pM, although the intensity at which the plateaus occur

differs. The relative positions of the plateaus follow the expected

pattern, with the intensity of PM probe.single-MM set.double-

Figure 1. PM and MM probes responses to eight target concentrations. Hybridization signal intensities for PM probe 5005 (black) and its set
of six MM variants [5035 (green), 5036 (blue), 5037 (cyan), 5038 (red), 5039 (pink), 5040 (gray)] for the eight target concentrations. The type, identity
and location of the mismatch are indicated beside the symbol of each probe: 1MM: single-MM, 2MM: double-MM, and 3MM: triple-MM. The dotted
line indicates the average background signal across the eight concentrations. The responses of the nine other probe sets were similar. Error bars are
standard deviations.
doi:10.1371/journal.pone.0011048.g001
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MM set.triple-MM probe. The occurrence of a plateau does not

reflect a scanner limitation. Figure 4A shows the affinity constant K

for four groups of probes. A small K value corresponds to high

probe affinity. Clearly the number of mismatches affects the

affinity of the probe: PM probes have the smallest K values, single-

MM probes have slightly larger K values, the difference is

statistically significant (P,0.05, one-sided Wilcoxon test). The

double-MM probes show significantly larger K values than the

single-MM probes (P,261023, one-sided Wilcoxon test), and the

triple-MM probes are the largest (P,561024, one-sided Wilcoxon

test), following the expected sequence-based affinity pattern of

target to probes. The intensity plateau trend is highlighted in

Figure 4B: PM probes show significantly higher saturation

intensities than the MM probes (P,361025, one-sided Wilcoxon

test), with plateau levels decreasing as mismatches increase

(double-MM probes have P,461025, and triple-MM probes

have P,561024).

Relationship between signal intensity and DG
The results shown so far suggest the presence of detectable and

significant differences between four affinity classes of probes. We

next test a number of physical factors that could contribute to the

observations. The first factor is the free energy of probe-target

duplex formation (DGduplex). DGduplex has been invoked in several

studies to explain response differences observed among short

oligonucleotide probes [19,45]. Since DGduplex can be easily

calculated from probe sequence [27] it is one of the most frequently

used screening parameters in microarray probe design [9].

Figure 2. Single-MM, double-MM and triple-MM signal can be differentiated from the PM signal. Box plots for the p-values after testing
the null hypothesis (A) PM signal intensity,single-MM signal intensity, (B) PM signal intensity,double-MM signal intensity and (C) PM signal
intensity,triple-MM signal intensity for all ten sets of probes at all concentrations. The dotted line indicates P = 0.05 level, the dashed line indicates
P = 0.05/(n), where n is the Bonferroni correction level, the number of hypothesis tests conducted at each concentration; 30 comparisons for single-
MM probes, 20 comparisons for double-MM probes, 10 comparisons for triple-MM probes. The solid line indicates P = 0.05/(n), where n is the
Bonferroni correction level using the sum of all tests conducted; 8 concentrations630 comparisons for single-MM probes, 8 concentrations620
comparisons for double-MM probes, 8 concentrations610 comparisons for triple-MM probes. All the tests were done using a one-sided t-test.
doi:10.1371/journal.pone.0011048.g002
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Having obtained the relative signal intensity of the three MM

probe classes to the PM probes, we tested whether there was a

correlation between the DGduplex and the variance in signal

intensities within a probe set and the response levels over the

target concentration series, following the method of He et al [28].

The DGduplex is calculated based on the probe sequence, using the

nearest neighbor method as implemented in the OMP software

[27]. Duplexes containing a single MM had nearest-neighbor

DGduplex 5% less than the corresponding perfect match duplex,

double mismatch had DGduplex 12% less than the PM duplex, and

triple mismatches had DGduplex reduced by 16%. The PM:MM

relative signal intensities for the thee MM classes (aggregated over

all ten probe sets by class) across the eight target concentrations

were: 85%, 70% and 48%, for single-MM, double-MM and triple-

MM respectively. Similarly the values of predicted DGMM:DGPM

across the eight target concentrations (aggregated for the ten probe

sets) were: 95%, 88% and 84%, for single-MM, double-MM and

triple-MM, respectively. We related relative intensities at each

target concentration to DG, and found them to be in agreement

with the values reported above.

A model parameterized with DGduplex alone did not explain all

of the intensity variation seen at each separate target concentra-

tion. At high concentrations of probe, the DGduplex changes very

little since the probe concentration is constant and in .10-fold

excess to target even at the highest target concentration.

Contribution to the variance in signal intensity at each separate

target concentration explained by DGduplex was explored using the

simple linear model presented in equation 2 (see Materials and

Methods), replacing %Bound with DGduplex. Examining the

correlation between log signal intensity at each target concentra-

tion and the DGduplex reveals a weak positive correlation (R2

between 0.05–0.28) at the first seven concentrations, and a

stronger correlation (R2 = 0.79) for the highest target concentra-

tion (5000 pM) (Fig. 5). This outcome suggests that, in principle,

DGduplex reflects some, but not all, of the physical factors

influencing signal variation.

Explaining probe signal intensity variation using probe
percent bound

We next consider the extent to which the probe percent bound

(PPB) accounts for the relative signal variation between probe

classes over different target concentrations. PPB reflects a multi-

state equilibrium model for complex solutions, where each nucleic

acid molecule is considered with respect to the entire system of

possible binding partners, under the prevailing hybridization

conditions (see [39] for more details). PPB can be defined, in

microarray terms, as the percentage of each probe molecule that

exists as a heterodimer with its target under given hybridization

conditions. A PPB value of 100 indicates almost complete

hybridization, while a value close to zero indicates no hybridiza-

tion. Since competing reactions are taken into account, target

concentrations may make significant contributions to this factor.

PPB can be calculated using a standard computational method for

equilibrium modeling of systems of interacting oligonucleotides

(OMP for example) for each probe and target set.

We took a simple linear model (equation 2), and used as input

the observed signal intensity and the probe’s PPB value. Figure 6

Figure 3. Signal intensity versus target concentration. Signal intensity versus target concentration for PM probe 5003 and its six MM variants.
Points represent the observed PM intensities and lines represent Langmuir Fit model output (equation 1) for PM (solid), single-MM (dashed), double-
MM (dotted) and triple-MM (dot-dashed) probes. The observed MM intensities are omitted in the figure, for clarity. Similar responses were found for
the other nine sets of probes. Error bars are standard deviations.
doi:10.1371/journal.pone.0011048.g003
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shows a typical example of the results obtained for the PM probes

after the fit. Figure 6A shows PPB vs. plateau intensity, for the

representative probe 5006, and Figure 6B shows a summary of R2

for the fitted model (equation 2) and the p-value given the test of

the null hypothesis that the B1 parameter in equation 2 is equal to

zero for all the ten PM probes.

Clearly, PPB explains more of the variation in signal intensity

due to target concentration changes than does DGduplex. Fitting the

data to the model (equation 2), we found a very strong correlation

between PPB and signal intensity (R2 = 0.98) across all target

concentrations, not just the highest concentration. A coefficient

this large suggests that the variation in signal intensity can be

explained by PPB alone, although our test set is admittedly small.

The null hypothesis, that the B1 parameter in equation 2 is equal

to zero, is rejected with high confidence. The same analysis was

performed on each of the mismatch probe groups. The results for

single-MM probes are presented in Figure S2. As in the case of

PM probes, we see excellent correlation between PPB and signal

intensity. The analyses of double-MM probes and triple-MM

probes produce similar results and are shown in Figures S3 and

S4, respectively. Combined data from all probes was also fitted to

the model presented in equation 2 and the result shows that PPB

explains the variation in the combined data set across all target

concentrations with R2 = 0.896 (Figure S5).

Examining the relationship between PM and MM PPB values

reveals, as expected, a correlation between each PM PPB and its

six MM PPB values (Figures S6, S7). As with the signal intensity

obtained from these probes, computed PM PPB can be

distinguished from MM PPB in the intermediate (linear) range

(Figures S6, S7). This is consistent with the behavior of shorter

oligos on SNP arrays, where differentiating SNPs is possible only if

the signal is in the linear range.

Discussion

In this study, we measured the response of targets binding to

long oligonucleotide probes, designed in sets containing a small

number of mismatches, over a range of target concentrations.

Probes by their nature have different sequence composition, and

consequently different thermodynamic properties, but affinity

differences alone do not explain all of the observed variation. In

particular, rules for predicting probe response at one concentra-

tion may not be valid at another concentration. One way to

demonstrate this is to consider the results presented in Figures 1

and 2, in which probes containing mismatches show binding

differences from the perfect match probes only at some target

concentrations. The most effective model of the observed

responses over a range of target concentrations incorporates a

multistate equilibrium model of hybridization, the PPB. The use of

a range of target concentrations to collect observations was very

important in establishing the general applicability of this model:

not only did it point to a weakness in the free energy model but it

reflects the experimental reality that not all genes or genomic

segments are present at the same concentration in most

microarray experiments.

Detection of low numbers of mismatches in long
oligonucleotides

Given the large number of possible locations and permutations

for mismatches, it has been not feasible to study all of the types of

Figure 4. Langmuir parameters comparison. Box plots of the fitted Langmuir parameters (A) affinity constant (the fitted parameter K in equation 1)
and (B) intensity plateau (the fitted parameters A+bg in equation 1). PM: Perfect Match, 1MM: single-MM, 2MM: double-MM, and 3MM: triple-MM.
doi:10.1371/journal.pone.0011048.g004
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mismatches that can occur in a 50-mer probe, and still give a

measurable signal. In general, mismatches in the middle of a

sequence affect the binding affinity most severely [18,19,20].

Hence the ten probe sets used here include single-, double- and

triple-MM classes, with the mismatches introduced in the center.

We used homomeric transversions ( i.e. A«T, G«C), which

allows comparison to a number of studies based on the Affymetrix

short-oligomer platform.

There are differences in trends seen with the shorter probes and

these longer oligonucleotides. For example, the members of the

class of probes with one and two mismatches show similar

responses to one another regardless of the position or type of base

change. The difference in stability is very small, an average of 5%

less stability for single-MM than for the PM, and the platform is

probably not sensitive enough to pick up differences. It is also

notable that for none of the single-MM probes was the signal

higher than for the cognate PM probe, while MM.PM signal is a

fairly common observation on Affymetrix GeneChip arrays [44].

This may be due to the lack of complex background containing

competing targets in our hybridization reactions, or it may be due

to our use of an end-labeling protocol that is quantitative and has

no sequence dependence. A phenomenon not noted in other

literature is the existence of a sweet spot in the target

concentration gradient, where perfect match-mismatch discrimi-

nation is possible for a number of classes. In our arrays this region

is where target concentrations are in the range 100–200pM. This

may provide useful insight in the analysis of SNP chip data, where

the target concentration range is smaller than for expression

arrays.

Predicting microarray outcomes
Understanding the factors that affect microarray signal is of

importance to both the engineers who design an array and the

scientists who use it. The change in DG of the duplex is a factor

that the array designer can incorporate, but we demonstrate that it

is only good at predicting responses at relatively high concentra-

tions of target. If the experimental design includes arrays that

capture the response plateaus of probes, or if probe concentration

information is provided by a particular supplier, then an analysis

can use the probe percent bound (PPB) to obtain much more

accurate estimates of target concentration. The PPB is an

equilibrium model of systems of interacting oligonucleotides, and

appears to be an excellent predictor of detected signal intensity on

the microarray surface across many target concentrations, for the

limited number of sequences we were able to test. A similar value,

although calculated differently, was used to model the response of

25-mer probes to several target concentrations [45].

Despite studies showing that surfaces do affect hybridization

kinetics in microarrays, it is generally assumed that solution models

provide a reasonable approximation to probe-target interaction at the

microarray surface [18,35]. The apparent effectiveness of the PPB

model, which arises from solution studies, supports the appropriate-

ness of the solution model. It also reinforces the importance of

incorporating biophysical factors into both the design and analysis of

microarrays [19,43,44,46,47]. The limitation to the PPB calculation

is its dependence on knowing either the response plateau for a probe

or its concentration. However, for most commercial microarray

platforms this quantity is either published or can be estimated; in

some cases there are published measurements from independent

Figure 5. Relationship between probe-target DG and signal intensity. Relationship between (probe+target) free energy of duplex formation
(DGduplex) and hybridization signal intensity, at a target concentration of 5000 pM. Each dot represents one probe: PM probes are shown in black,
single-MM probes are shown in red, double-MM probes are shown in green and triple-MM probes are shown in blue. Similar results were seen at the
other seven [target].
doi:10.1371/journal.pone.0011048.g005
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sources (see [45] for an example). Otherwise the probe saturation

concentration or the approximate probe concentration can be

deduced by a simple target concentration titration experiment.

Our primary goal in this experiment was to measure and then

accurately model the differences in response exhibited by perfectly

matched duplexes and related mismatch duplexes. While remain-

ing in probe excess we wanted to determine whether differences in

input target concentration led to deviation from a simple affinity-

based response model, and indeed such an effect was observed.

We determined that DGduplex does not explain the differences in

signal as effectively as does the probe percent bound (PPB). The

correlation between DGduplex and the observed signal intensity

increases as the target concentration increases (Fig. 6), in

agreement with results presented by Li et al. [45] but it does not

capture the concentration dependence of microarray hybridization

reactions. It is important to note that, while less sensitive to the

position and identity of a mismatch than short probes, long

oligonucleotide probes have physical hybridization profiles that

can be modeled with well-known solution parameters. Examining

the fitted parameters of the Langmuir isotherm model for the four

groups of probes (Fig. 4) confirms the similarities of their physical

hybridization profile to that of shorter probes. Hekstra et al. [43]

reported similar results when comparing the fitted parameters

between PM and single-MM probes when the Langmuir isotherm

model is applied to Affymetrix GeneChip probes. Physical models

have clear advantages in the analysis of microarray data, as

demonstrated by approaches like that developed by Abdueva et al.

[46].

Impact on array design and analysis
Target concentration is the principal unknown quantity in

microarray applications. For gene expression microarrays it is also

the goal of the experiment and cannot be known beforehand. For

other types of arrays, like SNP arrays, allele calls are desired and

target concentration ranges are much more restricted; controlled

target input is possible and may be worth the extra effort,

especially if it allows maximal discrimination of single-nucleotide

mismatches. Default values for target concentration in many probe

design pipelines that do take duplex stability into account are often

relatively high, from 3–50 nM or even 1 mM [13,48,49]. This is

probably misleading with respect to actual target concentrations

and where responses will be most informative. We therefore

recommend that expected target concentrations of 100 or 200 pM

should be considered in biophysical modeling to support probe

selection for glass-slide array platforms on which probe concen-

tration is 10–20mM, like the ones used in this study. Where

commercial platforms with high lot reproducibility have been used

in experiments with either spike-ins or independent PCR

Figure 6. PPB is a sensitive predictor for both probe behavior and signal intensity. (A) Relationship between probe signal intensity and
predicted percent bound (PPB), at each target concentration, for probe 5006 from the PM group. Points represent observed intensities, and the solid
line represents the fit of the model (equation 2). (B) Box plots for the obtained R2 and p-values of the null hypothesis test, that the B1 parameter in
equation 2 is equal to zero from all PM probes. Dotted line indicates P = 0.05 level.
doi:10.1371/journal.pone.0011048.g006
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validation, it should be possible to project target concentration

from intensity across the experiment and calibrate responses over a

range of concentrations. The PPB model might be of use here to

obtain more accurate target concentration estimates from

experiments using long-oligonucleotide arrays.

Conclusion
In this experiment, we have demonstrated that single mis-

matches in long oligonucleotide probe/target pairs do not abolish

signal, but that the signal is significantly lower than for the

perfectly matched probe-target pair, at target concentrations in the

linear range of the experiment. Additional mismatches result in

measureable signal but progressively larger decreases in intensity.

When mismatches are located in the three central positions in a

50-mer, the type of MM base and its position cannot be inferred

from the intensity change. At all but the lowest concentrations of

target (6.25pM and 12.5 pM), single, double and triple mismatch-

es between the probe and target give detectable and significantly

different responses from the PM-target pair.

The second significant finding is that binding predictions

derived from multi-state solution hybridization models do an

excellent job of predicting response characteristics for long-oligo

microarrays over many concentrations. We show this to be true

even though such models were developed for much shorter

oligonucleotides in solution and have not previously been used to

accurately model the behavior of oligonucleotides .40nt. While it

remains to be seen whether this finding will hold for more complex

probe-target systems, this study suggests that appropriately

parameterized solution models of hybridization will accurately

represent interactions on the oligonucleotide microarray surface

even for non-ideal oligonucleotides. This suggests that probe

designers and scientist performing transcriptomics experiments

can use these modeling tools with confidence when selecting

optimal probes and analyzing experimental results.

Materials and Methods

Probe design and selection
Perfect match probes (PM) were designed using a two-stage

process in which sequence screening was followed by biophysical

modeling (Figure S1). Briefly, Yoda [48] was the selection tool and

probes were generated using the command shown in Figure S1.

Probes were generated based on characterized gene sequences

from Brucella suis. Yoda-generated candidate probes were then

screened for secondary structure with hybrid-ss-min, from the

UNAFold package [50] using 60uC as the folding temperature,

Sodium concentration of 0.6 mol/L and DNA for the 2n option

(defaults for all the other parameters ). Candidates surviving this

filter were passed into OMP, which predicts hybridization affinity

of a perfect duplex.. The sequences of the final candidate pool

were stored in a MySQL database; the ten optimal sequences

probes were chosen using an ad hoc multi-criterion sort. Six

mismatch (MM) counterparts were designated for each of the ten

probes sequences. Mismatch sets included single base changes at

positions 24,25 or 26, two-base changes at positions 24+25 or

25+26, and a 3-base change covering positions 24+25+26; this

produces a set of 7 related sequences to compare for each of the

ten base sequences. All changes were the homomeric transver-

sions, A«T and G«C. Six sequences matching Arabidopsis thaliana

genes were designed using the same approach, to serve as controls.

Fabrication of microarray slides
All probes were synthesized with amino-C6 linkers at the 59 end

by Operon Biotechnologies (Huntsville, AL), and targets comple-

mentary to the perfect match sequences were synthesized with Cy3

attached. Microarray slides were manufactured by ArrayIt

(Sunnyvale, CA). Each probe was spotted in six replicate spots

on each slide. After preliminary hybridization tests the 10 mM

probe solution was chosen as the optimal spotting concentration

for the current experiment. All oligonucleotides were HPLC

purified to ensure length and labeling uniformity.

Preparation of target mixture
Target oligonucleotides were re-suspended to 100 mM concen-

tration in 26 SSC and checked for correct concentration and

integrity via spectrophotometry and polyacrylamide gel electro-

phoresis. A concentrated master mix was made containing

equimolar concentrations of the targets, and aliquoted, with the

aliquots frozen at 220C. For each hybridization experiment an

aliquot of the master mix was diluted to the desired final

concentration in hybridization buffer (0.4 mg/ml salmon sperm,

46 SSC, 0.5% SDS) which had been heated to 95uC for

5 minutes, and then chilled on ice for 10 minutes before the

addition of the oligos. The following target concentrations were

used: 5000 pM, 1000 pM, 200 pM, 100 pM, 50 pM, 25 pM,

12.5 pM and 6.25 pM.

Array hybridization
The slides (two technical replicates for each concentration)

were placed in an HS 4800 Pro Hybridization Station (Tecan,

Mannedorf, Switzerland), which had been preheated to 55 uC.

All wash solutions were also preheated by the hybridization

station. The slides were then wetted by a brief rinse with a

Hybridization Wash solution (0.56 SSC, 0.005% SDS) so that

the slide was not dry when it received the blocking buffer. The

slides were blocked with BlockIt solution (ArrayIt, Sunnyvale,

CA) for 30 minutes. The slides were then washed again for

2 minutes with the Hybridization Wash solution. 60 mL of

hybridization solution containing the target was then added

and the slides were incubated for 18 hours at 55uC. Slides were

subjected to mechanical agitation at medium intensity (1.1 min-

utes agitation with 3.5 minutes break) during hybridization. Then

the slides were washed three times in the Hybridization Wash

solution for 30 seconds, then washed for a minute with the

Hybridization Wash solution and cooled to 50uC. The slides were

then washed with TE buffer for 30 seconds and cooled to 45uC,

washed with 0.56TE buffer for 30 seconds and cooled to 40uC,

washed with 5% ethanol (Sigma Aldrich, St. Louis, MO) for

1 minute and cooled to 30 uC, and finally washed twice with

ddH2O for 40 seconds and cooled to 25 uC. After these washes

the slide was dried under nitrogen for 3 minutes and scanned

immediately.

Image acquisition and data analysis
Slides were scanned with the 532nm laser, a 575nm filter, 10mm

resolution, an over sampling factor of 2 and a 150 PMT gain in the

LS Reloaded Scanner (Tecan, Mannedorf, Switzerland). Images

were saved in the Tagged Image File format (tif) and then analyzed

using SPOT (CSIRO, Sydney, Australia, http://www.hca-vision.

com/product_spot.html), with the segmentation option set to

‘seeded region growing’. The quality of each array and its spots

were determined according to He et al. [28]. The raw intensities

were loaded into the LIMMA [51] package (version 2.12.0) of

Bioconductor [52] using the read.maimages function. LIMMA was

also used for between-array (quantile) normalization for each pair

of technical replicates. The analysis presented in this work was

done using R (version 2.6.1) [53].
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OMP hybridization simulation
Hybridization simulations for probe design and signal intensity

prediction were done using OMP DE (version 1.1.0.2089)

running on Red Hat Enterprise Linux 4. In this case, the

complete system of 76 probes (including negative controls) and

ten 50-mer targets could be simulated simultaneously, as the

sequence lengths and number of probes and targets in this

hybridization system was manageable by OMP in a reasonable

period of time. All probe and target sequences are included in

Table S1. For each probe, the following data were collected from

the OMP output: DGduplex, DHduplex, DSduplex, Tm, basepair count and

probe percent bound. All the parameters used in the hybridization

simulations are shown explicitly in Figure S1. Target concentra-

tions for signal prediction are listed in the Preparation of Target

Mixture section above.

Langmuir isotherm fitting
The Langmuir isotherm is a chemical adsorption model [54]

that has been applied successfully to short oligonucleotide

microarrays [19,43,46]. The model is simply a hyperbolic response

function in the form of:

I~Aj

cj

kzcj

zbg ð1Þ

where Ij is the signal intensity from the probe at target

concentration j. A, K and bg are the model fitting parameters, c

is the target jth concentration in pM. This model has three free

parameters (A, K and bg) fitted to eight different concentrations

(5000 pM, 1000 pM, 200 pM, 100 pM, 50 pM, 25 pM, 12.5 pM

and 6.25 pM). The fitting parameter K is the probe affinity

constant, A is the saturation intensity (assuming no cross-

hybridization, i.e. bg = 0) and bg is a background component

[43,45,54,55]. The model was fitted using the nls function of R

(version 2.6.1) [53].

Predicting signal intensity using probe percent bound
A simple linear model, with only two free parameters, was used

to predict the signal intensity. It is based on the probe percent

bound (PPB), following the equation below:

Ij~B0zB1S%BoundTjzej ð2Þ

where Ij is the signal intensity from the probe at target

concentration j. %Bound is the PPB of the probe at target

concentration j. B0 and B1 are free parameters and ej is an error

term. OMP percent binding predictions were computed in the

presence of all targets (competitive hybridization), at eight different

target concentrations: 5000 pM, 1000 pM, 200 pM, 100 pM,

50 pM, 25 pM, 12.5 pM and 6.25 pM. This model has two free

parameters (B0 and B1) fitted to eight PPB values. The model was

fitted using the lm function of R (version 2.6.1) [53].

Code and data
The code and data used in this study are available as an R

package and can be downloaded from http://bioinfo.uncc.edu/

rgharaib/unccMM. The complete set of figures generated from

the data produced, and referenced in this article, can be

reproduced using this package.

Supporting Information

Table S1 Probe set sequences

Found at: doi:10.1371/journal.pone.0011048.s001 (1.24 MB

TIF)

Figure S1 Probe design schema

Found at: doi:10.1371/journal.pone.0011048.s002 (0.33 MB

TIF)

Figure S2 (A) Relationship between probe signal intensity and

predicted percent bound (PPB) at each target concentration for

probe 5037 from the single-MM group. Points represent observed

intensities, and the solid line represents the fit of the model

(equation 2). (B) Box plots for the obtained R2 and p-values of the

null hypothesis that the B1 parameter in equation 2 is equal to

zero from all single-MM probes. Dotted line indicates P = 0.05.

Found at: doi:10.1371/journal.pone.0011048.s003 (0.33 MB

TIF)

Figure S3 (A) Relationship between probe signal intensity and

predicted percent bound (PPB) at each target concentration for

probe 5056 from the double-MM group. Points represent

observed intensities, and the solid line represents the fit of the

model (equation 2). (B) Box plots for the obtained R2 and p-values

of the null hypothesis that the B1 parameter in equation 2 is equal

to zero from all double-MM probes. Dotted line indicates

P = 0.05.

Found at: doi:10.1371/journal.pone.0011048.s004 (0.33 MB

TIF)

Figure S4 (A) Relationship between probe signal intensity and

predicted percent bound (PPB) at each target concentration for

probe 5034 from the triple-MM group. Points represent observed

intensities, and the solid line represents the fit of the model

(equation 2). (B) Box plots for the obtained R2 and p-values of the

null hypothesis that the B1 parameter in equation 2 is equal to

zero from all triple-MM probes. Dotted line indicates P = 0.05.

Found at: doi:10.1371/journal.pone.0011048.s005 (0.33 MB

TIF)

Figure S5 Relationship between probe signal intensity and

predicted percent bound (PPB) for all probes. Points represent

observed intensities, and the solid line represents the fit of the

model (equation 2).

Found at: doi:10.1371/journal.pone.0011048.s006 (0.39 MB TIF)

Figure S6 Relationship between probe PPB values for PM

(probe 5001) versus single-MM (5011, 5012 and 5013), double-

MM (5014, 5015) and triple-MM (5016).

Found at: doi:10.1371/journal.pone.0011048.s007 (0.33 MB TIF)

Figure S7 A) Relationship between probe PPB values for PM

(5002) versus single-MM (5017, 5018 and 5019), double-MM

(5020 and 5021) and triple-MM (5022); B) for PM (5003) versus

single-MM (5023, 5024 and 5025), double-MM (5026 and 5027)

and triple-MM (5028); C) for PM (5004) versus single-MM (5029,

5030 and 5031), double-MM (5032 and 5033) and triple-MM

(5034); D) for PM (5005) versus single-MM (5035, 5036 and 5037),

double-MM (5038 and 5039) and triple-MM (5040); E) for PM

(5006) versus single-MM (5041, 5042 and 5043), double-MM

(5044 and 5045) and triple-MM (5046). F); for PM (5007) versus

single-MM (5047, 5048 and 5049), double-MM (5050 and 5051)

and triple-MM (5052); G) for PM (5008) versus single-MM (5053,

5054 and 5055), double-MM (5056 and 5057) and triple-MM

(5058); H) for PM (5009) versus single-MM (5059, 5060 and 5061),

double-MM (5062 and 5063) and triple-MM (5064); I) for PM

(5010) versus single-MM (5065, 5066 and 5067), double-MM

(5068 and 5069) and triple-MM (5070).

Found at: doi:10.1371/journal.pone.0011048.s008 (2.21 MB TIF)
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